Publications

JOURNAL PUBLICATIONS

  1. Gautam, P. K., Kalipatnapu, H. Shankar, S., Singhal, U., Lienhard, B., Singh, V., & Thakur, C. S. (2024). Low-latency machine learning FPGA accelerator for multi-qubit state discrimination. arXiv preprint arXiv:2407.03852.
  2. L. Annamalai, V. Ramanathan and C. S. Thakur, “EventMASK: A Frame-Free Rapid Human Instance Segmentation with Event Camera Through Constrained Mask Propagation,” in IEEE Robotics and Automation Letters, doi: 10.1109/LRA.2024.3372830
  3. A. Nandi, S. Chakrabartty and C.S. Thakur, “Margin Propagation based XOR-SAT Solvers for Decoding of LDPC Codes,” arXiv e-prints, arXiv-2402.04959
  4. P. Kumar*, A. Nandi*, A. Saha, K.S. P. Teja, R. Das, S. Chakrabartty and C.S. Thakur, “ARYABHAT: A Digital-Like Field Programmable Analog Computing Array for Edge AI,” in IEEE Transactions on Circuits and Systems I: Regular Papers, doi: 10.1109/TCSI.2024.3349776. (* equal contributing authors)
  5.  Philip, K. Jainwal, A. van Schaik and C. S. Thakur, “Tau-cell-based Analog Silicon Retina with Spatio- Temporal Filtering and Contrast Gain Control,” in IEEE Transactions on Biomedical Circuits and Systems
  6. R. Madhuvanthi Srivatsav, S. Chakrabartty, and C. S. Thakur, “Neuromorphic Computing with Address-Event-Representation using Time-to-Event Margin Propagation,” in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, doi: 10.1109/JETCAS.2023.3328916.
  7. Singhal, U., Kalipatnapu, S., Gautam, P. K., Majumder, S., Pabbisetty, V. V. L., Jandhyala, S., Singh, V., & Thakur, C. S., “SQ-CARS: A Scalable Quantum Control and Readout System,” in IEEE Transactions on Instrumentation and Measurement, doi: 10.1109/TIM.2023.3305656.
  8. A. Krishna et al., “RAMAN: A Re-configurable and Sparse tinyML Accelerator for Inference on Edge,” in IEEE Internet of Things Journal, doi: 10.1109/JIOT.2024.3386832.
  9. Ramdas Nair, A., Nath, P. K., Chakrabartty, S., & Singh Thakur, C. (2023). Multiplierless In-filter Computing for tinyML Platforms. arXiv e-prints, arXiv-2304.
  10. Mangalwedhekar, R., Singh, N., Thakur, C.S. et al. Achieving nanoscale precision using neuromorphic localization microscopyNat. Nanotechnol. (2023). https://doi.org/10.1038/s41565-022-01291-1
  11. S. S. Yadav, R. Agarwal, K. Bharath, S. Rao and C. S. Thakur, “tinyRadar for Fitness: A Contactless Framework for Edge Computing,” in IEEE Transactions on Biomedical Circuits and Systems, doi: 10.1109/TBCAS.2023.3244240.
  12. P. Kumar, A. Nandi, S. Chakrabartty and C. S. Thakur, Bias-Scalable Near-Memory CMOS Analog Processor for Machine Learning” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 10.1109/JETCAS.2023.3234570
  13. P. Kumar, A. Nandi, S. Chakrabartty and C. S. Thakur, “Process, Bias, and Temperature Scalable CMOS Analog Computing Circuits for Machine Learning,” in IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, doi: 10.1109/TCSI.2022.3216287.
  14. Annamalai, L., & Thakur, C. S. (2022). Theroretical Insight into Batch Normalization: Data Dependant Auto-Tuning of Regularization RatearXiv preprint arXiv:2209.07587.
  15. S. C. G. Kiruba Daniel et al., “Handheld, Low-Cost, Aptamer-Based Sensing Device for Rapid SARS-CoV-2 RNA Detection Using Novelly Synthesized Gold Nanoparticles,” in IEEE Sensors Journal, vol. 22, no. 19, pp. 18437-18445, 1 Oct.1, 2022, doi: 10.1109/JSEN.2022.3196598.
  16. A. R. Nair, P. K. Nath, S. Chakrabartty and C. S. Thakur, “Multiplierless MP-Kernel Machine For Energy-Efficient Edge Devices,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022
  17. L. Annamalai, V. Ramanathan, C.S. Thakur, “Event-LSTM: An Unsupervised and Asynchronous Learning-based Representation for Event-based Data“. in IEEE Robotics and Automation Letters.
  18. P. Kumar, K. Zhu, X. Gao, S. Wang, M. Lanza, C.S. Thakur, “Hybrid architecture based on two-dimensional memristor crossbar array and CMOS integrated circuit for edge computing“, npj 2D Materials and Applications, Nature. 
  19. A.R. Nair, S. Chakrabartty, C.S. Thakur, “In-filter Computing For Designing Ultra-light Acoustic Pattern Recognizers“, IEEE Internet of Things (IoT) Journal.
  20. T. Paul, A. Mukundan, K.K. Tiwari, A. Ghosh and C.S. Thakur, “Demonstration of intrinsic STDP learning capability in all-2D multi-state MoS2memory and its application in modelling neuromorphic speech recognition2D Materials, DOI:10.1088/2053-1583/ac210a.
  21. Lakshmi A., Chakraborty A., Thakur C. S., “EvAn: Neuromorphic Event-based Anomaly Detection“. Frontiers in Neuroscience. DOI:10.3389/fnins.2021.699003.
  22. A. Krishna, André van Schaik, C.S. Thakur, “FPGA Implementation of Particle Filters for Robotic Source LocalizationIEEE Access.
  23. J. L. Molin, E. Niebur, R. Etienne-Cummings, C.S. Thakur, “A Neuromorphic Proto-Object Based Dynamic Visual Saliency Model with a Hybrid FPGA ImplementationIEEE Transactions on Biomedical Circuits and Systems, doi: 10.1109/TBCAS.2021.3089622.
  24. S. Gupta, S. Chakraborty, C. S. Thakur, “Neuromorphic Time-Multiplexed Reservoir Computing With On-the-Fly Weight Generation for Edge Devices“. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), doi: 10.1109/TNNLS.2021.3085165.
  25. Ying Xu, S.Afshar, R. Wang, G. Cohen, C. S. Thakur, T. J. Hamilton, A. van Schaik,A Biologically Inspired Sound Localisation System Using a Silicon Cochlea Pair“.  Applied Sciences (MDPI).
  26. A.Krishna, D. Mittal, S.G. Virupaksha, A.R. Nair, R. Narayanan, C.S. Thakur, “Biomimetic FPGA-based Spatial Navigation Model with Grid cells and Place cells“. Neural Networks (Elsevier)
  27. A.R. Mangalore, C.S. Seelamantula, C.S. Thakur, “Neuromorphic Fringe Projection Profilometry” “Supplementary Paper“. IEEE Signal Processing Letters
  28. A. Krishna, S. Rudresh, V. Shaw, H. R. Sabbella, C. S. Seelamantula, C. S. Thakur, “Unlimited Dynamic Range Analog-to-Digital Conversion” . arXiv:1911.09371.
  29. Gupta S, Kumar P, Paul T, van Schaik A, Ghosh A, Thakur C S,  “Low Power, CMOS-MoS2 Memtransistor based Neuromorphic Hybrid Architecture for Wake-Up Systems“. Scientific Reports (Nature Group)
  30. Nazreen P.M., S. Chakrabartty S., Thakur C.S.  “Multiplierless and Sparse Machine Learning based on Margin Propagation Networks“. arXiv:1910.02304
  31. Zhang J, Newman J P, Thakur C. S., Wang X, Rattray J, R. Etienne-Cummings, M Wilson,  “A closed-loop all-electronic pixel-wise adaptive imaging system for high dynamic range video“. IEEE Transactions on Circuits and Systems I (TCAS-I)
  32. Tathagata Paul,  Tanweer Ahmed,  Krishna Kanhaiya Tiwari,  Chetan Singh Thakur,  Arindam Ghosh “A high-performance MoS2 synaptic device with floating gate engineering for Neuromorphic Computing“. 2D Material (IOP Science).
  33. Lakshmi A., Chakraborty A., Thakur C. S. Neuromorphic Vision: Sensors to Event-based AlgorithmsWiley -Wires Interdisciplinary ReviewsData Mining and Knowledge Discovery, DOI:10.1002/widm.1310.
  34. Daniel S C G, Kumar A, Sivasakthi K, Thakur C. S.  Handheld, Low-Cost Electronic Device For Rapid, Real-Time Fluorescence-Based Detection Of Hg2+, Using Aptamer-Templated ZnO Quantum Dots. Sensors and Actuators B: Elsevier
  35. Thakur C. S., Jamal Molin, Gert Cauwenberghs, Giacomo Indiveri, Kundan Kumar, Ning Qiao, Johannes Schemmel, Runchun Wang, Elisabetta Chicca, Jennifer Olson Hasler, Jae-sun Seo, Shimeng Yu, Yu Cao, André van Schaik, Ralph Etienne-Cummings . Large-Scale Neuromorphic Spiking Array Processors: A quest to mimic the brain. Frontiers in Neuroscience.
  36. Wang, R., Thakur, C. S., van Schaik, A. An FPGA-based Massively Parallel Neuromorphic Cortex SimulatorFrontiers in Neuroscience.
  37. Ying Xu, Thakur, C. S., Hamilton, Wang, R., van Schaik, A. An FPGA Implementation of the CAR-FAC Cochlear Model. Frontiers in neuroscience
  38. Xiong T, Zhang J, C. Martinez-Rubio, Thakur, C. S., et al . An Unsupervised Compressed Sensing Algorithm for Multi-Channel Neural Recording and Spike Sorting. Transactions on Neural Systems & Rehabilitation Engineering
  39. Thakur, C. S., Wang, R., Hamilton, T. J., Tapson, J., R. Etienne-Cummings & van Schaik, A. An Analogue Neuromorphic Co-processor that Utilises Device Mismatch for Learning Applications.  IEEE Transactions on Circuits and Systems I (TCAS-I)
  40. Thakur, C. S., Afshar, S., Wang, R. M., Hamilton, T. J., Tapson, J., & van Schaik, A. Bayesian Estimation and Inference Using Stochastic ElectronicsFrontiers in neuroscience.
  41. Thakur, C. S., Wang, R., Hamilton, T. J., Tapson, J.,& van Schaik, A. A Low Power Trainable Neuromorphic Integrated Circuit that is Tolerant to Device MismatchIEEE Transactions on Circuits and Systems I: Regular Papers63(2), 211-221.
  42. Wang, R., Thakur, C. S., et al.  A neuromorphic hardware architecture using the Neural Engineering Framework for pattern recognitionIEEE Transactions on Biomedical Circuit and System (TBioCAS).
  43. Afshar, S., Thakur, C. S., et al.  Turn Down that Noise: Synaptic Encoding of Afferent SNR in a Single Spiking Neuron. IEEE Transactions on Biomedical Circuits and Systems (TBioCAS).
  44. Thakur, C. S., Wang, R., Hamilton, T. J., Tapson, J.,& van Schaik, A. An Online Learning Algorithm for Neuromorphic Hardware Accelerators.
  45. Thakur, C. S., Wang, R. M., Afshar, S., Hamilton, T. J., Tapson, J. C., Shamma, S. A., & van Schaik, A. Sound stream segregation: a neuromorphic approach to solve the “cocktail party problem” in real-time. Frontiers in Neuroscience.

CONFERENCE PUBLICATIONS

  1. S. S. Yadav, S. Anand, A. M. D, D. S. Nikitha, and C. S. Thakur, “tinyRadar: LSTM-based Real-time Multi-target Human Activity Recognition for Edge Computing,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2024), Singapore, 2024.
  2. A. Krishna, V. Ramanathan, S. S. Yadav, S. Shah, A. van Schaik, M. Mehendale, and C. S. Thakur, “A Sparsity-driven tinyML Accelerator for Decoding Hand Kinematics in Brain-Computer Interfaces,” in IEEE BIOCAS 2023, Toronto, Canada, 2023.
  3. A. Nair, P.K. Nath, S. Chakrabartty and C. S. Thakur, “Multiplierless In-filter Computing for tinyML Platforms” 2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID)
  4. A. Nandi, P. Kumar, S. Chakrabartty and C. S. Thakur, “Margin Propagation based Analog Soft-Gates for Probabilistic Computing” 2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID)
  5. S.S. Yadav, Adithya M. D., Shreyansh A., Madhu M., Dileep K., & C.S. Thakur, “Live Demonstration: Real-time Gesture Recognition Using tinyRadar for Edge Computing,” International Conference on AI-ML Systems 2023.
  6. Dileep K., Madhu M., Nikitha D.S., S.S. Yadav, Sandeep R., & C.S. Thakur, “tinyRadar for Gesture Recognition: A Low-power System for Edge Computing, “IEEE Asia Pacific Conference on Circuits and Systems 2023.
  7. H.R. Sabbella, A.R. Nair, V. Gumme, S.S. Yadav, S. Chakrabartty, C.S. Thakur, “An Always-On tinyML Acoustic Classifier for Ecological Applications,“ IEEE International Symposium on Circuits and Systems (ISCAS), 2022.
  8. S.S. Yadav, R. Agarwal, K. Bharath, S. Rao,  C.S. Thakur, “tinyRadar: mmWave Radar based Human Activity Classification for Edge Computing,“ IEEE International Symposium on Circuits and Systems (ISCAS), 2022.
  9. Y. Bethi, S. Narayanan, V. Rangan, A. Chakraborty,  C.S. Thakur, “Real-Time Object Detection and Localization in Compressive Sensed Video“. IEEE International Conference on Image Processing (ICIP), 2021.
  10. A. Krishna, C.S. Thakur, “Bayesian Source Localization using Stochastic Computation“. IEEE International Symposium on Circuits and Systems (ISCAS), 2021.
  11. A.B. Ayub, P.K. Nath, V.Rangan, C.S. Thakur, “FPGA based Compressive Sensing Framework for Video Compression on Edge Devices“. VLSI Design And Test (V-DAT), 2020
  12. A.T. Tharakan, D. Bhaskar, C.S. Thakur, “Implementation of Bayesian Fly Tracking Model using Analog Neuromorphic Circuits“. IEEE International Symposium on Circuits and Systems (ISCAS), 2020.
  13. Zhang J, Khalifa A, Spetalnick S, Milad A, Rattray J, Thakur C. S., A Eisape, R. Etienne-Cummings, “A Miniature Wireless Silicon-on-Insulator Image Sensor for Brain Fluorescence Imaging” IEEE Engineering in Medicine and Biology Society (EMBC), 2020.
  14. Vignesh Ramanathan, Pritesh Dwivedi, Katabathuni Bharath, Anirban Chakraborty, Chetan Singh Thakur, ” QUICKSAL: A small and sparse visual saliency model for efficient inference in resource constrained hardware2020 Winter Conference on Applications of Computer Vision (WACV ’20)
  15. S. Narayanan, Y. Bethi,  Thakur, C. S, “A Compressive Sensing Video dataset using Pixel-wise coded exposure”  arXiv:1905.10054.
  16. A. G. Mahurkar, P. K. Pokala, C. S. Thakur, and C. S. Seelamantula, “SAMIR: Sparsity amplified iteratively-reweighted beamforming for high-resolution ultrasound imaging,”Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2019.
  17. P. Kumar, A. R. Nair, O. Chatterjee, T. Paul, A. Ghosh, S. Chakrabartty, C. S. Thakur, “Neuromorphic In-Memory Computing Framework using Memtransistor Cross-bar based Support Vector Machines.” IEEE Midwest Symposium on Circuits and Systems (MWSCAS), 2019.
  18. S. K. Gupta, K. Kumar, C. Seelamantula, Thakur C. S., “A Portable Ultrasound Imaging System Utilizing Deep Generative Learning-Based Compressive Sensing On Pre-Beamformed RF SignalsIEEE Engineering in Medicine and Biology Society (EMBC), 2019.
  19. Raghunath, K. P., Sagar, K. M., Gokulan, T., Kumar, K., Thakur, C. S. “ASIC Based LVDT Signal Conditioner for High-Accuracy Measurements.  In International Symposium on VLSI Design and Test (pp. 385-397). Springer, Singapore. July, 2019.
  20. B. R. Pradhan, Y. Bethi, S. Narayanan, A. Chakraborty, Thakur, C. S, “n-HAR: A Neuromorphic Event-Based Human Activity Recognition System Using Memory Surfaces“. IEEE International Symposium on Circuits and Systems (ISCAS), 2019.
  21. A. Tripathi, M. Arabizadeh, S. Khandelwal, Thakur, C. S, “Analog Neuromorphic System based on Multi Input Floating Gate MOS Neuron Model“. IEEE International Symposium on Circuits and Systems (ISCAS), 2019.
  22. R. Sharma, S. Gupta, K. Kumar, P. Kumar, Thakur, C. S, “Real-Time Image Segmentation Using Neuromorphic Pixel Array“. IEEE International Symposium on Circuits and Systems (ISCAS), 2019.
  23. S.Gupta, P. Kumar, K. Kumar, S. Chakraborty, Thakur, C. S, “Low Power Neuromorphic Analog System based on Sub-Threshold Current Mode Circuits“.IEEE International Symposium on Circuits and Systems (ISCAS), 2019.
  24. Chakraborty S, P. Priyanka, Gupta S, Afshar S, Hamilton T, Thakur C S, “Neuromorphic Object Tracking Architecture Based on Compound Eye on FPGA” IEEE Midwest Symposium on Circuits and Systems (MWSCAS), 2018.
  25. T. Xiong, J. Rattray, J. Zhang, Thakur, C. S., S. Chin, T. Tran, R. Etienne-Cummings, “Spatiotemporal Compressed Sensing for Video Compression IEEE Midwest Symposium on Circuits and Systems (MWSCAS), 2017.
  26. Thakur, C. S., L. Molin, T. Xiong, J. Zhang, E. Niebur, R. Etienne-Cummings, “Neuromorphic Visual Saliency Implementation Using Stochastic Computation,” IEEE International Symposium on Circuits and Systems (ISCAS), 2017.
  27. L. Molin, A. Eisape, Thakur, C. S., V. Varghese, C. Brandli, R. Etienne-Cummings, “Low-power, low-mismatch, highly-dense, array of vlsimihalas-niebur neurons,“ IEEE International Symposium on Circuits and Systems (ISCAS), 2017.
  28. Thakur, C. S., L. Molin, R. Etienne-Cummings, “Real-time image segmentation using a spiking neuromorphic processor,” Information Sciences and Systems (CISS), 2017 51st Annual Conference on, IEEE, 2017.
  29. Thakur, C. S., L. Molin, A. V. Schaik, R. Etienne-Cummings, “Inference in Spiking Bayesian Neurons using Stochastic Computation,” Information Sciences and Systems (CISS), 2017 51st Annual Conference on, IEEE, 2017.
  30. Wang, R., Thakur, C. S., et al. (2016) A Stochastic Approach to STDP learning. IEEE International Symposium on Circuits and Systems (ISCAS 2016).
  31. Xu, Y, Thakur, C. S., et al. (2016) Electronic Cochlea: Car-FAC Model on FPGA. IEEE Biomedical Circuits and Systems Conference (BioCAS 2016).
  32. Wang, R., Thakur, C. S., et al. (2016) An SRAM-Based Implementation of a Convolutional Neural Network. IEEE Biomedical Circuits and Systems Conference (BioCAS 2016).
  33. Xu, Y., Thakur, C. S., et al. (2015) A Reconfigurable Mixed-signal Implementation of Neuromorphic ADC. IEEE Biomedical Circuits and Systems Conference (BioCAS).
  34. Wang, R., Thakur, C. S., et al. (2015) A compact aVLSI conductance-based silicon neuronIEEE Biomedical Circuits and Systems Conference (BioCAS 2015).
  35. Thakur, C. S., et al. (2015) A neuromorphic hardware framework based on population coding. IEEE International Joint Conference on Neural Networks (IJCNN).
  36. Thakur, C. S., et al. (2014) FPGA Implementation of the CAR Model of Cochlea. IEEE International Symposium on Circuits and Systems (ISCAS).
  37. Thakur, C. S., Hamilton, T. J., Tapson, J.,& van Schaik, A. (2015) Bayesian inference in spiking networks using stochastic hardware. NeuroEng 2015: 8th Australasian Workshop on Computational Neuroscience and Neuromorphic Engineering.
  38. Wang, R. M., Thakur, C. S., Hamilton, T. J., Tapson, J., van Schaik, A. (2015) A Cognitive Computing Ecosystem using the Neural Engineering Framework. NeuroEng 2015: 8th Australasian Workshop on Computational Neuroscience and Neuromorphic Engineering.
  39. Thakur, C. S., Wright J., Hamilton, T. J., Tapson, J., van Schaik, A. (2014) Digital Implementation of CAR-FAC: a Neuromorphic Model of the Human Cochlea. NeuroEng 2014: 7th Australian Workshop on Computational Neuroscience.
  40. Thakur, C. S., van Schaik, A., Tapson, J., Hamilton, T. J. (2013) Implementation of ELM Using a Stochastic Digital Architecture. Proceedings of the 11th Biennial Engineering Mathematics and Applications Conference, EMAC-2013.

BOOK CHAPTERS

1. Chakrabartty, S., Raman, B., Thakur, C. S.  (2022), “Sensing-to-learn and Learning-to-sense: Principles for designing neuromorphic sensors“, Handbook of Neuroengineering , In: Thakor N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_122-1.

PATENTS

  1. Thakur, C. S., Chakraborty, A., Narayanan, S., Pradhan, B. R., “Method and System for Recognizing Activities in Surrounding Environment for Controlling Navigation of Autonomous Vehicle”, IP is filed in India and USA .
  2. Thakur, C. S., Chakrabartty, S., Nair, A.R., “Method and System for Designing a Multiplierless Kernel Machine for Energy Efficient Edge Devices“,  Provisional Indian IP Filed.
  3. Thakur, C. S., Seelamantula C., Shaw V, Krishnan A.,  R. Sunil., “Unlimited Dynamic Range Analogue – to– Digital Converters”, Provisional Indian IP Filed.
  4. S C G Kiruba Daniel, Neeraja, Sabbella H. R., Thakur, C. S, “Method of Synthesis of Metal Nanoparticles with Reusable, Solid State Reducing Agent”,  Provisional Indian IP Filed, Patent Application No – 201941043597.
  5. Thakur, C. S., J. L. Molin, E. Niebur, R. Etienne-Cummings., “A Method and Device for Fast, Efficient Data Triaging in 360˚ Video/Image, or Video/Image Captured Using any Geometrical Optical Projections onto any Geometrical Shape of Imager Plane”, Provisional IP with JHU.
  6. Thakur, C. S., Hamilton, T. J., Tapson, J., & van Schaik, A., “A Neuromorphic Trainable Analog Block”, (2014) International PCT. Patent number AU2014904154/WO2016058055.

LIVE DEMO

  1. Adithya K., Ashwin R, Shankaranarayanan H., Hitesh P. O., Anand C., A. van Schaik, M. Mehendale, C. S. Thakur., “Real-time audio and visual inference on the RAMAN TinyML accelerator,” International Symposium on Circuits and Systems (ISCAS), 2024.
  2. Adithya K., Shankaranarayanan H., Hitesh P. O., Anand C., A. van Schaik, M. Mehendale, C. S. Thakur., “TinyML Acoustic Classification using RAMAN Accelerator and Neuromorphic Cochlea,” 2023 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Hyderabad, India, 2023
  3. S.Narayanan, Y. Bethi, J. Lottiery, E.Niebur, R. Etienne-Cummings, Thakur, C. S, “Live Demonstration: Real-time Implementation of Proto-Object Based Visual Saliency Model”.IEEE International Symposium on Circuits and Systems (ISCAS), 2019.
  4. Wang, R. M., Thakur, C. S., Hamilton, T. J., Tapson, J., & van Schaik, A. (2015) DeepSouth: A Turn-key Solution for Large-Scale Neural Simulations. NeuroEng 2015: 8th Australasian Workshop on Computational Neuroscience and Neuromorphic Engineering.
  5. Thakur, C. S., Wright J., Hamilton, T. J., Tapson, J., & van Schaik, A. (2014) Live Demo: Digital Implementation of CAR-FAC: a Neuromorphic Model of the Human Cochlea. NeuroEng 2014: 7th Australian Workshop on Computational Neuroscience.
  6. Thakur, C. S., Wright J., Hamilton, T. J., Tapson, J., & van Schaik, A. (2014) Live Demo: FPGA Implementation of the CAR Model of Cochlea. IEEE International Symposium on Circuits and Systems (ISCAS).
  7. Xiong T, Zhang J, Thakur, C. S., et al. Live Demonstration: A Compact all-CMOS Spatiotemporal Compressed Sensing Video Camera IEEE International Symposium on Circuits and Systems (ISCAS, 2017).

 

BLOGS

  1. Chetan Singh Thakur, Neuromorphic CMOS-MoS2 based hybrid system for low power edge-computing Device and Materials Engineering.