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EventMASK: A Frame-Free Rapid Human Instance
Segmentation with Event Camera Through

Constrained Mask Propagation
Lakshmi Annamalai1, Vignesh Ramanathan2 and Chetan Singh Thakur2

Abstract—Human Instance Segmentation (HIS) is essential in
robotics for applications such as autonomous driving and human-
robot interaction, etc. Existing HIS solutions using conventional
cameras are computationally expensive and slow. Benefits such
as sparsity, high temporal resolution, etc. make the event camera
a promising alternative. HIS with an event camera is not actively
explored, though. Thus, we introduce EventMASK, a novel
HIS solution that makes use of an event camera. EventMASK
has been meticulously designed to process sparse raw events
asynchronously, enabling low-latency processing. EventMASK
employs simple statistical and probabilistic non-deep learning
techniques for computational efficiency and adopts mask prop-
agation for real-time performance. To curtail error accumu-
lation, we present an innovative constrained likelihood-based
mask updation method. EventMASK’s semi-supervised approach
circumvents the need for event-level instance labeling. The
comprehensive analysis demonstrates EventMASK’s robustness
in a wide spectrum of scenarios, offering a low-cost and low-
latent HIS solution for resource-constrained robotics.

Index Terms—Surveillance Robotic Systems, Computer Vision
for Automation, Recognition

I. INTRODUCTION

HUMAN Instance Segmentation (HIS) has emerged as a
foundational component in robotics perception in recent

years. Its multi-disciplinary applications include enhancing
pedestrian safety in autonomous vehicles and facilitating
collaborative robots in industries, etc. HIS not only identi-
fies humans but also accurately delineates their boundaries.
Resource-constrained robotic systems, particularly mobile and
autonomous robots, often operate with limited processing
power and restricted battery energy. These limitations make
computational efficiency a critical bottleneck for their smooth
functioning. Furthermore, low latency is imperative to avert
potential accidents in autonomous robots and enable real-time
threat assessment in surveillance robots, to name a few.

Conventional cameras acquire huge volumes of data at
constant intervals of time, resulting in computationally in-
tensive and slow vision algorithms inappropriate for quick
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and resource-constrained robotics perception. On the other
hand, a novel sensor known as an event camera captures
sparse data asynchronously, triggered solely by changes in the
scene. The sparseness of event data significantly reduces the
computational overhead and minimizes latency, often in the
order of milliseconds.

There has been considerable progress in HIS using con-
ventional cameras. Nevertheless, extending these algorithms
to event cameras poses several challenges, including the fol-
lowing: Current conventional camera approaches of HIS rely
on synchronous, supervised deep-learning networks operating
on dense 2D frames. Synchronous and dense processing is
inefficient in handling sparse event data, resulting in un-
necessary computations and increased power consumption.
Additionally, deep learning-based HIS methods are time-
consuming, resource-intensive, and rely on extensive labeled
data. Instance-level labeling of huge amounts of data is time-
consuming and expensive.

To address these challenges, we introduce EventMASK,
an asynchronous, semi-supervised, non-deep learning-based
method for human instance segmentation of the space-time
event cloud. EventMASK operates on raw event data, which
allows for reduced latency compared to frame-based systems
due to the sparse and asynchronous nature of event data.
This zero-latency processing is highly beneficial, especially
for applications such as autonomous vehicles, which require
quick decision-making.

Non-deep learning solutions are preferable in robotics due
to their low computational complexity, mainly when data is
scarce, as with event cameras. Therefore, we have designed
EventMASK as a non-deep learning technique utilizing less-
compute statistical and probabilistic methods. In the conven-
tional camera domain, non-deep learning techniques lack the
ability to capture the intricate features necessary for HIS.
However, the unique ability of the event camera to sense scene
changes has enabled the use of non-deep learning techniques
to accomplish the complex task of HIS.

To further reduce the computation involved in mask es-
timation, we propose mask propagation with a novel mask
parameter update module. The mask parameter update module
solves the significant challenge of maintaining the predicted
mask as close as possible to the true mask over time. By im-
plementing a novel likelihood-based constrained optimization
technique, Mask parameter update strikes the right balance
between preserving the memory of past events and capturing
the dynamics of current human instances. Additionally, by
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combining supervised human segmentation with unsupervised
instance mask estimation, EventMASK eliminates the need for
expensive event-level instance labeling.

II. RELATED WORK

Human Instance Segmentation has received limited attention
in the event camera domain. To present context to HIS in
the event camera domain, we present a survey of the related
tasks in event camera vision and instance segmentation using
conventional camera [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
[12] [13] [14] [15] [16].

A. Event Camera Vision Tasks

Several similar domains, such as semantic segmentation,
motion segmentation, human detection, and instance segmen-
tation, have established the advantage of event cameras over
frame-based cameras. Semantic Segmentation [17] [18] [19]
[20] [21] [22] [23] labels each pixel with a corresponding
class, without delineating the instances. Event-based human
detection [24] [25] [26] accumulates events into 2D grids
and detects humans as bounding boxes by the application
of conventional vision networks. In contrast, the proposed
EventMASK performs simultaneous semantic segmentation
and detection of individual instances of humans at the event
level.

Motion segmentation [27] [28] [29] [30] [31] [32] [33] [34]
[35] focuses on distinguishing regions of event stream that
are in motion from those that are static, without assigning
semantic classes. Motion segmentation generally belongs to
one of the three methods, i) Remove the background events
and then analyze the remaining events [30] [29], ii) treating
it as two sub-problems: event-object association and object
model refinement [31] [36] [37] [35], iii) end-to-end learning-
based pipeline, where events are converted into 2D format
suitable for vision networks [32].

Fundamental differences between motion segmentation and
EventMASK are as follows: EventMASK is a two-step process
of event-class association followed by event-instance associa-
tion. Although the latter process involves clustering techniques
similar to motion segmentation tasks, the unique aspect of
EventMASK lies in its mask model refinement tailored to
human instance segmentation.

Recently, event camera-based instance segmentation has
been attempted in [38] and [39]. In [38], events were converted
into two-channel images, and the most popular Mask R-
CNN, a deep learning-based approach, was applied for object
instance segmentation. [39] employed transfer learning on
event camera semantic segmentation deep learning models by
unfreezing the last few layers of the encoder, full decoder,
and classification layer. Unlike these dense and synchronous
deep learning instance segmentation methods, EventMASK
attempts HIS using sparse and asynchronous conventional
processing.

B. Frame-based Instance Segmentation

Mask R-CNN [40] directly extends Faster R-CNN [41].
Authors of [42] implemented inside/outside score maps, which

are utilized for detection and segmentation. Object Mask
Network (OMN) [43] creates a mask by warping the features
of each proposal. MaskLAB [44] proposed mask labeling
built on top of Faster R-CNN, which generates semantic
segmentation and instance center direction. The instance center
direction is utilized to separate instances from the segmented
objects. TensorMASK [45] introduced a dense sliding window
technique. ShapeMASK [46] predicts a bounding box, which
is then filtered and refined to produce instance masks using
shape prior.

CenterMASK [16] achieves good accuracy with lesser com-
putation with an anchor-free one-stage object detector and a
novel spatial attention-guided mask. SOLO [47] introduced
the concept of instant categories. SOLO was made more
efficient in SOLOv2 [48]. YOLOv7 [49] has evolved into
YOLOv8 [50], which offers significant advantages in terms of
fast and accurate instance segmentation. Recently, transformer-
based architectures have been proposed in Mask DINO [51]
for instance segmentation. Mask DINO extends DINO [52]
to instance segmentation task by adding a mask prediction
branch.

III. PROPOSED SOLUTION

In this section, we will delve into the technical details of
EventMASK. EventMASK is a three-step process: i) Events
to Human segmentation, ii) Segmentation to Instance Mask,
and iii) Instance Mask Parameter update.

A. Principles of Event Camera

Event camera generates events asynchronously and inde-
pendently at each pixel (xi, yi) at time ti once the intensity
I(xi, yi) changes by a pre-set threshold ±C in the logarithmic
domain, with C > 0. The event is expressed as sequence
of tuples ei = {xi, yi, ti, pi}, where pi ∈ {+1,−1} is the
polarity of brightness change.

B. Events to Human Segmentation

This is the initial step, where we identify and isolate the
events of interest from the background and other objects. The
architecture of our Human Segmentation is composed of two
stages: spatio-temporal feature extraction and classification.

1) Spatio-Temporal Feature Extraction: Feature extraction
is a fundamental step in vision tasks as it influences the
accuracy of the downstream applications. In this section, we
elucidate the methodology designed for extracting informative
spatio-temporal features from raw event data. The stream of
N event output by the event camera can be expressed as,

E = {ei | ei = [xi, yi, ti, pi] , i ∈ N} (1)

The event stream is a collection of spatio-temporal point
clouds that contain information regarding the scene changes
over time. To get a comprehensive understanding of these
events, we employ a feature extraction technique that focuses
on capturing spatial as well as temporal information. Specif-
ically, we extract three types of temporal features and one
spatio-temporal feature.
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a) Temporal Features: The first category of temporal
features concentrates on quantifying the magnitude of motion
between events at a given pixel. The theoretical insight of the
second and third types is given in the following sections. We
define array of ∇N events that occurred at (u, v) as

Eu,v = {ei | xi ∈ u, yi ∈ v, i ∈ ∇N} (2)

The temporal features are defined as follows,

SEu,v
=

1

∇N

∑
ej∈Eu,v

exp−(t−tj)

P+
Eu,v

=
1

∇N

∑
ej∈E+

u,v

1

P−
Eu,v

=
1

∇N

∑
ej∈E−

u,v

1

(3)

Where, t is the time of occurence of current event, E+
u,v

and E−
u,v are the events {ei ∈ Eu,v | pi = +1} and {ei ∈

Eu,v | pi = −1} respectively.
b) Spatio-Temporal Feature: Our spatio-temporal feature

offers a holistic view of the interplay between object and
their movement. Towards spatio-temporal feature extraction,
the spatio-temporal entropy of the event that occurred at (u, v)
is given as,

HEu,v
= −

∑
x∈u±∇u,y∈v±∇v

P(Ex,y) log [P(Ex,y)] (4)

Where, P(Ex,y) is the probability of getting Ex,y events at
pixel location (x, y), which is estimated as the ratio between
the number of events at (u, v) and total number of events
generated in (u±∇u, v ±∇v).

c) Theoretical Justification for P+
Eu,v

and P−
Eu,v

: This
section brings out the theoretical foundation of the second
and third types of temporal features. The polarity of events
{p : pi|ei ∈ Eu,v} can be modeled as a Bernoulli random
variable with parameter {pr+}, where pr+ is the probability
of getting polarity as +1 at pixel (u, v). Mapping pi = −1 to
0, the Bernoulli probability of getting the sequence p (pi are
assumed to be independent) can be written as,

P (p | pr+) =
∇N∏
n=1

prpn

+ (1− pr+)
1−pn (5)

The log likelihood of the probability P(p | pr+) is given
as,

∇N∑
n=1

[pn log(pr+) + (1− pn) log(1− pr+)] (6)

Differentiating and equating it to 0, it becomes,

pr+ =
1

∇N

∇N∑
n=1

pn (7)

Hence, the feature P+
Eu,v

is nothing but the probability of
getting positive polarity events at the pixel (u, v)

2) Spatio-Temporal Event Classification: The extracted
spatio-temporal features of each event form the basis for
discerning between humans and non-humans. Toward this, we
have employed a conventional binary classifier (human vs.
non-human) known as Support Vector Machine (SVM). SVM
is renowned for its efficiency even when presented with fewer
samples.

This pipeline includes the training and inference phase.
During the training phase, SVM is trained with M × 4 input
feature matrix, where M ≪ Mul is the total number of
labeled events and Mul is the total number of unlabeled events.
During the inference phase, our trained SVM model is utilized
to classify each event as human or non-human. This less-
compute classification enables us to identify human events as
they unfold. Additionally, the ability to identify humans with a
lesser number of labeled events makes our approach a valuable
tool.

C. Segmentation to Instance Mask

The aim of this section is to be able to pick individual
human instances from the segmented event cloud comprising
humans. Given a set of segmented events Eh belonging to the
human category, suppose there are C instances of humans; the
aim is to split it into C set of events such that the events in
Ec pertain exclusively to cth human instance.

To achieve this task of localizing instance boundaries, we
employ an unsupervised approach specifically designed for
event data. The cost involved in instance labeling has been
the motivation for selecting an unsupervised approach for this
task.

The spatial characteristics of events encapsulate the neces-
sary and sufficient information to facilitate the segregation of
human events into individual instances. Hence, each event is
modeled as two-dimensional features e

hf

i = (ui, vi), which is
effectively harnessed in the process of delineating the human
instance masks.

Let us consider that the set of human events feature Ehf

are generated from C multi-variate Gaussian Mixture Model
(GMM) with parameter, θ = [θ1,θ2. . .θC ]. Each θi is
characterized by (ωc,µc,Σc), where ωc is the weight, µc

and Σc are the d× 1 and d× d mean and covariance matrix
of the cth Gaussian N (µc,Σc), where d is the dimension of
the feature. The event features can be expressed as e

hf

i ∼∑C
c=1 N (e

hf

i | µc,Σc).
1) Estimation of Masks: The parameters θ are estimated by

maximizing the following log-likelihood using the Expectation
Maximization (EM) algorithm.

log
[
P(Ehf | θ)

]
=

N∑
i=1

log

C∑
c=1

ωcN (e
hf

i | µc,Σc) (8)

2) Propagation of Masks: The masks estimated in the
previous section are propagated for future events. For every
event that belongs to the human class, the proximity of the
event to c masks with parameter θ is evaluated. The event ei
is assigned to mask k if P(ehf

i | θk) > P(e
hf

i | θc) ∀c ∈ C.
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D. Instance Mask Parameter Update

This section brings out the novel method proposed to update
the parameters of the instance mask. This critical step plays a
pivotal role in ensuring that the masks remain aligned with the
evolving characteristics of human instances as time progresses,
thereby enhancing the accuracy and consistency of the instance
masks. The updated parameters µ+

c and Σ+
c of the cluster c are

estimated with ∇N events Ehf
+

by maximizing the following,

max
µ+

c ,Σ+
c

log
[
N

(
Ehf

+

|µ+
c ,Σ

+
c

)]
(9)

with the following constraints,

µ+T

c µc = 1

trace
[
(Σ+

c )
−1B1

]
= 0

trace
[
(Σ+

c )
−1B2

]
= 0

(10)

Where,

B1 =

[
0 1
0 0

]
,B2 =

[
0 0
1 0

]
(11)

Where µc and Σc are the mean and variance of the
cluster c of the previous event set. The constraints enable
parameter learning that injects the memory of previous events
while avoiding the necessity of allocating memory to store
all previous events. The first constraint updates the model
such that the new µ+

c is as close as possible to µc. The
second and third constraints play crucial roles in enforcing
diagonal dominance in Σ+

c . Minimizing trace
[
(Σ+

c )
−1B1

]
and trace

[
(Σ+

c )
−1B2

]
encourages Σ+

c to be as close as
possible to diagonal matrix. This is particularly important as
the features represent the spatial distribution of humans, where
it is expected that the correlation between the variances of two
axes will be minimal.

Combining with Langrangian multiplier, substituting
N

(
Ehf

+ |µ+
c ,Σ

+
c

)
in Eq. 9, using the fact |(Σ+

c )
−1| = 1

|Σ+
c | )

and retaining only the terms which has µ+
c or Σ+

c , we get,

− 1
2

∑∇N
n=1(e

hf
n − µ+

c )
T
(
Σ+

c

)−1 (
ehf
n − µ+

c

)
+∇N

2 log |
(
Σ+

c

)−1 |+ λ1

(
µ+T

c µc − 1
)

+λ2

(
trace

[
(Σ+

c )
−1B1

])
+ λ3

(
trace

[
(Σ+

c )
−1B2

])
(12)

Differentiating with respect to µ+
c and equating to 0, we

get,

∇N∑
n=1

(
Σ+

c

)−1
(ehf

n − µ+
c ) + λ1µc = 0 (13)

The updated mean turns out to be,

λ1

(
Σ+

c

)
µc

∇N
+

∑∇N
n=1 e

hf
n

∇N
(14)

Metrics KNN SVM DT RF MLP NB QDA
roc auc 0.81 0.86 0.72 0.62 0.83 0.8 0.82

acc 0.88 0.96 0.9 0.9 0.96 0.88 0.91
AP 0.98 0.98 0.99 0.98 0.98 0.98 0.98
AR 0.88 0.96 0.99 0.9 0.96 0.88 0.91
F1 0.91 0.96 0.99 0.92 0.97 0.92 0.94

TABLE I: Comparison of classifiers: K nearest neighbor
(KNN), SVM, Decision tree (DT), Random forest (RF), Multi-
layer perceptron (MLP), Naive Baye’s (NB) and Quadratic
discriminant analysis (QDA) in terms of Area Under the Curve
of ROC (roc auc), accuracy (acc), average precision (AP),
average recall (AR) and F1 score (F1). SVM outperforms other
classifiers in terms of roc auc.

The equation for µ+
c depends on Σ+

c . The term (Σ+
c )

∇N is
only a scaling factor which determines the weight given to
the previous mean µc. Hence, it could be replaced with (Σc)

∇N
or a constant.

Differentiating terms 1 and 2 of Eq. 12 with respect to(
Σ+

c

)−1
and using the properties xTAx = trace(xxTA),

∂
∂A trace(AB) = BT , ∂

∂A log |A| = (AT )−1, we get,

∇N

2
Σ+

c − 1

2

∇N∑
n=1

(ehf
n − µ+

c )(e
hf
n − µ+

c )
T (15)

Differentiating terms 4 and 5 of Eq. 12 with respect to(
Σ+

c

)−1
, we get λ2B1 + λ3B2. Combining Eq. 15 with this,

equating it to 0 and rearranging the terms, we get,

∇N
2 Σ+

c + λ2B1 + λ3B2 −
1
2

∑∇N
n=1(e

hf
n − µ+

c )(e
hf
n − µ+

c )
T (16)

Σ+
c is estimated from the above equation as follows,

1

∇N

∇N∑
n=1

(ehf
n − µ+

c )(e
hf
n − µ+

c )
T − 2λ2B1 − 2λ3B2 (17)

IV. EXPERIMENTS AND RESULTS

This section presents the comprehensive results with rele-
vant metrics, plots, and visualizations. The experiments per-
formed are classified into four categories, each focusing on
validating specific aspects of our approach: i) analysis of
events to the human segmentation module, ii) evaluation
providing insight into the effect of the number of instances, iii)
performance of the proposed mask parameter update model
and iv) comparison with conventional HIS to highlight the
benefits of the proposed HIS pipeline.

A. Analysis of Human Segmentation Module

This section provides an evaluation and analysis of the
performance of the initial module, which is responsible for
converting events into human segmentation. The classifier is
trained using features extracted from the events that occurred
between 0ms and 24ms, and the remaining events in each
sequence are utilized for testing. The performance of this
module was rigorously evaluated on different sequences and
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classifiers, in terms of roc auc (Area under the curve of
Receiver Operating Characteristics) accuracy, recall, precision,
and F1-Score (Table. I). Although most classifiers exhibit
comparable performance, SVM stands out for its superior
behavior with respect to roc auc.

The results demonstrate the remarkable ability of the human
segmentation module to work with an exceptionally minimal
number of events. Furthermore, it confirms that binary seg-
mentation tasks, such as human segmentation, can be effec-
tively accomplished using a cost-effective, non-deep learning
approach.

B. Qualitative Analysis

This section provides the visual results of EventMASK on
the SPIDER dataset (Fig. 1). Key insights emerged from visual
analysis (more results provided in supplementary) give an
overview of the performance of EventMASK under variations
in the number and size of humans, cluttered environment, etc.

(a) Event and pixels colored based on true labels.

(b) Event and pixels colored based on predicted labels.

Fig. 1: Visual results of EventMASK on SPIDER dataset [53].
Event data (left) and 2D grid created from events (right)

C. EventMASK vs. Number of Instances Parameter

The number of humans present in the given sequence of
events is initially unknown, yet the number of instances is an
input parameter to the algorithm. Consequently, the following
scenario may arise: The specified number of instances may ex-
ceed the actual number of instances and vice versa. Therefore,
it is mandatory to analyze the performance of the proposed
method in relation to the number of initialized instances. To
address this, we conducted a study on the curated N-MuPeTS
[54] dataset, where the true number of instances was between
2 to 4. We investigated the performance of the proposed
algorithm when the number of instances specified ranged from
4 to 20.

Top and bottom rows of Table. II respectively give an
analysis of IS Module and EventMASK averaged across all the

sequences in terms of recall, precision, and mIOU. Analysis of
the IS module involved the estimation of metrics with respect
to its input events, while the EventMASK analysis involved
metrics estimation with respect to events emitted from the
event camera. Upon visual inspection, it was observed that
the noise in the data got split into multiple clusters when the
specified number of instances exceeded the true number of
instances. Consequently, there was no apparent deterioration
of mIOU when the value of the specified number of instances
was higher. However, it is important to note that higher values
of specified instances will result in increased computation.

Another important observation from the Table is the trade-
off between recall and precision achieved by varying the value
of the number of instances parameter. With an increase in
the number of specified instances, the proposed method tends
to become more conservative in its predictions, leading to a
steady decrease in recall with an increase in precision. The
right balance between recall and precision, and thereby the
number of instances, can be determined based on the specific
requirements of the application.

D. Mask Parameter Update Model of EventMASK

To validate the mathematical update model proposed in
section III-D, we thoroughly investigated the performance of
EventMASK under two scenarios: i) proposed mask update
model vs. mask re-estimation, ii) proposed mask update model
vs. a simple mask update model.

1) Proposed Mask Update vs. Mask Re-estimation: The
results presented in this section provide valuable insights into
the performance of the IS Module and EventMASK in terms of
the proposed mask update model vs. mask re-estimation. The
mask re-estimation window determines how often the mask is
estimated from scratch. During the intermediate duration, the
mask is propagated along the time axis. In our analysis, we
varied the mask re-estimation window from 24ms to 5 ∗ 24ms
in increments of 24ms.

Key findings of the analysis are as follows: Table. III
indicates that the mask estimation window has a significant
impact on the performance of the method, with a more
frequent estimation of masks yielding improved performance.
However, this improvement comes at the expense of increased
computational cost. For a set of ∇N events, the complexity
involved in mask re-estimation is O(m∇NCd3) (only domi-
nant computation given), where m is the number of iterations,
while the complexity of mask propagation is notably lower
(results provided in section IV-E1). Hence, the observed trade-
off between performance and computational complexity serves
as critical guidance for practical implementation. Applications
with stricter computational constraints may opt for larger
windows. This insight facilitates the adaptation of the proposed
method to specific robotic applications.

2) Proposed Mask Update vs Simple Mask (SM) Update:
Table. IV compares the proposed mask update model (Eq. 17
and 14) with a simple mask update model that updates the
parameters of the masks as the average of the current and
previous parameters. Experiments are conducted on the Hotel-
Bar [55] dataset (details are provided in supplementary). Since
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# Instances AR AP mIOU
4 0.99 0.5 0.49
8 0.9 0.7 0.61

12 0.82 0.79 0.63
16 0.75 0.82 0.59
20 0.7 0.86 0.58

(a) Quality 1 (IS Module)

# Instances AR AP mIOU
4 0.99 0.38 0.37
8 0.94 0.54 0.49

12 0.89 0.64 0.55
16 0.84 0.69 0.56
20 0.79 0.73 0.54

(b) Quality 2 (IS Module)

# Instances AR AP mIOU
4 0.96 0.74 0.71
8 0.79 0.9 0.7
12 0.66 0.93 0.61
16 0.55 0.95 0.52
20 0.47 0.95 0.45

(c) Quality 3 (IS Module)
# Instances AR AP mIOU

4 0.8 0.5 0.45
8 0.72 0.7 0.53

12 0.65 0.79 0.53
16 0.58 0.82 0.49
20 0.55 0.86 0.48

(d) Quality 1 (EventMASK)

# Instances AR AP mIOU
4 0.72 0.38 0.32
8 0.68 0.54 0.4

12 0.64 0.64 0.43
16 0.6 0.69 0.43
20 0.55 0.73 0.42

(e) Quality 2 (EventMASK)

# Instances AR AP mIOU
4 0.74 0.74 0.58
8 0.6 0.9 0.55
12 0.5 0.93 0.47
16 0.42 0.95 0.4
20 0.36 0.95 0.35

(f) Quality 3 (EventMASK)

TABLE II: Analysis of IS module (top row) and EventMASK (bottom row) vs. specified number of instances in terms of
Average Recall (AR), Average Precision (AP), and mIOU. With an increase in the specified number of instances, there were no
observed occurrences of human instance splitting. With an increase in the number of instance masks, recall dropped, whereas
precision increased. Depending on the specific requirements of recall vs. precision, the number of instances could be chosen.

Time (ms) AR AP mIOU
24 0.91 0.77 0.7
48 0.92 0.58 0.53
72 0.92 0.5 0.46
96 0.93 0.45 0.42
120 0.94 0.43 0.39

(a) Quality 1 (IS module)

Time (ms) AR AP mIOU
24 0.87 0.69 0.58
48 0.85 0.64 0.53
72 0.88 0.49 0.41
96 0.92 0.4 0.33

120 0.93 0.34 0.3

(b) Quality 2 (IS module)

Time (ms) AR AP mIOU
24 0.96 0.74 0.71
48 0.94 0.72 0.68
72 0.96 0.57 0.54
96 0.97 0.52 0.49

120 0.98 0.45 0.44

(c) Quality 3 (IS module)
Time (ms) AR AP mIOU

24 0.75 0.76 0.6
48 0.76 0.57 0.47
72 0.76 0.49 0.4
96 0.76 0.44 0.37
120 0.76 0.43 0.35

(d) Quality 1 (EventMASK)

Time (ms) AR AP mIOU
24 0.61 0.69 0.45
48 0.6 0.64 0.42
72 0.63 0.49 0.33
96 0.66 0.4 0.27

120 0.67 0.34 0.25

(e) Quality 2 (EventMASK)

Time (ms) AR AP mIOU
24 0.74 0.74 0.58
48 0.72 0.72 0.55
72 0.74 0.57 0.45
96 0.74 0.52 0.42

120 0.75 0.45 0.38

(f) Quality 3 (EventMASK)

TABLE III: Performance of IS module (top row) and EventMASK (bottom row) with respect to mask parameter update
model vs. mask re-estimation. The higher the mask re-estimation rate, the higher the mIOU. However, this comes at the cost
of increased computation. Based on the trade-off between accuracy and complexity, either the mask re-estimation or mask
parameter update can be adapted.

Update Method AR AP mIOU
Proposed 0.79 0.90 0.71

SM 0.75 0.85 0.63

TABLE IV: analysis of proposed mask update model vs.
simple mask update (SM) model reveals that the proposed
model displays better performance in terms of recall, precision,
and mIOU.

the dataset contained only humans, the human segmentation
module was not included in the pipeline. It also highlights
the flexibility to add or exclude modules as needed, thereby
reducing computational overhead. The number of masks was
initialized to 10. Masks were re-estimated every 200k event
with a set of 10k events and propagated via mask parameter
update model (proposed and simple models) during interme-
diate events. Note the increased recall, precision, and mIOU
of the proposed mask update model compared to the simple
update model.

E. Comparison with conventional HIS

This section brings out the low latency and low computing
benefits offered by EventMASK compared to the conventional
HIS pipeline. Latency and computation are influenced by the
input mode used in the two pipelines and the algorithm em-
ployed. Experiments are carried out on SPIDER [53] dataset
(details provided in supplementary), which consists of event
recordings as well as conventional camera frames.

1) Frame-based Algorithm vs. EventMask: The state-of-
the-art conventional camera HIS algorithms such as YOLOv8-
V8 [50], Mask R-CNN [40], Mask-DINO [51], CenterMask
[16], SOLOv2 [47] etc. are compared with EventMASK
in terms of GFLOP, processing time and mIOU (which is
estimated as explained in supplementary).

Frames are generated at the rate of 30 frames per second,
i.e., once every 33 ms. The average number of events generated
within 33 ms is 608 (estimated based on the total number of
events that occurred during the entire sequence). Consequently,
the GFLOP and running time have been estimated per frame
for conventional HIS and every 608 event for EventMASK.

The number of instances of EventMASK is initially set to
2 and later re-initialized to 4 after 260 ∗ 5k events when there
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Method Time (secs) GFLOP mIOU
Proposed 0.0358 6.657 ×10−3 0.36

YOLOv8 [50] 0.3021 110.2 0.32
Mask R-CNN [40] [40] 1.3141 177.589 0.35

Mask DINO [51] 4.2936 283.2882 0.34
CenterMask [16] 1.3297 435.1077 0.29

SOLOv2 [48] 1.0567 122.4566 0.26

TABLE V: Comparison of the state-of-the-art conventional
HIS pipelines with the proposed event-based HIS on SPIDER
dataset [53]. The table provides the run time and GFLOP for
the mask update pipeline of EventMASK, whereas it turns
out to be 0.054 secs and 9.55 × 10−3 GFLOP for mask
re-estimation pipeline. Notably, EventMASK performs at par
with conventional HIS pipelines while demonstrating lower
computation and latency. Further reduction in run time could
be achieved with optimized implementation.

was a significant increase in the number of events. Mask is
re-estimated every 25k event while propagated through Eq. 14
and 17 during the intermediate events.

Experiments were performed on a Ubuntu 20.04.4 machine
with an AMD EPYC 7742 64-Core Processor running at
1500 MHz and 64GB of RAM. GFLOP of conventional
HIS is estimated through APIs provided by deep learning
frameworks, whereas FLOP of EventMASK is calculated
(with approximations) in the traditional way of counting the
number of multiplications and additions. Table V confirms the
superiority of the proposed EventMASK over the conventional
HIS pipeline in terms of latency and compute.

2) Frame-based vs. Event-driven Computing: Conventional
HIS includes frame-based processing, which is synchronous
and dense processing. In contrast, EventMASK adapts event-
driven processing, which is asynchronous and sparse, with
operations triggered by events often involving smaller amounts
of data. This section quantitatively validates the benefits of
EventMASK achieved via event-driven processing.

a) Efficient Computing: This section demonstrates the
efficient computation achieved by event-driven processing.
Towards this, we analyzed the N-MuPeTS dataset in terms
of the number of events |E| occurring in the frame interval of
25ms vs. the density of the number of 25ms window with |E|
events (left plot of Fig. 2). Observe the significant variation in
the number of events depending on the information content of
the scene. Consequently, the number of events to be processed
by EventMASK is directly influenced by the dynamics of
the scene, while frame-based processing entails processing
all 491520 pixels (M × N , where M and N represent the
number of rows and cols of frames, respectively) throughout,
regardless of the scene dynamics. This leads to substantial
power savings, particularly in situations where the scene has
minimal dynamic objects.

b) Low Latency: This section substantiates the low-
latency effect of event-driven processing, which processes
events as they occur. Towards this, we estimated the latency
of events E∆t vs. the density of the number of 25ms window
with the given latency (right plot of Fig. 2). Event latency
is estimated as the average of the time duration between the
occurrence of events every 25ms. It is evident that most 25ms

Fig. 2: Frame-based vs. event-driven computing. Left: Number
of events occurring within 25ms interval vs. the density of
the number of 25ms window. In event-driven computing,
within an interval of 25ms, processing ranges from 0 to an
average of 50k events, while frame-based computing processes
491520 pixels always, regardless of the scene dynamics. Right:
Average time resolution of events vs. the density of the number
of 25ms windows with the given resolution. Event-driven
computing offers a time resolution of as low as 1ms, while
frame-based computing introduces a constant latency of 25ms
(frame rate)

windows have a latency as low as 1ms, whereas frame-based
processing has a latency of 25ms (frame rate). Event-driven
computing of EventMASK, thus, enables real-time response
capabilities.

V. CONCLUSION
In this paper, we introduced EventMASK, a low-cost and

low-latent HIS designed for robotics applications utilizing an
event camera. EventMASK operates on raw event data, ensur-
ing minimal latency. Leveraging the unique sensing dynamics
of the event camera, EventMASK achieved HIS through
non-deep learning techniques, thereby significantly reducing
the computational complexity. Extensive testing of individual
modules and the complete EventMASK pipeline proved its
ability to accurately segment human instances. Furthermore,
the experiments also revealed the significance of the proposed
parameter update model of EventMASK. Comparison with
conventional HIS approaches highlights the low-compute and
low-latency benefits of EventMASK. Notably, EventMASK
exhibited robust performance without necessitating instance-
level labeling of events. As part of future work, we aim to
extend EventMASK to accommodate moving event cameras.
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