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Abstract—In the biological nervous system, large 

neuronal populations work collaboratively to encode 
sensory stimuli. These neuronal populations are 
characterised by a diverse distribution of tuning curves, 
ensuring that the entire range of input stimuli is 
encoded. Based on these principles, we have designed a 
neuromorphic system called a Trainable Analogue Block 
(TAB), which encodes given input stimuli using a large 
population of neurons with a heterogeneous tuning curve 
profile. Heterogeneity of tuning curves is achieved using 
random device mismatches in VLSI (Very Large Scale 
Integration) process and by adding a systematic offset to 
each hidden neuron. Here, we present measurement 
results of a single test cell fabricated in a 65nm 
technology to verify the TAB framework. We have 
mimicked a large population of neurons by re-using 
measurement results from the test cell by varying offset. 
We thus demonstrate the learning capability of the 
system for various regression tasks. The TAB system 
may pave the way to improve the design of analogue 
circuits for commercial applications, by rendering 
circuits insensitive to random mismatch that arises due 
to the manufacturing process. 

Keywords—Neuromorphic Engineering; Analogue 
Integrated Circuit Design; Stochastic Electronics; Neural 
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I. INTRODUCTION 
Semiconductor technology has evolved from discrete 

single transistors of the 1960’s to multi-billion-transistor 
microprocessors and memory chips of today. This 
exponential growth in circuit density follows the famous 
Moore’s law, which states that the density of transistors 
doubles every two years [1]. In the last two decades, IC 
technology has advanced to nanometre fabrication process 
technologies. Many physical and quantum mechanical 
effects that were not relevant in larger process technologies 
become significant in nanometre designs [2]. These effects 
lead to problems such as high levels of electrical noise, 
process mismatch, interconnect bottlenecks, high element 
failure rate, and power limitations. The result is a serious risk 
of suboptimal designs and thus poor performance and poor 
manufacturing yield. These issues render traditional 
approaches to analogue IC design inadequate and create 

significant challenges in the field of design technology. 
Additionally, analogue circuits are more prone to failure in 
nanometre designs when compared to digital circuits because 
of their dependence on slight variations of the process, 
severe impact of noise and leakage currents, influence of 
external unknown fields and susceptibility to slight changes 
in layout. These effects may be minimised by increasing 
device size, however, this increases the size of an IC and 
hence can be prohibitive in large system-on-chip (SOC) 
designs [3][4]. 

 Neurobiological processing systems, such as the brain, 
are remarkable computational devices. Despite their slow 
speed, they outperform today’s modern computers in various 
tasks such as vision, audition, and motor control. Issues such 
as cell death and non-homogeneity of neurons in a 
neurobiological system can be considered equivalent to 
transistor failure and device mismatch in an IC, respectively. 
Over the course of evolution, biological systems have 
evolved to cope with these issues to ensure survival. A set of 
neurons works collectively and distributively to encode 
information in the nervous system. Each neuron in such a 
population has a distribution of responses over some set of 
input stimuli. The individual neuronal firing rates vary 
nonlinearly according to the input, and allow decoding of the 
input value by linearly combining the response of many 
neurons [5]. In a similar manner, the neuromorphic system 
that we have described encodes the input stimulus using a 
large pool of nonlinear neurons, and decodes the desired 
function by linearly combining responses of neurons. 
Neuromorphic systems offer an attractive alternative to 
conventional technology, and have enormous potential for 
future artificial information processing and behaviour 
systems [6].  

Various applications such as sensor networks, military 
applications and aerospace require electronic systems with 
small area, high speed, small weight, and low power 
consumption. Thus, it is imperative to implement customised 
neural networks in hardware rather than in software [7]. 
Analogue neural network hardware is preferable to its digital 
counterpart in systems requiring small area, low power 
consumption. Moreover, the former is advantageous owing 
to high speed resulting from asynchronous updating, and 
ease of interface with a large set of real world sensors, which 
are themselves analogue. However, a major drawback of 
analogue implementation is random device mismatch. We 
have addressed this issue in our work and exploited random 



device mismatch as a constructive feature, instead of 
avoiding it as a bane.  

In this paper, we present a novel IC architecture called a 
Trainable Analogue Block (TAB) that incorporates 
neuromorphic principles such as low power consumption, 
fault tolerance and adaptive learning. To our knowledge, our 
work is the first of its kind to present measurement results of 
the TAB, which employs random device mismatch to 
implement a neural network. The TAB implementation is 
based on the LSHDI (Linear Solutions of Higher 
Dimensional Interlayers) framework [8], which will be 
explained in detail in section III. We present the 
measurements of the building blocks of our TAB hardware 
implementation in section IV, algorithm for offline learning 
in section V, mathematical proof for importance of 
heterogeneity of tuning curves in section VI, and capability 
of the TAB to learn various regression tasks in section VII. 
Section VIII presents a comparison of our work to previously 
published works and the conclusions of our study. 

 In contrast to existing analogue circuits, TAB 
architecture embraces random device mismatch. Thus, the 
reduced device matching in newer technologies serves as an 
advantage, rather than something that needs to be engineered 
out of the design. A further significant advantage of this 
approach is that once manufactured, the same TAB can be 
reused for many different purposes. The same architecture 
can be used in different manufacturing technologies, as it can 
be trained after fabrication to perform a desired operation. 
This will lead to a significantly reduced design cycle for 
analogue circuits, with an associated reduction in design 
cost, and a speed-up of the technological progress. The TAB 
framework may pave the way for a new kind of circuit 
paradigm, called stochastic electronics, which will use 
hardware variability to achieve their engineering goal [9]. 

 

II. NEURAL POPULATION CODING 
Biological neurons encode input stimuli such as motion, 

position, colours, and sound into neuronal firing. The 
encoded information is represented by a set of neurons in a 
collective and distributed manner, referred as population 
coding. In population coding, the firing rate or the rate code 
of individual neurons governs information encoding. 
Population coding is robust to neuronal cell damage, as the 
information is encoded across a large set of neurons [10]. As 
examples of rate coding, neurons in monkeys, cricket, barn 
owl, cats, bats and rats encode direction of arm movements 
[11], direction of a wind stimulus [12], direction of a sound 
stimulus [13], saccade direction [14], echo delay [15] and 
position of the rat in its environment [16] respectively. The 
tuning curve of a neuron is defined as its average firing rate 
as a function of input stimulus intensity. Various neuronal 
tuning curves have been identified, such as the cosine tuning 
curve of motor cortical neurons [17], Gaussian tuning curves 
of cortical V1 neurons, and sigmoidal tuning curve of stereo 
V1 neurons. In a similar manner, we have encoded physical 
quantities into population of neurons by their tuning curves 
instead of individual spikes in the TAB framework. In our 
system, inputs are voltage signals, which could be outputs 

from an array of sensors representing physical quantities of 
the world. The input stimulus is encoded via the tuning 
curves of an ensemble of neurons, a phenomenon referred as 
population encoding. 

Neurons within the same cortical column have highly 
heterogeneous responses to the same input stimulus. The 
heterogeneity of neuronal responses has been thought to be 
beneficial for sensory coding when stimuli are decoded from 
the population response [18][19]. The shape of tuning curves 
of individual neurons, and the heterogeneity of neuronal 
responses affect the quality of population coding and the 
accuracy of information processing in the cortex [20]. We 
have adapted a similar concept of using heterogeneous 
population of neurons in a TAB. The significance of 
heterogeneity of tuning curves is presented in detail in 
section VI. 

As an ensemble of neurons encodes information, 
decoding the full population response requires procedures for 
combining the firing rates of many neurons into a population 
ensemble estimate. One of the popular reconstruction 
methods known as population vector method was developed 
by Georgopoulos and collaborators, for coding of the 
direction of arm movement in monkeys [11]. Abbott et al 
have discussed various decoding methods, some of which are 
complex methods based on statistical approaches and use 
response probabilities, such as Maximum Likelihood 
Estimation, Bayesian Estimation. Other methods use 
response tuning curves, such as Least Square Estimation, 
Projection Method, Vector Method, and Optimal Linear 
Estimation [21]. In general, each neuron contributes a basis 
function in this space of variables whenever it fires, and the 
best estimate of the physical variables is computed from the 
sum of these functions weighted by the spike rate occurring 
in each neuron. In our TAB system, we have used a similar 
approach to decode the stimulus, which is explained in 
section V. 

 

III. TAB FRAMEWORK 
The TAB framework (Fig. 1) utilises the LSHDI (Linear 

Solutions of Higher Dimensional Interlayers) principle 
similar to neural population coding. One of the earliest work 
in the neural network community, which is based on the 
LSHDI principle was the Functional-link net computing 
(FLNN) proposed by Pao et al in 1992 [22]. Similar work 
was proposed by Schmidt et al in the same year, which 
however did not attract much attention [23]. In 2006, Huang 
et al proposed a similar concept as Extreme Learning 
Machine (ELM) [24], which has attracted widespread 
attention in the neural network community. The Neural 
Engineering Framework (NEF) [25] is another example of a 
network based on the LSHDI principle, which performs 
spike-based computation and is quite popular in the 
neuromorphic engineering community.  

LSHDI networks are represented as having three layers 
of neurons – input, hidden and output layers, in a feed-
forward structure [8]. These networks differ from similar 
neural network architectures in several ways – (i) the hidden 
layer is usually much larger than the input layer, (ii) the 



 
 

Fig. 1. Architecture of the TAB framework. The input layer 
neurons/nodes are connected to a larger number of non-linear 
hidden layer neurons via random weights and controllable 
offsets, O1 to OM. The connections from the hidden layer 
neurons to the output neurons are linear, with trainable weights, 
and the output neurons generate a linear sum of their inputs.   

 

connections between the input layer and the hidden layer are 
randomly generated, and (iii) the connections do not change 
during the network training. As a result, the inputs are 
randomly projected from their original input dimensionality 
to a nonlinear hidden layer of neurons of a much higher 
dimensionality. Input data points, which are not linearly 
separable in their current space, allow a linear hyperplane in 
the higher dimensional space that approximates a desired 
function as a regression solution, or represents a 
classification boundary for the input-output relationship. The 
output layer neurons need therefore compute only a linearly 
weighted sum of the hidden layer values in order to solve the 
problem, hence the name Linear Solutions of Higher 
Dimensional Interlayers (LSHDI) [8]. These linear weights 
are determined analytically by calculating the product of the 
pseudoinverse of the hidden layer activations with the 
desired output values [26].  

 

IV. BUILDING BLOCKS OF THE TAB IC 
We have designed a test cell, comprising of a Hidden 

Neuron block and an Output Weight block of the proposed 
TAB architecture in 65nm technology. Additionally, the 
TAB architecture allows us to design a major part of the 
circuit with the lowest possible feature size in order to 
maximise mismatch among the transistor parameters, 
because device mismatch is inversely proportional to device 
area. More importantly, we have added an extra controllable 
offset (Fig. 1) for each hidden layer neuron to ensure that 
each hidden neuron performs a different nonlinear operation 
to the input. This systematic offset is fixed but different for 

each neuron. Systematic offset may not be required if there is 
sufficient random variation among transistors to produce a 
distinct tuning curve for each neuron, but is a failsafe method 
to spread the tuning curves of the neurons.  

The first version of a TAB that we present here has a 
simple configuration, with a single input voltage and a single 
output current (single input-single output, SISO). In this 
section, the VLSI implementation of the major building 
blocks of the TAB, namely the Hidden Neuron and the 
Output Weight are described.  

 

A. Hidden Neuron 
Neuroscientists have clearly demonstrated that individual 

biological neurons respond selectively to various stimuli like 
sound, motion, images and so on [27]. Each neuron has a 
distinct tuning curve, which is found by presenting varied 
input stimuli to the neuron and recording its firing rate. Each 
neuron encodes the input stimuli according to its tuning 
curve. Similarly, each artificial neuron on our chip encodes 
input differently according to its distinct tuning curve.    

In the TAB system described here, a simple neuronal 
tuning curve is implemented using a differential pair, which 
performs a hyperbolic tangent (tanh) nonlinear operation on 
its input, similar to sigmoidal tuning curve of stereo V1 
neurons in the cortex. The circuit is illustrated in Fig. 2A. M1 
and M2 constitute the differential pair, and the sharing of 
currents between M1 and M2 depends on their respective gate 
voltage, Vin (input voltage) and Vref (constant reference 
voltage). If all MOSFETs (‘metal–oxide–semiconductor 
field-effect transistors’) are operating in weak-inversion and 
at saturation, with the slope factor, n ranging from 1.1 to 1.5, 
then currents in M1 and M2 transistors can be approximated 
as: 

I1 = Ib[exp(Vin/nUT)] / [exp(Vin/nUT) + exp(Vref/nUT)]    (1) 

I2 = Ib[exp(Vref/nUT)] / [exp(Vin/nUT) + exp(Vref/nUT)]   (2) 

 

With ideal transistors, the output currents, I1 and I2, are a 
function of the input differential voltage between Vin (ramp 
input) and Vref (constant input) and their difference is 
identical to the mathematical tanh function. The current I1 
saturates to the maximum bias current if Vin is higher than 
Vref by more than 4 UT (100 mV), where UT is the thermal 
voltage. In the TAB system, each neuron receives a 
systematically different Vref, which results in a different 
nonlinear curve for each neuron. The fact that the transistors 
are not ideal, as assumed in (1) and (2) results in further 
deviations from the tanh curve, as shown in Fig. 2B. Itanh is 
copied from I1 using a current mirror that connects to the 
Output Weight block. Vb is the voltage at the M3 transistor 
that sets the bias current, typically in the range of a few 
nanoamperes (nA). 

Fig. 2B shows the tuning curves of a single hidden 
neuron while varying Vref. In the actual TAB, each neuron 
will have only one such tuning curve depending on its own 



 

 
 

Fig. 3. Output Weight Block. A. Schematic of the Output 
Weight block. Splitter circuit consisting of MR and the two M2R 
transistors form the R2R network, which gets repeated 13 times in 
the block. The octave splitter is terminated with a single MR 
transistor. B. Measured current profile of the Output Weight block 
as a function of the binary weights (13 bits) of the Hidden Neuron 
block. 

 
 

Fig. 2. Hidden Neuron Block. This block implements the tanh 
nonlinear activation function for the TAB framework. A. 
Schematic of the Hidden Neuron block. B. Measured tuning 
curves of the hidden neuron as a function of Vin. Each curve 
corresponds to different offset Vref . 
 

Vref, and dependent on process variations such as offset 
mismatch between the transistors in the differential pairs, 
bias current mismatch due to variability in M3 and current 
mirror mismatch. This illustrates the variation that can be 
achieved at each hidden neuron by changes in Vref alone.  

 

B. Output Weight 
In the LSHDI framework, there exists a linear 

relationship between the hidden layer and the output layer. 
These layers are connected via the Output Weight block. In 
our TAB SISO chip, the weight is controlled by a binary 
number. Using simulations, we have found that 11-bits per 
weight are sufficient for learning various functions. Using 
more than 11-bits per weight does not improve learning 
significantly. In the designed test cell, however, we have 

used a 13-bit binary number for testing purposes. This binary 
number controls output weights by controlling the amount of 
current that flows from the hidden layer neurons to the 
output layer neurons. We have implemented binary weighted 
connections using a splitter circuit (Fig. 3A) [28].  

Each current branch is controlled through a digital binary 
switch. The input current, Itanh, which is the output of the 
neuron block, is divided successively to form a 
geometrically-spaced series of smaller currents. At each 
branch, a fixed fraction of the current is split off, while the 
remainder continues to later branches. The last stage is sized 
to terminate the line as though it were infinitely long. The 
current splitter principle accurately splits currents over 20 
octaves, spanning from weak to strong inversion of 
transistors, dependent only on the effective device geometry. 
MR and the two M2R transistors form an R2R network, and 
the octave splitter is terminated with a single MR transistor. 
The splitter has N stages; the current at the kth stage is 
(Itanh/2k). The final current is the same as the penultimate 
current. The transistor sizes of MR and M2R are equal. The 
reference voltage for the p-FET gates in the splitter is the 
master bias voltage Vgbias [28]. The lower half of the R2R 



block has two transistor switches that act as a binary synapse 
for every branch, and route the branch current to either useful 
current, Igood, or to current that goes to ground, Idump. Igood is 
mirrored to generate presynaptic current Iout for the output 
layer neuron. Fig. 3B shows the measured output current of 
the Output Weight block with respect to various binary 
weights. 

V. OFFLINE LEARNING OF THE TAB IC 
Learning in the TAB framework is achieved by 

computing output weights to train the system for desired 
regression/classification tasks. Briefly, the LSHDI 
framework determines the output weights (between the large 
hidden layer and linear output neurons) analytically by 
calculating the product of the pseudoinverse of the hidden 
layer activations with the target outputs [29].  

A novel algorithm used for offline learning on the TAB 
IC is discussed here. Let us consider a three-layer feed-
forward TAB network with L number of hidden neurons. 
Let G(.,.,.) be a real-valued function so that G(wi

(1), bi
(1), oi

(1), 
x) is the output of the ith hidden neuron, corresponding to the 
input vector x ϵ ℝm and the random input weight vector wi

(1) 
= (wi1

(1),… wim
(1)), where wis

(1) is the weight of the 
connection between the ith hidden neuron and sth neuron of 
the input layer. Random bias vector bi

(1) ϵ ℝ and the random 
input weight vector wi

(1) both arise due to random mismatch 
of the transistors. Systematic offset oi

(1) ϵ ℝ is added to 
make sure each neuron exhibits distinct tuning curve, which 
is an essential requirement for learning in LSHDI 
framework, discussed in detail in section VI. The output 
function f(.) is given by: 

f(x) = Ʃ
L

i=1
 wi

(2) G(wi
(1), bi

(1), oi
(1), x)        (3) 

where, wi
(2) = (w1i

(2),… wki
(2)) ϵ ℝk is the weight vector 

where wji
(2) ϵ ℝ is the weight connecting the ith hidden 

neuron with the jth neuron of the output layer. Here, G(.,.,.) 
takes the following form: 

G(wi, bi, x) = g(wi
(1).x + bi

(1) + oi
(1))                    (4) 

where, g: ℝ  ℝ is the activation function. 

Suppose, for a training data set {(xn, yn)}n=1,2..C , xn = 
(xn1,…, xnm) ϵ ℝm denotes the input vector, yn = (yn1,…, ynk) ϵ 
ℝk is its corresponding output vector, and C is the total 
number of input data patterns. Let the values of the input 
weight vectors, wi

(1) ϵ ℝm, the bias, bi
(1) ϵ ℝ, be randomly 

assigned and oi
(1) ϵ ℝ, be assigned systematically. Then, the 

standard TAB framework with L number of hidden neurons 
approximates the input samples with zero error if and only if 
there exists wi

(2) ϵ ℝk such that: 

yn = Ʃ
L

i=1
wi

(2) G(wi
(1), bi

(1), oi
(1), xn) where, n = 1,2,..C  (5) 

The above set of equations can be rewritten in the 
following matrix form as: 

HW(2) = Y          (6) 

 

where,  

𝐻𝑀𝚡𝐿 =

⎩
⎪
⎨

⎪
⎧𝐺�𝑤1

(1), 𝑏1, 𝑜1, 𝑥1�… …𝐺�𝑤𝐿
(1), 𝑏𝐿 , 𝑜𝐿 , 𝑥1�

:                                               ∶
:                                               ∶
:                                               ∶

𝐺�𝑤1
(1), 𝑏1, 𝑜1, 𝑥𝐶�… …𝐺�𝑤𝐿

(1), 𝑏𝐿 , 𝑜𝐿 , 𝑥𝐶�⎭
⎪
⎬

⎪
⎫

 

(7)                             

𝑊(2)
LxK=

⎩
⎪
⎨

⎪
⎧ w1

(2)

       :       
 :
 :

wL
(2) ⎭

⎪
⎬

⎪
⎫

,  𝑌𝐶𝚡𝐾 =

⎩
⎪
⎨

⎪
⎧

𝑦1
      ∶       

∶
∶
𝑦𝐶 ⎭

⎪
⎬

⎪
⎫

        (8)                         

Here, the ith column of H will be the output of the ith 
hidden neuron for all the input training data samples (x1,…, 
xm). Further, the matrix H need not be a square matrix. 
Under the assumption that the activation function g(.) is 
infinitely differentiable, it has been shown that for fixed 
input weight vectors, wi

(1), and biases, bi
(1), oi

(1), the least  
squares solution W(2) for the matrix (6) is: 

W(2) = H+Y          (9) 

where, H+ is the Moore-Penrose generalised 
pseudoinverse of the matrix H. 

The output weight calculation can be summarised as 
follows: 

Input: Training set{(xn, yn)}n=1,2..C , xn ϵ ℝm and yn ϵ ℝk, L 
is the number of hidden neurons, and the activation function 
is g(.) 

1. For i = 1,2,…L, randomly assign the input weight 
vector wi

(1) ϵ ℝm, random bias bi
(1) ϵ ℝ and systematic 

offset oi
(1) ϵ ℝ. 

2. Determine the matrix H defined by the (7). 
3. Calculate H+. 
4. Calculate the output weights matrix as W(2) = H+Y, 

where Y is given by (8). 

Output: Network with the determined output weight 
vectors wi

(2) ϵ ℝk for the randomly chosen weight vectors 
wi

(1) ϵ ℝm, bias bi
(1) ϵ ℝ and systematic offset oi

(1) ϵ ℝ for i = 
1,2,…L will compute the estimated output value ŷ for any 
input test sample x ϵ ℝm using the following formula: 

ŷ = Ʃ
L

i=1
 wi

(2) g(wi
(1).x + bi

(1) + oi
(1))                     (10) 

 
 

VI. IMPORTANCE OF HETEROGENEITY OF TUNING 
CURVES 

It has been demonstrated that in a neurobiological 
system, individual neurons exhibit highly heterogeneous 
responses when presented with the same stimuli. This 
heterogeneity has been shown to improve the information 
encoded in the neuronal population activity by decreasing 
the neuronal correlations. Diversity of orientation tuning 
curve profiles of individual neurons proves beneficial for 



 
 

 
Fig. 4. Learning curves for the regression functions – A. sin, B. 
cube, C. sinc. The red curve represents the target function, and 
the blue curve represents learnt function. 

sensory coding when stimulus orientation is decoded from 
the population response [18]. Similarly, we show that the 
tuning curves of neurons in our TAB framework should be 
heterogeneous so as to have the highest information 
encoding capacity. 

Let us revisit equation (6) and find W(2) analytically: 

Y = HW(2) 

HTY = HTHW(2) 

(HTH)-1HTY= W(2) 

Then estimated output, 

Ŷ = HW(2) = H((HTH)-1HTY) 

The error of the system, which is the difference between 
estimated Ŷ and actual Y, is given as: 

 E = (Y-Ŷ) 

E = (Y-H(HTH)-1HTY) 

E = Y(I-H(HTH)-1HT) 

where, I is the identity matrix. For E=0, 

I = H(HT H)-1HT                                                 (11) 

If matrix H is a full column rank matrix, or 
equivalently, columns of the matrix H are linearly 
independent, then, 

I = HH+                                                   (12) 

where, H is the measured matrix containing the hidden 
neuron output across the range of input values and H+= (HT 
H)-1HT is the pseudoinverse of a matrix [30]. Equation (11) 
implies that any input vector xi is perfectly encoded when the 
ith row of the RHS matrix is equal to the ith row of the 
identity matrix I. Thus, the encoding capacity of the network 
is proportional to the number of rows that are equal between 
the matrices on both sides of equation (11). Mathematically, 
the more the number of tunning curves of the hidden neurons 
are independent, the higher is the encoding capacity of the 
TAB system. Tuning curves of individual neurons are 
independent in a heterogeneous neuron population, which 
thus increases the encoding of information [18],[31]. This is 
a very important observation, and is essential for optimal 
learning in an LSHDI network. In the next section, we 
discuss how we can maximise the encoding capacity of the 
TAB.  

Role of systematic offset: When a population of biological 
neurons is presented an input stimulus, the neuronal 
responses vary widely owing to variations in neuronal 
response properties, such as mean firing rate, receptive field 
location, and stimulus selectivity. Such heterogeneity of 
responses results in faithful encoding of information 
covering the whole range of input stimuli. We have tried to 
create a heterogeneous population of neurons in our TAB 
system by exploiting randomness (fixed-pattern transistor 
mismatch) and variability arising due to the fabrication 
process. An element of risk and uncertainty is present here, 
as one cannot be certain there would be sufficient mismatch 

in a particular technology until after manufacturing.  For 
example, older technologies with large feature sizes 
generally have a low degree of mismatch, which would limit 
the learning capability of a TAB. This risk is attenuated by 
introducing a fixed and distinct systematic offset (Fig. 1) for 
each hidden layer neuron of the TAB. The systematic offset 
ensures that all tuning curves are distinct and independent, 
thus improving the encoding capacity of the system. We 
have found in simulations that if the neuronal tuning curves 
are too similar, the system requires an extremely large 
number of hidden neurons to learn even simple functions. 

 
VII. LEARNING RESULTS 

In this section, we describe the learning capability of the 
TAB system in software using the measured results of the 



building blocks. We have used the hidden neuron’s tuning 
curves with respect to different Vref voltages (34 in total). The 
TAB architecture was trained to implement various functions 
such as sin (Fig. 4A), cube (Fig. 4B), and sinc (Fig. 4C). The 
learning capability of an LSHDI network depends on the 
number of hidden layer neurons [8]. As evident from Fig. 4, 
34 neurons are sufficient to learn simple functions such as 
sin and cube, but for complex function like sinc (Fig. 4C), a 
higher number of neurons is needed for more accurate 
performance. We have calculated the output weights 
externally using offline learning method as discussed in 
section V. The results suggest that the system can be 
successfully trained to perform the various regression tasks. 

 
VIII. CONCLUSIONS 

In this paper, we have described a novel framework that 
exploits device mismatch in circuits and performs reliable 
computation. We have presented measurement results of the 
building blocks of the TAB IC implementation. Additionally, 
we have shown the potential learning capability of the TAB 
system.  

In IC technology, random device mismatch is a major 
problem which always leads to a suboptimal design. It may 
be minimised to some extent in higher process technology 
(>100nm) with large device area and good design effort, 
which however increases production costs significantly. 
Other research groups have also suggested using random 
device mismatch in their architecture [32], [33]. However, 
there are major differences in their architecture compared to 
ours. Basu et al [32] have shown a spiking neuron-based 
framework which converts analogue input into spikes and 
translates them into spike rate using counter for each neuron 
and the rest of the computation is performed in digital 
controller. Kudithipudi et al [33] have developed a 
memristor-based network in software simulations, which 
has many practical issues to be considered in chip 
implementation.  

The amount of random mismatch depends on process 
technology – it is low for a process technology with a large 
feature size, and vice versa. It also varies from chip to chip. 
Both [32] and [33] have used software simulations explicitly 
generates the desired distribution of randomness (variance) 
which then leads to distinct tuning curves for the entire 
input range. In their system, the input layer weights of the 
LSHDI network only rely on this random mismatch 
obtained from fabrication, which may not be sufficient to 
generate diverse neuronal tuning curves. In our 
implementation we avoid this issue by providing an 
alternative to obtain the systematic offset generated through 
the resistive polyline, which generates a different Vref 
voltage for each neuron to ensure that each neuron has a 
different tuning curve.  

An LSHDI network has a large number of hidden 
neurons. Both previous designs have represented the input 
variable as a current. Kudithipudi et al group have used a 
resistor before the differential amplifier to convert the total 
input current to a voltage. They require resistors in the range 

of few mega-ohms to operate their system in the sub-
threshold region. In the sub-threshold region, the differential 
amplifier will get saturated as the differential voltage goes 
above 4UT (~100mV). Since an LSHDI network requires a 
large number of hidden neurons, using many resistors in the 
design will increase the chip area unrealistically. Also, 
current would increase as a multiple of the number of inputs 
and may affect the chip adversely. The above system also 
uses memristors. This might be a good alternative, but 
memristors are still in the research phase, and may cause 
problems in physical realisation [34]. 

Here, we have presented measurement results of a test 
cell in a TAB framework. We have shown the learning 
capability of the TAB system for various regression tasks. 
Future work will aim to test the learning capability of a 
complete TAB chip and will include quantification of the 
random variations across the hidden neurons. The TAB 
system is designed using neuromorphic principles based on 
stochastic computation, which has the advantages of low 
power consumption, adaptability to local change and the 
ability to learn. This system may help overcome limitations 
of analogue IC design at low process nodes and will drive 
the integration process with digital blocks in the same 
circuit and process node. This may find applications in 
analogue/digital converters (ADCs) and digital-to-analogue 
converters (DACs) for submicron mixed signal chips such 
as those used in mobile processor chips and data acquisition 
chips. We know that TABs require a large number of hidden 
layer nodes and connections to and from these nodes; 
however, unlike custom analogue design, minimum sized 
transistors can be used and no specialised layout techniques 
will be required. Furthermore, as the TAB framework 
desires large random mismatch among devices and as 
mismatch is inversely proportional to device area, it could 
lead to significant reductions in chip area and manufacturing 
costs. 
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