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RAMAN: A Re-configurable and Sparse tinyML
Accelerator for Inference on Edge

Adithya Krishna, Srikanth Rohit Nudurupati, Chandana D G, Pritesh Dwivedi, André van Schaik, Mahesh
Mehendale and Chetan Singh Thakur*

Abstract—Deep Neural Network (DNN) based inference at
the edge is challenging as these compute, and data-intensive
algorithms need to be implemented at low cost and low power
while meeting the latency constraints of the target applications.
Sparsity, in both activations and weights inherent to DNNs, is
a key knob to leverage. In this paper, we present RAMAN, a
Re-configurable and spArse tinyML Accelerator for infereNce
on edge, architected to exploit the sparsity to reduce area
(storage), power as well as latency. RAMAN can be configured to
support a wide range of DNN topologies - consisting of different
convolution layer types and a range of layer parameters (feature-
map size and the number of channels). RAMAN can also be
configured to support accuracy vs. power/latency tradeoffs using
techniques deployed at compile-time and run-time. We present
the salient features of the architecture, provide implementation
results and compare the same with the state-of-the-art. RAMAN
employs novel dataflow inspired by Gustavson’s algorithm that
has optimal input activation (IA) and output activation (OA)
reuse to minimize memory access and the overall data movement
cost. The dataflow allows RAMAN to locally reduce the partial
sum (Psum) within a processing element array to eliminate the
Psum writeback traffic. Additionally, we suggest a method to
reduce peak activation memory by overlapping IA and OA on
the same memory space, which can reduce storage requirements
by up to 50%. RAMAN was implemented on a low-power and
resource-constrained Efinix Ti60 FPGA with 37.2K LUTs and
8.6K register utilization. RAMAN processes all layers of the
MobileNetV1 model at 98.47 GOp/s/W and the DS-CNN model at
79.68 GOp/s/W by leveraging both weight and activation sparsity.

Keywords—Convolutional neural networks (CNNs), deep learn-
ing, hardware acceleration, sparse processing.

I. INTRODUCTION

Deep neural networks (DNNs) have become ubiquitous in
various cognition and learning problems [1]–[4]. DNNs are
often computed in the cloud, and the inferred result is delivered
back to an edge node, introducing delay owing to constrained
communication bandwidth. Thus, the deployment of DNNs
directly on edge has recently attracted more attention since
it offers many inherent benefits, including privacy, bandwidth
savings, and latency reductions. However, the computation on
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an edge device poses numerous challenges due to power, mem-
ory, and resource constraints. GPUs and CPUs conventionally
used in cloud platforms are extremely power intensive and area
inefficient and thus cannot be directly deployed on edge. A
promising avenue to pursue in this respect is the development
of an accelerator tailored for neural computations on edge. A
customized hardware design for neural networks provides an
opportunity to optimize dataflow, memory access and exploit
network sparsity to overcome edge computing bottlenecks.

Sparsity is an inherent attribute in most DNNs which can
be leveraged on hardware. It is estimated that approximately
40% of the input activations (IAs) and 50% of weights (Ws)
are sparse in the MobileNet model [5], [6] trained on the
Imagenet dataset [1] with the hardware-aware pruning strategy
presented in this paper. Other well-established networks like
AlexNet [2], VGG-16 [7] , and ResNet-50 [8] show similar
sparsity statistics. Thus sparsity induces a lot of ineffectual
zero computations that can be skipped. Aggressive pruning
strategies can further reduce computations if a slight reduction
in inference accuracy is acceptable. In this direction, several
attempts have been made in the literature to maximize the
sparsity by zeroing out low-magnitude weights [9]–[11]. In
addition to weight sparsity, the commonly used rectified linear
unit (ReLU) activation function clamps all negative activation
values to zero, resulting in sparse output activations (OAs),
which become IAs to the subsequent layer. Even though
exploiting weight sparsity in hardware has been thoroughly
investigated, leveraging activation sparsity in hardware effi-
ciently is a topic of research and needs further exploration.
This disparity is primarily because of the fact that it is possible
to enforce structured sparsity in weights during training by
pruning in a hardware-aware fashion (by knowing the under-
lying hardware architecture and the dataflow) that maximizes
the overall hardware utilization and efficiency. However, the
activation sparsity is unstructured and highly challenging to
leverage on hardware as the data varies dynamically and
depends on the environment [12].

A. Related Work

Early work in this domain used the indirection principle
to exploit sparsity in one of the operands meaning in either
weights or activations, but not both. Cnvlutin [16] exploits
sparsity in IA by storing them in a compressed format as
value and index pairs. The index information of the non-
zero activations is used to perform in-direct memory access
to extract dense weights. In another work, Cambricon-X [14]
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TABLE I: Qualitative comparison of RAMAN with prior works in terms of sparsity leveraged in activations (A) and weights (W),
pruning, activation memory optimization by IA/OA overlapping, flexibility in quantization, layers supported, implementation
platform, and application. W-HAP denotes Hardware-aware pruning of weights. The supported layers are denoted as follows:
C: standard convolutions (CONV), D: Depth-wise (DW), P: Point-wise (PW), Pl: Pooling, S: Shift and F: Fully Connected
(FC).

Accelerator Sparsity Pruning Act. Mem.
Opt.

Flexible
Quant.

Layers
Supported

Platform Application
A W Gate 0 Skip 0 A W-HAP

Eyeriss [13] ✓ ✕ A ✕ ✕ ✕ ✕ ✕ C ASIC Standard
Cambricon-X [14] ✕ ✓ ✕ W ✕ ✕ ✕ ✕ C+F+Pl ASIC Standard

SCNN [15] ✓ ✓ A+W A+W ✕ ✕ ✕ ✕ C ASIC Standard
Cnvlutin [16] ✓ ✕ ✕ A ✕ ✕ ✕ ✕ C ASIC Standard
Sticker [17] ✓ ✓ A+W A+W ✕ ✕ ✕ ✕ C+F ASIC Standard

EIE [18] ✓ ✓ ✕ A+W ✕ ✕ ✕ ✕ F ASIC Standard
SNAP [19] ✓ ✓ ✕ A+W ✕ ✕ ✕ ✕ C+F ASIC Standard

NullHop [20] ✓ ✕ ✕ A ✕ ✕ ✕ ✕ C+F+Pl FPGA Standard
McDanel et al. [21] ✓ ✓ A W ✕ ✓ ✕ ✕ C+P+F FPGA Standard

SpWA [22] ✕ ✓ ✕ W ✕ ✕ ✕ ✕ C FPGA Standard
Lu et al. [23] ✕ ✓ ✕ W ✕ ✕ ✕ ✕ C FPGA Standard
Yin et al. [24] ✕ ✓ ✕ W ✕ ✕ ✕ ✕ C+D+P FPGA Standard
Xie et al. [25] ✕ ✓ ✕ W ✕ ✕ ✕ ✕ C+D+P+F+Pl FPGA Standard
Zhu et al. [26] ✓ ✓ A W ✕ ✓ ✕ ✕ C+F FPGA Standard

Sense [27] ✓ ✓ A+W A+W ✕ ✓ ✕ ✕ C+Pl+F FPGA Standard
Meng et al. [28] ✕ ✓ ✕ W ✕ ✓ ✕ ✕ C+D+P+F+Pl FPGA Standard
Zhang et al. [29] ✓ ✓ ✕ A+W ✕ ✕ ✕ ✕ C FPGA Standard

Yin et al. [30] ✕ ✓ ✕ W ✕ ✕ ✕ ✕ C+D+P FPGA Standard
Lu et al. [31] ✓ ✓ A W ✕ ✕ ✕ ✕ C+F+Pl FPGA Edge

Choi et al. [32] ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ D+P FPGA Edge
FitNN [33] ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ D+P+Pl FPGA Edge

Hao et al. [34] ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ C+P+D+Pl FPGA Edge
Synetgy [35] ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ S+P+Pl FPGA Edge

Wu et al. [36] ✕ ✓ ✕ W ✕ ✓ ✕ ✕ C+Pl+F FPGA Edge
RAMAN ✓ ✓ A+W A+W ✓ ✓ ✓ ✓ C+D+P+F+Pl FPGA Edge

uses the same indirection principle, assuming sparse synaptic
connections. The input neurons with non-zero synaptic con-
nections are transferred to a computational unit to perform
MAC (multiply-accumulate) operations. These architectures
are inefficient as they are intended to exploit sparsity present in
only one of the operands (W or IA). The dense processing core
can quickly adapt to accommodate one operand sparsity by in-
direct memory access. EyerissV1 [13] is one of the early works
investigating activation sparsity to save power by employing
data-gating logic. This method improves energy efficiency, but
it does not reduce latency. EyerissV2 [37] exploits sparsity
further in both IA and W by preserving the data in compressed
form all the way to the computational element and adopting
a row stationary dataflow like EyerissV1. EyerissV2 employs
an external DRAM for storing the activations and parameters
and requires a complex hierarchical mesh network to route the
data to different computational elements on-chip. We avoid
such complexities in RAMAN as we target tinyML edge
applications with all on-chip memory implementation.

Computer architects face two significant challenges in de-
signing a sparse neural network accelerator leveraging both
IA and W sparsity. First is the front-end challenge, where a
sufficient number of non-zero IA and W pairs stored in a com-
pressed format must be transferred to the computational unit to
keep the MAC utilization high. Second, the back-end challenge
where the partial-sum (Psum) addresses have to be aligned and
immediately reduced within the computational element before
a writeback. If the addresses are not aligned, then the Psums
cannot be reduced, leading to significant writeback traffic and

access contention. SCNN [15] and Sticker [17] try to overcome
the front-end challenge; however, these works are plagued by
the back-end problem. SCNN [15] uses channel-last dataflow
to maximize the multiplier utilization at the cost of high output
traffic and access contention. Sticker [17] also uses channel-
last dataflow and adopts a two-way set associative PEs to re-
duce memory access contention and collisions. However, since
this strategy requires data re-ordering to prevent collisions,
which are done offline using the CPU, it ultimately defeats the
whole purpose of latency and energy reductions that sparsity
offers. SNAP [19] tries to overcome the back-end problem
by employing channel-first dataflow where non-zero W and
IA data are organized and processed in the channel dimension
first and subsequently in the pixel dimension. This ensures that
the Psums are locally reduced within the multiplier array, thus
decreasing the writeback traffic. However, pairs of non-zero IA
and W of matching channels have to be extracted, and they
utilize associative index matching (AIM) units and sequence
decoders to do the same. The AIM uses N×N comparators to
match W and IA channel indices, making it highly inefficient
as the area and power grow quadratically with N. EIE [18]
exploits both IA and W sparsity but only supports fully con-
nected (FC) layer making it incompatible to run convolution
operations. In addition, several FPGA-based implementations
have been proposed in the literature [20]–[26], [31]–[35], [38]–
[48], discussed in detail in Section IV-C. Table I presents a
qualitative comparison between RAMAN and previous works.
RAMAN offers an extensive range of essential architectural
features tailored for tinyML applications, setting it apart from
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other approaches that only support a limited subset of these
features.

Several recent implementations of neural networks have
integrated sparsity optimizations into their designs [27]–[30],
[36], [49], [50]. The work by [27], [29], [36] demonstrates a
method for exploiting weight sparsity within Systolic arrays.
Wu et al. [36] introduce a fine-grained pruning scheme and
compression strategy tailored for edge computing. Sun et al.
[27] present an approach to balance input feature maps and
weights across processing elements through channel clustering
and co-designed load-balancing weight pruning. Zhang et
al. [29] propose a novel scheduling strategy utilizing row
stationary dataflow to exploit sparse kernels (weights) and
address low processing element utilization caused by load
imbalance. Meng et al. [28] put forward a dense/sparse-aware
CNN accelerator aimed at achieving high processing element
utilization and reconfigurability. Yin et al. [30] propose a CNN
accelerator based on block sparse weight pruning; however, the
architecture is constrained to leveraging weight sparsity and
does not consider activation sparsity.

B. Our Contributions

This work presents a re-configurable and sparse deep neural
network accelerator that exploits both IA and W sparsity. To
address the front-end challenge, we employ Gustavson’s in-
spired dataflow [51] with the hardware-aware balanced weight
pruning strategy to keep workload uniform across all the
PEs and maintain high MAC utilization. The back-end issue
is resolved by reducing Psum locally within a processing
element (PE) array; this reduces the writeback bandwidth
and eliminates memory access contention because only the
final result is sent back to memory. Latest advancements
in quantization techniques [52] in DNNs have eliminated
the need for floating-point arithmetic (during inference), and
simple energy-efficient fixed-point arithmetic has proven ade-
quate to achieve reasonable accuracy. Despite having a highly
efficient computational realm, today’s design has a memory
bottleneck which is evident from [53]. Memory access (es-
pecially DRAM) is orders of magnitude more expensive than
conventional arithmetic operations. The most state-of-the-art
DNN accelerators, except for EIE, utilize an external DRAM
to store IAs and Ws and pay the penalty of unprecedented
memory access cost. Since our architecture is targeted at
tinyML edge computing applications with stringent energy
budgets, using external DRAM and paying high energy costs
becomes untenable. Thus, in this work, we do away with
the requirement for a DRAM and only use the on-chip
SRAM to store the model weights and activations. However,
the memory size of the on-chip SRAM is limited due to
area constraints, which necessitates model optimizations to fit
modern networks such as MobileNets [5], [6] in SRAM. In
this work, we introduce a hardware-aware pruning strategy
to shrink the model size and intelligent memory scheduling
to minimize peak activation memory to accommodate both
model and activations on-chip. In summary, the following are
the contributions and features of the RAMAN architecture
presented in this paper:

Sparsity: RAMAN exploits both IA and W sparsity to achieve
higher throughput and energy efficiency compared to most
prior works focusing on sparsity in one of the operands [14],
[16], [20], [22], [23]. Sparsity is leveraged in storage and
computation. Input activations are stored in compressed form
in a cache, and a simplified version of the compressed sparse
row (CSR) format [54] is used for storing weights in both
on-chip global memory and cache. In computation, sparsity
is leveraged in two ways; for the layers with the maximum
computational density (such as PW), RAMAN can skip the
processing cycles with zero data, improving throughput and
energy efficiency. However, skipping processing cycles won’t
reap any benefit in the layers with relatively low computational
density (such as DW); in such cases, the design only data-gates
the cycles with zero data but does not skip them reducing
architectural complexity. Furthermore, the activation sparsity
engine (ASE) designed to leverage IA sparsity is developed at
a low cost (<1% of LUTs, 3% registers and 2% memory)
compared with other prior implementations [15], [17], [19],
[20]. Furthermore, we present a hardware-aware balanced
weight pruning strategy (c.f III-C) that reduces memory stor-
age, access, and processing latency by software-hardware co-
optimization.
Programmability: RAMAN supports traditional CNN mod-
els, separable convolution models constituting depth-wise
(DW) and point-wise (PW) layers, max pooling, average pool-
ing, and fully connected layers. Most prior implementations in
the literature cater to either a specific network topology like
MobileNet [45]–[47] or YOLO [42], [43], or a particular type
of layer [22], [23], [38], [41]. The unsupported layers are often
executed offline, making the overall system-level computation
inefficient. In many cases, these implementations demand
FPGA re-synthesis to adapt to different network topologies.
On the other hand, RAMAN provides an instruction memory
and a dedicated instruction set for storing and programming
diverse network topologies. This capability empowers RA-
MAN to execute various layer configurations without requiring
FPGA design re-synthesis.
Dataflow: RAMAN incorporates novel dataflow inspired by
Gustavson’s algorithm [51] to reduce memory access for the
PW layer, which is the most computationally intensive layer.
The dataflow reduces the memory access cost of a single PE
by 1.9x and 6.5x compared to output stationary [35] and in-
put/weight stationary [21] dataflows. Additionally, the NoC is
reconfigured to support weight stationary dataflow for DW and
standard convolutional (CONV) layers. This hybrid dataflow
architecture, enabled by dynamic NoC reconfiguration, maps
the computation of a particular layer to its optimum dataflow
to achieve maximum energy efficiency and minimum data
movement cost.
Peak Activation Memory Reduction: The state-of-the-art
accelerators logically partition the IAs and OAs inside the
memory, where the total activation memory is the sum of IA
and OA memory spaces. This logical partition is eliminated
in our work, and the OAs are directly overwritten onto
the IA memory space, lowering the peak activation memory
requirements by up to 50%. RAMAN employs an intelligent
memory scheduling scheme presented in Section III-A to
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prevent memory collision issues that ensue after removing the
logical partition.
Run-time Activation Pruning (RAP): RAMAN employs run-
time hardware-aware activation pruning to enhance activation
sparsity, and the architecture effectively leverages this strategy
to increase throughput and energy efficiency. Notably, this
approach is one-of-a-kind, and our preliminary offline experi-
ments substantiate the network’s resilience to these pruning
techniques. The RAP contributes to an additional latency
reduction of around 12-16%, IA cache access reduction by 8-
10%, and parameter cache reads reduction by 13-21%. Section
II-B provides a detailed description of RAP.
Flexible quantization: RAMAN supports variable precision
quantization of both weights and activations supporting 2b,
4b, and 8b precisions. Unlike most current approaches that
adhere to a fixed quantization precision (usually 8b or 16b for
all layers) [20], [22], [38], [47], [48], RAMAN’s architecture
is programmable for dynamic precision adjustment at the layer
level to meet the required accuracy, storage, and latency target.
For instance, the initial layers could employ 8b IAs and Ws,
while the subsequent layers may adopt 4b or 2b IAs and
Ws. This approach effectively mitigates latency and optimizes
storage and memory access, all while adhering to accuracy
constraints.

The rest of the paper is organized as follows: Section II
presents the architecture of the RAMAN accelerator. The
architectural features that make RAMAN feasible on edge are
highlighted in the Section III. Section IV provides implemen-
tation results, and Section V concludes this article.

II. SYSTEM ARCHITECTURE

A. Top-Level Architecture

Activation & Parameter
Cache

Global
Memory

PE

PE Array

PE PE PE

PE PE PE

PE PE PE PE

PE

Post
Processing

Activation
Sparsity Engine

Top-Level Controller Instruction
Memory

Layer Config.
 Inst. Stream

IAs/OAs/
Parameters

Column Router Row Router

Fig. 1: Top-level architecture.

Fig. 1 shows the top-level architecture of the RAMAN ac-
celerator system. The architecture can be broadly categorized
into:
Compute: The compute sub-system comprises a processing
element (PE) array, an activation sparsity engine (ASE) and a
post-processing module (PPM). The multiply and accumulate
(MAC) operations are performed by 12 spatial PEs in the
PE array, which are arranged in a 3x4 rectangle. The ASE

leverages input activation sparsity to minimize latency and
power by skipping ineffectual zero computations. The PPM
performs ReLU, quantization, pooling, bias and residual addi-
tion operations. Sections II-B-II-C gives a detailed description
of the PE array and ASE. A detailed description of PPM is
provided in Section III of the supplementary document.
Memory: The memory sub-system comprises an on-chip
global memory (GLB-MEM), activation and parameter cache,
and instruction memory. GLB-MEM stores the parameters of
all layers and the input and output activations of a specific
layer. Cache exploits temporal reuse in parameters and activa-
tions to reduce energy-expensive data access to the large on-
chip GLB-MEM. We employ a three-level memory hierarchy
composing GLB-MEM, cache and RFs (inside PEs). The
reg-file is used for Psum reduction locally inside the PE to
overcome the back-end challenges. In addition, we have the
instruction memory to store layer configuration instructions of
individual layers. A detailed description of the GLB-MEM and
cache is provided in Section V of the supplementary document.
Control: The control sub-system encompasses a top-level
controller to coordinate: 1) data transfer between the GLB-
MEM and cache; 2) traffic between the cache and PE array
utilizing the NoC; 3) traffic between the PE array, PPM and
GLB-MEM; 4) operations of the ASE, PE array, NoC, and
PPM. We do not use a separate controller for each of the
12 PEs since they are all identical and operate in lockstep,
meaning that their processing states are equivalent with regard
to one another. The top-level controller is responsible for
issuing the control signals to all 12 PEs. A detailed description
is provided in Section IV of the supplementary document.

B. Activation sparsity Engine (ASE)

The activation sparsity engine shown in Fig. 2 serves two
purposes. First, it reduces the cycles needed to write a block of
data from the GLB-MEM to cache through ping-pong-based
shift registers. Second, it aids in exploiting activation sparsity.
Sparsity is leveraged in two ways: 1) by data gating the cycles
with zero data and disabling the memory read to prevent the
datapath from switching, thereby reducing dynamic power; 2)
by skipping the processing cycles entirely to improve energy
efficiency and throughput. IAs are routed through the ASE to
record the position of zeros, and this information is utilized
during computation to either gate or skip zero computation,
depending on the layer under execution. The layers with low
computing density (e.g., DW) adopt the gating strategy, and
the layers with relatively high computational density (e.g.,
PW) employ the zero skipping technique in addition to data
gating. This hybrid approach reduces architectural complexity
since imposing zero skipping during DW execution has no
positive impact on performance. The ASE consists of five
major blocks:
Shift Register Bank: Consists of six parallel shift registers
(SRs), with even and odd SR pairs ping-ponging to minimize
the time required to write a block of data from the GLB-MEM
to cache. To begin with, all even SRs are in input mode, while
all odd SRs are in shift/output mode, and the functionality is
inverted in the following epoch. In the input mode, we load
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32b activations parallelly into four registers of an SR. In the
output/shift mode, 8b data is serially shifted into the non-zero
detector block.
Ping-Pong Enable Logic: Comprises a counter and 2:4
decoder to activate appropriate SRs in the shift register bank.
The contents of the SRs are shifted when the shift control
signal is asserted.
Non-Zero Detector: The IAs read from the shift register bank
are compared with zero to generate bitmap (b0 to b2, B3),
which is 1 when the IA value is not equal to 0 and 0 otherwise,
thus recording the position of zeros. The bitmap bits (b0 to
b2) are sent to the run-time activation pruning (RAP) logic to
perform activation pruning and generate a new set of bitmap

bits (B0 to B2). Then the bits (B0 to B2) obtained from RAP
are ‘OR’ed to generate OR_BIT , which is required for zero
skipping in the PW layer. The bitmap bits, along with the
OR_BIT , are fed to the succeeding bitmap and non-zero
channel index buffer module.
Run-time Activation Pruning (RAP) logic: As the name
suggests, the RAP performs activation pruning during infer-
ence to improve the throughput and minimize computation
latency. In our implementation, IA in the PW layer is tiled
with each sizing 1 × M , and three rows of the PE array
simultaneously process three such tiles, i.e., 3 ×M block of
IA is processed in a single epoch. However, if all activations
in a column of 3 × M block are zeros, that particular input
channel or column is skipped entirely during the computation.
Suppose there is only one non-zero activation in a column
and the rest are 0; that activation value is pruned if it’s below
the predetermined threshold (θ) so that the column may be
skipped during processing. The threshold value is precomputed
during the training phase based on the input and hidden layers
activation distribution. A pseudo-code of the RAP logic is
shown in Fig. 2. When any one of the bitmap bits (b0 to b2) is
1, and the remaining are 0s, then the activation values (a0 to
a2) are compared with the threshold. If the value ak is lesser
than the threshold, then the corresponding bitmap bit Bk is
made 0. If a column has more than one non-zero element,
then the input bitmap bits to the RAP (b0 to b2) are retained.
RAP reduces latency by 12-16%, IA cache access by 8-10%,
and parameter cache reads by 13-21%, and offers accuracy vs
energy/latency tradeoff which can be configured at run-time.
Bitmap and non-zero channel index buffer: It consists of
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three buffers and a channel counter. When the OR_BIT is
1 in the PW layer, we save the corresponding input channel
number obtained from the channel counter in the buffer. This
information is useful during the computation as we perform
computation only on input channels recorded in the buffer
and skip the rest. In other layers (such as DW and CONV),
we store the bitmap bits in buffers, which are later used to
enable/disable the appropriate data gating registers in PEs (c.f
Fig. 4).

The IAs are stored in a compressed format in the cache
using the five blocks discussed above. The bitmap bits and
the input channel numbers saved in buffers aid in power
saving through data-gating and latency reduction through cycle
skipping. Area overhead of the ASE in terms of LUTs (lookup
tables), registers and memory utilization is insignificant, as
demonstrated in Section IV.

1) ASE illustration: Fig. 3 illustrates the working of ASE
for the PW layer. The three IA tiles are loaded into the shift
register bank, and the non-zero detector module generates the
bitmap. In Fig. 3, the second input channel of tile-2 is pruned
as the value is less than the threshold value of 20, inside the
RAP block. The bitmap matrix is column-wise ORed to obtain
the OR_BITS vector. The columns 2 and 3 are skipped
during computation as all elements are zero post RAP. The
channel indices 1 and 4 are cached in buffers 2 and 3, and
they are subsequently utilized as addresses to retrieve the
corresponding input channel weight from the cache during
computation. Additionally, the column-wise bitmap is stored
in buffer 1 for non-zero channel indices (1 and 4), which is
accessible during computation cycles to activate or disable the
PE’s data registers as depicted in Fig. 4. In the example shown,
for the first input channel, all the rows of the PE array are
active as the bitmap is ′111′ for that particular column, and
in the fourth channel, row-2 of the PE array is deactivated as
the bitmap is ′101′. Additionally, only the non-zero elements
of the IA matrix are saved in cache banks utilizing the bitmap
data. Just the bitmap is saved in buffers for other layers, not
channel indices, as they only facilitate data gating and not
cycle skipping.

C. PE Array

The PE array comprises 12 processing elements spatially
distributed along three rows and four columns. It is coupled
with the Network-on-chip to route the data among different
PEs.

1) Network-on-chip: The network-on-chip handles data de-
livery between the cache, the PE array, and between different
PEs. The following are the NoC’s responsibilities: 1) Support
various data delivery patterns needed by different layers; 2)
Provide sufficient data bandwidth for parallel processing to
keep the PEs active and improve utilization; 3) Handle various
strides and padding, and 4) Leverage spatial data reuse to
increase energy efficiency.

To accomplish this, we employ a network of row and
column routers. The column routers distribute a cached data
block across four columns of the PE array, while the row
router further splits the incoming packets and delivers input

to the PE in a specific row. Furthermore, the output from the
PEs is directed to the post-processing module via the row
routers. Section II-D goes into greater detail on the various
data delivery patterns to perform different layer computations.
Additionally, NOC can adapt to a wide range of bandwidth
requirements wherein it can provide a high bandwidth IA data
from the cache to keep the PEs busy when there is limited
IA reuse (for DW layers); when the IA reuse is high (in PW
and FC layers), it reduces IA data bandwidth and increases W
bandwidth.
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Fig. 4: Processing Element Architecture (Type-1).

2) Processing Element: Fig. 4 shows the architecture of
the PE. We employ three types of PEs to support dataflow
flexibility for different layer types. The architectures of the
other two PE types constituting the last column of the PE array
are presented in Figs. 9, 10 of the supplementary document.
The fundamental elements of all PE configurations are an
8b multiplier, a 24b adder constituting MAC (Multiply and
Accumulate Unit), and a reg-file. 8b W and IAs are provided
as input and accumulated using the MAC unit, and a 24b
Psum is saved in the RF. Offline experiments show that the
Psum could fit within the 24b range. The type-2 and type-
3 PEs use four-ported RF (4 input & output ports), while
the RF in type-1 PE has four input and eight output ports,
each with a width of 24b and a depth of 16. Thus, the RF
can be addressed using 4b. The Psums are locally reduced
inside the PE array, and the final result is written back to
the memory after quantization in PPM, thereby reducing the
writeback bandwidth and eliminating memory contention.
Power saving: PE implements data-gating logic to leverage
zeros in the IAs for saving processing power in the layers
with low computational density, such as DW. The red-bordered
registers in Fig. 4 are data-gated, and if a zero IA value is
detected (provided by the bitmap bits stored in ASE buffers),
then the gating registers are disabled to prevent the MAC
datapath from switching.
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Fig. 5: Dataflow configuration across an array of PEs in RAMAN for (a) DW computation (b) PW computation and (c) FC
computation.

SIMD support: PE supports SIMD processing, evident from
Fig. 4, by performing four MAC operations per cycle, thereby
speeding up the processing four times. In addition, SIMD
processing also enables W and IA reuse, thereby reducing
the number of memory accesses. RF has four write ports to
simultaneously write the Psums from the four MAC units.
Variable precision: The PE datapath supports variable preci-
sion Ws and IAs. The reconfiguration of the data path for the
4b-W and 4b-IA using the same 8b datapath is shown in Fig.
4. First, two 4b-Ws and 4b-IAs are packed as an input to the
8b multiplier to compute two 4b multiplications doubling the
throughput. Next, the accumulator reduces the ensuing partial
outputs (PO1 and PO2), each 8b wide. Similarly, for the 2b-
W and 2b-IA case, the multiplier simultaneously does four 2b
multiplications boosting throughput by 4x.

D. Dataflow

1) DW: DW layer uses a weight stationary systolic dataflow
where the W remains static during the computation. IAs of
dimension (Hin ×Win ×M) are partitioned into tiles of size
(1×Win×4) and Ws of dimension (3×3×M) are partitioned
into tiles of size (3× 3× 4). Then three IA tiles are streamed
from the cache to the PE array from top-to-bottom, and the
Psum obtained is spatially reduced along the PE columns
from left-to-right. A global accumulation is performed by the
last column of PEs to obtain a final accumulated result. This
mapping allows the reuse of IA along a column and Psums are
spatially reduced inside the PE array. Since each PE supports
SIMD with four MAC operations per cycle, four input IA
channels are convolved with four W channels in every cycle.
The systolic data flow necessitates proper synchronization of
IA and Psums, as shown in Fig. 5(a). Each processing run
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generates a tile of OA of size (1 × Wout × 4), and it takes
(Hout × 1 × M/4) runs to obtain all outputs. The dataflow
also allows strided convolution and zero-padding.

2) PW: The PW layer execution can be represented by
2D matrix multiplication of IA with dimension (HW × M )
and weight W with dimension (M ×N ) to produce OA with
dimension (HW × N ) as shown in Fig. 5(b), where M and
N are number of input and output channels respectively. The
IA matrix is partitioned into HW tiles each sizing (1 ×M ),
and the W matrix is partitioned into N/n tiles each sizing
(M×n). Since the PE array comprises 3×4 PEs, three IA tiles
and four W tiles are passed to the PE array for computation
in a single processing run. An IA tile is broadcasted to four
PEs in a row, and a W tile is broadcasted to three PEs in a
column. This mapping allows spatial reuse of IA along a row
and W along a column. The Psums are locally accumulated
and stored in the RF of individual PEs, and the final Psum is
transferred to the PPM through row routers of NoC, reducing
output writeback traffic to GLB-MEM. The IA and W tiles
are sent to the PE array in compressed form for computation.
In every processing run, (3×4n) tile of OA is generated, and
it takes (HW/3) × (N/4n) runs to construct the entire OA
matrix. n depends on the RF depth and is set to 16 in our
implementation. This dataflow ensures the maximum reuse of
IA and W with low OA writeback bandwidth.

3) FC: The FC layer can be represented by vector-matrix
multiplication, as shown in Fig. 5(c). The IA is denoted as
a vector of size (1 × M ), and W is denoted as a matrix of
size (M ×N ). The IA vector is divided into four tiles of size
(1 × M/4), and each tile is broadcasted to three PEs in a
column. The W matrix is divided into 4 × N/6 tiles of size
(M/4×6) and is multicasted to three PEs in a column. A single
PE receives two weights and a single activation per clock cycle
and performs two MAC operations. The Psum reduction is
made in two levels: PE-level and core-level. At the PE level,
M/4 activations and M/4× 2 weights are streamed into each
PE, and the resulting Psums are locally accumulated inside
PE for M/4 cycles. At the core-level, the Psums stored in the
RF of each PE are spatially reduced along four columns of the
PE array. This two-level Psum reduction reduces the writeback
traffic to GLB-MEM. The last column output provides the final
result, which is sent to the PPM. Six OAs are generated in
every processing run, and N/6 runs are required to construct
the entire output vector. Each PE only uses two of the four
MAC units available due to bandwidth constraints and low-
weight reuse in the FC layer.

4) CONV: The standard convolutions (CONV) can be im-
plemented by employing both DW and PW dataflows depend-
ing on the input channels (M). Specifically, RAMAN adopts
the DW dataflow when the number of input channels is equal
to 1 (M = 1), while it employs the PW dataflow for cases
where the number of input channels exceeds 1 (M > 1).
A detailed mapping of the CONV layer onto DW and PW
dataflows depending on the input channel size is provided in
Section VIII of the supplementary document.

III. RAMAN MEMORY OPTIMIZATIONS TO SUPPORT
DEPLOYMENT AT THE EDGE.

The RAMAN accelerator was developed targeting tinyML
edge computing applications, and the following are the fea-
tures that enable RAMAN to be deployable on edge:

A. Peak activation memory reduction:
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Fig. 6: Illustration of the IA and OA memory space overlap-
ping to reduce peak activation memory.

The state-of-the-art (SOA) accelerators use two different
memory spaces for storing IAs and OAs in a single memory.
The IA and OA memory spaces are logically partitioned to
prevent memory collision issue. This conventional approach
requires a peak memory of:

MEM_size(SOA) = max({sum(IAl, OAl)}Ll=1) (1)

Where MEM_size(SOA) denotes the peak memory re-
quired by the state-of-the-art accelerators, L represents the
total number of layers in the network, IAl, OAl represents the
IA and OA memory sizes of a particular layer ′l′. Effectively
in the conventional approach, the activation memory size is
governed by the layer with the maximum sum of IA and OA
memory sizes.

In our approach, as illustrated in Fig. 6, the logical partition
between IA and OA memory spaces is eliminated, meaning
that the OAs are overwritten in the same IA memory space.
The memory size required by the proposed approach is given
by:

MEM_size(RAMAN) = max({max(IAl, OAl)}Ll=1) (2)

Where MEM_size(RAMAN) denotes the peak memory
required by RAMAN. Compared with the conventional ap-
proach, the proposed memory reduction scheme reduces the
peak activation memory of the MobileNetV1† model trained
for visual wake word (VWW) task by 37% and the DS-CNN†

model trained for keyword spotting (KWS) application by 49%
as shown in Fig. 6. We have made a couple of modifications
to the original MobileNetV1 [5] and DS-CNN models [55] as
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per our requirements, and the modified models are denoted as
MobileNetV1† and DS-CNN† models from here on.

However, the memory collision issue arises while overwrit-
ing the OA into the IA memory space if the IA is not consumed
before the OA writeback. This problem can be solved by
storing a copy of the IA tile in the cache and then proceeding
with the computation, as shown in Fig. 6. This makes the
original copy of the IA tile (e.g., IA tile-1 in Fig. 6) in the
GLB-MEM activation bank redundant, allowing the OA tile to
occupy that space. The disparity in tile sizes between IA and
OA is another challenge with the proposed approach. If the OA
tile is larger than the IA tile, it might corrupt the contents of
IA tile-2 by overflowing the memory area of IA tile-1 (cf. Fig.
6) and spilling over the subsequent tile (e.g., IA tile-2 in Fig.
6). This is particularly true in the PW layer when N>M, but
it’s not a concern in the DW layer because OA is always less
than (if stride>1) or equal (if stride=1) to IA. Intelligent data
organization inside the memory and pre-fetching the IA tile-2
to the cache prior to OA tile-1 writeback aids in resolving this
issue.

B. Dataflow to reduce memory accesses:

Fig. 7 shows the GLB-MEM memory accesses evaluated
for a single PE for different dataflows and their corresponding
abstract loop nests. The analysis was carried out on the PW
layers of the MobileNetV1† model [5], whose operation can
be described as a matrix-multiplication of IA(HW×M) ×
W(M×N), where input channel M is a shared dimension
of multiplication. The output stationary (OS) dataflow, also
termed inner product dataflow has the shared dimension in
the innermost loop and achieves good output reuse (M times)
but has poor input reuse. It computes an OA element one at
a time by traversing a row of IA and a column of W. On the
other hand, the Input stationary (IS) and the Weight stationary
(WS) dataflows achieve good input reuse (N times) and weight

reuse (HW times), respectively, but poor output reuse. It
computes one partial output matrix (PO) of size (HW × N )
at a time by traversing a row of W and a column of IA in IS
(or a column of WT and a row of IAT in WS) and M such
matrices are generated before the final reduction. The size of
the partial output matrix is massive to be stored locally inside
the PE and thus has to be saved in the GLB-MEM, creating
significant output data traffic evident from Fig. 7. Additionally,
the bandwidth required by the partial output matrix (24b value)
is much higher than the final output (8b value). Thus, moving
the partial output matrix from PE to GLB-MEM is costly.

In this work, we employ a RAMAN dataflow (RD) inspired
by Gustavson’s algorithm to reduce the overall data-movement
cost of the PW layer. It computes a row of 16 OAs at a time
by traversing a row of IA, and a row of 16 elements from W.
Since just 16 partial outputs are generated at a time, it is locally
stored and reduced inside the PE. The dataflow is the most
efficient as it avoids the two extremes of OS (by reusing IA
by a factor of 16) and IS/WS (by eliminating the partial output
traffic) dataflows. Only the quantized 8b accumulation result
is sent to the GLB-MEM, drastically decreasing the output
traffic. The W accesses from the GLB-MEM are reduced by
storing a W tile in the cache and re-using them for HW times
in the PW layer. Compared to the OS and IS/WS dataflows, the
RAMAN dataflow significantly reduces the PW layer memory
access by 1.9x and 6.5x, respectively.

C. Leveraging weight sparsity employing hardware-aware
balanced pruning:

We propose a hardware-aware balanced weight pruning
technique to reduce memory storage and access and improve
energy efficiency and throughput for the PW layer. This strat-
egy exemplifies the synergy between software-hardware co-
optimization, where a deep neural network undergoes pruning
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number of non-zero weight elements, leading to a uniform
workload across PEs. (b) Decomposing a sparse weight matrix
into a compressed, dense matrix containing only non-zero
elements and an index matrix.

during training, considering the underlying hardware architec-
ture to have minimum accuracy degradation [56]. Initially, the
weights are divided into tiles of size M × n as shown in Fig.
8(b), and for ease of explanation, we have considered n = 4.
A fixed number of weights are pruned in each tile row based
on the magnitude, leading to structured sparsity, which can
be efficiently exploited in our hardware. We employ the CSR
scheme with modifications to store W in compressed form.
The CSR scheme uses a set of non-zero values, bounds/row
pointers, and index/column pointers to represent compressed
information. The bounds/row pointer determines the number
of non-zero elements present in a row of the sparse matrix,
and the index provides the column index of the non-zero value.
In our pruning scheme, since all the rows in a sparse matrix
tile have the same number of non-zero elements, we don’t
have to store bounds explicitly and the start location of a
particular tile in memory can be easily identified. The index
in our implementation provides a non-zero column index for a
specific tile and not the entire sparse matrix requiring log2(n)
bits instead of log2(N) in the conventional CSR approach. In
our implementation, n is 16, requiring a 4b index, and the
values of the weights are quantized to 8b. Thus, each non-
zero weight element is represented by a 12b value-index pair.
Furthermore, the balanced pruning methodology shown in Fig.
8(a) ensures uniform zero/non-zero weight distribution across
the weight tiles, thereby eliminating the workload imbalance
problem. Without the balanced pruning strategy, the non-zero

weights would be non-uniformly distributed across different
weight tiles processed by different PEs resulting in workload
imbalance, and the overall performance is limited by the PE
with the heaviest workload. The PEs with low non-zero weight
tile distribution complete their execution faster and have to be
stalled for the slowest one (the PE with high non-zero weight
tile distribution).

IV. IMPLEMENTATION RESULTS

This section assesses the RAMAN’s performance on Efinix
FPGA [57].

A. Efinix FPGA Implementation Results

We evaluate RAMAN’s performance on popular networks
aimed at tinyML edge computing applications: MobileNetV1
and DS-CNN. The input dimensions are resized as per the
requirement: 96 × 96 for the MobileNetV1† and 30 × 32 for
the DS-CNN† model. The DS-CNN† model was trained on
the google speech command dataset for the keyword spotting
(KWS) application [58]. The input audio with each 1s duration
was sampled at 16KHz and fed to the cascade of asymmetric
resonators [59] to generate a cochleagram. RAMAN used the
output cochleagram of size 30 × 32 as an input to infer the
keyword. The MobileNetV1† model was trained on the Visual
Wake Words (VWW) dataset [60] with input image converted
to gray-scale. The specific MobileNetV1† and DS-CNN†

network architectures deployed on RAMAN are provided in
Section VII of the supplementary document.

RAMAN was optimized and implemented on an Efinix Ti60
FPGA, with parameters, instructions, and pre-processed inputs
written into corresponding memories. The specifications of the
RAMAN architecture are shown in Table II. Fig. 9(a) shows
the register breakdown of the RAMAN architecture. The PE
array utilizes 52% of the registers since each PE comprises
16× 24b RF to store Psums. Furthermore, RAMAN provides
the flexibility to downsize the PE RF width to 20b (or lower)
depending on the application to reduce register utilization. The
PPM stores post-processing parameters in registers leading to
32% register utilization. The LUT breakdown of the RAMAN
architecture is shown in Fig. 9(b). It is evident that the
controller and the PE array consume most of the LUTs in
FPGA fabric, accounting for 86% of LUTs, and the ASE
utilization is insignificant. The LUTs and registers are inferred
as the eXchangeable Logic and Routing (XLR) cells in Efinix
FPGA. The power distribution of the RAMAN architecture is
presented in Fig. 9(c-d), where logic and clock account for
80%, while memory and DSP constitute the remaining 20%.

The RAMAN architecture comprises 48 MAC units operat-
ing at 75 MHz, which theoretically translates to a throughput
of 7.2 GOp/s. However, since operations involving zero are
skipped in the PW layer, we achieve an effective throughput
of 13.5 GOp/s and 10.5 GOp/s for the MobileNetV1† and
DS-CNN† models, respectively by exploiting both activation
and weight sparsity. The power consumption of the RAMAN
architecture on Efinix Ti60 FPGA is estimated to be 136.96
mW (89.37 mW dynamic power + 47.6 mW static power) and
131.77 mW (84.39 mW dynamic power + 47.38 mW static
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Fig. 9: Resource utilization breakdown of (a) Registers, (b) LUTs and power breakdown of RAMAN for (c) MobileNetV1†

model, (d) DS-CNN† model for 75% weight pruning in the PW layers.

TABLE II: RAMAN Specifications.

Platform Efinix Ti60

Layers Supported CONV, DW, PW,
FC and Max/Average pooling.

Number of PEs 12 (4 MACs/PE)

Reg-file Memory PE Array: 0.576 KB
PPM: 0.32 KB

Clock Rate 75 MHz

Arithmetic Precision W & IAs: 2b, 4b or 8b fixed point,
Psums: 24b fixed point.

Power 137 mW for MobileNetV1†

132 mW for DS-CNN†

XLR cells 52261 (85.96% util.)
DSPs 61 (38.12% util.)

Memory Blocks 168 (65.62% util.) for MobileNetV1†

118 (46.09% util.) for DS-CNN†

Theoretical Throughput 7.2 GOp/s (3.6 GMACS)

Effective Throughput 13.5 GOp/s for MobileNetV1†

10.5 GOp/s for DS-CNN†

Energy Efficiency 2355 Inferences/J for MobileNetV1†

6609 Inferences/J for DS-CNN†

power) for the MobileNetV1† and DS-CNN† models, respec-
tively. Therefore, the effective power efficiency of RAMAN
at 75 MHz and 75% PW weight sparsity is 98.47 GOp/s/W
(or equivalently 2355 Inferences/J) for the MobileNetV1† and
79.68 GOp/s/W (or equivalently 6609 Inferences/J) for the
DS-CNN† model. A detailed power and memory breakdown
of the RAMAN architecture is provided in Section IX of the
supplementary document.

The average MAC utilization of the DW and PW layers is
around 59% and 86%, respectively, with an overall utilization
of 78%. DW layers have a lower MAC utilization due to
limited IA re-use and the time spent to fetch the IAs and Ws
from the GLB-MEM memory. On the other hand, memory
access latency of the PW layers in RAMAN is completely
hidden with MAC operations; however, the latency introduced
due to data fetch from the RF of PEs cannot be completely
hidden as the next tile’s MAC operation can be started only
after completely evicting the contents of the RF of the current
tile. The MAC units remain idle while fetching the contents of
RF and transferring them to the post-processing module. This
problem can be solved by double buffering the reg-file in the
PEs, increasing the PW layer utilization to 97%.

B. Sparsity Results

1) Leveraging sparsity in latency reduction: Fig. 10 shows
the accuracy vs. latency trade-off at compile-time and run-
time. Figs. 10(a) and 10(b) demonstrate the RAMAN pro-

cessing latency and model accuracy as a function of weight
sparsity for the MobileNetV1† and DS-CNN† models, re-
spectively. The required degree of weight sparsity is pre-set
at compile time using the hardware-aware balanced weight
pruning technique described in Section III-C. The performance
is assessed for four weight sparsity levels. It is evident that
the latency reduction is almost linear with the degree of
weight sparsity, and the accuracy degradation is minimal.
Additionally, the latency distribution for the PW layers of the
MobileNetV1† and DS-CNN† models are shown in Figs.10(c)
and 10(d). There is a significant reduction in latency by
leveraging IA sparsity. The latency gains are substantial in the
final layers of the MobileNetV1† model due to an increase
in IA sparsity and number of operations. In contrast, the DS-
CNN† model is computationally intensive in the initial layers.
Furthermore, we compare the latency after run-time activation
pruning for different thresholds. Thresholds are set based on
the input data distribution. For the MobileNetV1† model, RAP
with pruning threshold 40 reduces latency by an additional
16% compared to no pruning case, with accuracy degradation
of ≈2%. For the DS-CNN† model, RAP reduces total latency
by 12% with the pruning threshold set at 20. However, the
possibility of minimizing latency with RAP is only confined
to the initial layers since the final layers of DS-CNN† have
low computational intensity.

2) Leveraging sparsity in memory access reduction: Table
III shows the activation cache access breakdown for different
layer types of the MobileNetV1† and DS-CNN† models. It is
evident from the table that the majority of the cache accesses
happen in the DW-PW layers, and the activation cache reads
are more than the cache writes, leading to effective cache
reuse. Additionally, leveraging IA sparsity reduces the cache
accesses by 40 − 45%. Finally, Table IV presents the weight
cache access breakdown for different sparsity or pruning ratios.
Again, a similar trend is observed where reads dominate
writes, indicating effective cache reuse and the cache accesses
reduce with increased sparsity ratio. In addition, it is observed
that the weight cache reads are further reduced by 30% with
IA sparsity since when the IA value is zero, the corresponding
weight is not read from memory. However, the weight cache
writes remain the same since all weight values are loaded to
the cache initially, irrespective of IA sparsity. In addition, run-
time activation pruning reduces IA cache access by 8− 10%,
and parameter cache reads by 13− 21%.
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Fig. 10: Leveraging sparsity in latency reduction: Compile-time and run-time latency vs. accuracy trade-off for MobileNetV1†

model (left-panel) and DS-CNN† model (right-panel). Top-panel: Latency of RAMAN for different weight sparsity (pruning)
ratios set at compile time. Bottom-panel: Latency distribution of PW layers in RAMAN with run-time activation pruning at
different activation pruning thresholds (θ) with accuracy highlighted. The accuracy and latency estimates are for two tasks:
keyword spotting using the DS-CNN† model trained on the Google speech command dataset and image classification using
the MobileNetV1† model trained on the VWW dataset.

TABLE III: Activation cache access breakdown for (a) DS-
CNN† and (b) MobileNetV1† model.

Layer
With IA sparsity (in KB) Without IA sparsity (in KB)

Read Write Read Write
(a) (b) (a) (b) (a) (b) (a) (b)

CONV 0.5 9.8 0.2 6.7 2.7 13.5 0.96 9.2
DW 171 356 77 144 281 630 129 246
PW 47 173 47 173 76 335 76 335
Pool 0 0 0 0 0 0 0 0
FC 0.13 0.26 0.06 0.26 0.13 0.26 0.06 0.26

Total 219 539 124 323 360 979 206 590

TABLE IV: Weight cache access breakdown for (a) DS-CNN†

and (b) MobileNetV1† model.

Weight
Sparsity

Read (in KB) Write (in KB)
With IA sparsity Without IA sparsity -
(a) (b) (a) (b) (a) (b)

0% 1727 6344 2451 9425 49 295
25% 1295 4908 1839 7250 37 222
50% 863 3472 1226 5075 25 149
75% 432 2036 613 2900 12 76

3) Leveraging sparsity in storage reduction: The global
memory requirements of the design are tabulated in Table V.
The peak activation memory needed is obtained by overwriting
OAs in the same IA memory space. The parameter memory
needed is the sum of memory needed to store weights and

post-processing parameters of all the layers. Taking pruning
into account, the parameter memory reduces with an increase
in pruning percentage, as shown in Table V.

TABLE V: Global memory requirements.

Memory
(in KB)

Activation
Memory

Parameter Memory with
different pruning ratios

0 0.25 0.5 0.75
DS-CNN† 54.72 61.968 49.656 37.392 25.104

Mobile
-NetV1† 44.56 324.288 251.328 178.368 105.384

C. Comparison with prior works

We compare RAMAN with prior works quantitatively in
Table VI. [20]–[26], [31] leverage sparsity in either activation
or weights or both. NullHop [20] introduces an architecture
that exploits activation sparsity to accelerate computation
through zero skipping and reduces storage demands. How-
ever, it’s worth noting that this architecture does not exploit
weight sparsity or incorporate activation pruning at run-time to
increase the sparsity of activations. [22]–[25] exploit sparsity
exclusively in weights and not activations. [21], [26] exploit
weight sparsity by zero skipping and activation sparsity by
clock gating. In contrast, RAMAN optimizes both power and
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TABLE VI: Quantitative comparison of RAMAN with prior implementations.
NullHop

[20]
McDanel
et al. [21]

SpWA
[22]

Lu
et al. [23]

Yin
et al. [24]

Xie
et al. [25]

Zhu
et al. [26]

Lu
et al. [31]

Wu
et al. [36]

FitNN
et al. [33]

Hao
et al. [34]

Synetgy
[35]

RAMAN
(Ours)

Platform Xilinx
Zynq-7100

Xilinx
VC707

Xilinx
ZC706

Xilinx
ZCU102

Xilinx
ZCU102

Intel
Arria10

Xilinx
ZCU102

Xilinx
ZC706

Xilinx
ZU3EG

Xilinx
Zynq-7020

Xilinx
Pynq-Z1

Xilinx
ZU3EG

Efinix
Ti60

Model VGG16 Custom VGG16 VGG16 MobileNetV2 MobileNetV2 ResNet-50 1-D CNN ResNet-50 iSmart2 Custom DiracDeltaNet MobileNetV1†,
DS-CNN†

Precision 16b N/A 16b 16b 16b 8b 16b 16b 8b N/A N/A W:1b
Act.:4b 2, 4 or 8b

LUTs 229k 239k 155.2k 132.34k 194.6k 102.6k 390k 3.238k 40.78k 39.19k 43.9k 24.13k 37.2k⋄

Registers 107k 201k 153.02k 68.8k 95.68k N/A 278k N/A 45.25k 49.5k 40k 29.9k 8.6k
DSPs 128 112 768 364 884 512 1352 48 257 220 202 37 61

Freq. (MHz) 60 170 166 200 190 170 200 200 150 150 100 250 75
Pwr. Efficiency

(GOp/s/W) 27.4 N/A N/A 12.33 N/A 18.69 N/A 45.05 44.95 N/A N/A 8.56 98.47[a]⋆

79.68[b]⋆

Power (W) 1.1 2.2 N/A 23.6 13.32 4.6 15.4 0.506 1.4 1.97 2.2 5.5 137mW
⋄4-input LUTs. ⋆Estimated for 8b precision. [a]VWW trained on MobileNetV1†. [b]KWS trained on DS-CNN†.

TABLE VII: Quantitative comparison of RAMAN with prior
works for VWW and KWS tasks.

Platform Task Acc. (%) Perf.
(inf./s)

Power
(mW)

Energy
(uJ/inf.)

EK-
RA6M4 [61]

VWW 85.4[a] 6.24 74 11.85k
KWS 90.1[b] 19.69 75 3.79k

RX65N-
Cloud-Kit [61]

VWW 85.4[a] 4.07 54.24 13.32k
KWS 90.1[b] 12.37 54.7 4.42k

Nucleo-
L4R5ZI [61]

VWW 85.4[a] 1.65 40.31 24.31k
KWS 90.1[b] 5.54 40.83 7.37k

xG24-
DK2601B [61]

VWW 84.7[a] 8.97 10.22 1.14k
KWS 90.3[b] 27.45 11.03 401.86

XC7K410T [62] KWS 88.8[c] N/A 68 N/A
XC7A200T [63] KWS 90.1[c] 680 470 700

Efinix TI60
RAMAN

VWW 80.7[d] 322.53 136.96 424.63
KWS 93.7[e] 869.65 131.77 151.31

Model employed: [a]MobileNetV1(0.25x), [b]DS-CNN, [c]Custom
model, [d]MobileNetV1†, [e]DS-CNN†.

latency by gating and skipping processing cycles for both
activations and weights.

[31]–[35] propose hardware architecture for the DNNs tar-
geted for edge computing. Nevertheless, among these works,
only Lu et al. [31] incorporate sparsity optimizations. RAMAN
stands out with its exceptional power efficiency and efficient
resource utilization, including LUTs, registers, and DSPs,
when compared to previous edge implementations. It’s worth
noting that RAMAN utilizes 4-input LUTs on Efinix FPGA, in

contrast to other Xilinx-based implementations which typically
utilize 6-input LUTs. A comparison of recent FPGA-based
CNN accelerators is provided in Section X of the supplemen-
tary document.

Additionally, we have conducted a comparative analysis
with other implementations listed in the MLPerf [61] bench-
mark, specifically within the Inference-tiny category, as well as
prior FPGA-based implementations [62], [63] for VWW and
KWS tasks. The results, as presented in Table. VII, highlight
RAMAN’s notable superiority in terms of energy efficiency
and latency, surpassing the majority of previous efforts. This
underscores RAMAN’s exceptional performance in the realm
of tinyML applications. An extended ablation study showcas-
ing our approach across various sparsity levels for both Visual
Wake Word (VWW) and Keyword Spotting (KWS) tasks
is presented in Fig. 11. Additionally, the depiction includes
comparisons with prior implementations listed in the MLPerf
inference-tiny category. The MLPerf benchmark establishes
quality targets, specifying a minimum accuracy requirement of
80% for VWW and 90% for KWS tasks. Notably, our models
consistently meet these quality standards even after undergoing
aggressive pruning. Furthermore, owing to weight pruning and
compressed storage of model parameters, we see a significant
reduction of storage requirements in RAMAN compared to
the base model.
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Fig. 11: Ablation study of our approach for different sparsity levels compared with prior implementations listed in MLPerf
Benchmark within the Inference-tiny category for (a) Visual Wake Word task and (b) Keyword spotting task. The size of the
dots is proportional to the model size. The model used for comparison in Table VII is highlighted with a red bounding box.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386832

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 24,2024 at 04:57:13 UTC from IEEE Xplore.  Restrictions apply. 



xiv

V. CONCLUSIONS

Deep neural networks (DNNs) introduce weight and acti-
vation sparsity, enabling deep learning applications to oper-
ate more efficiently on hardware platforms with constrained
resources and energy. However, these sparse models need
specialized hardware architectures to fully benefit from the
sparsity for storage, latency, and energy gains. In this work,
a reconfigurable and sparse neural network accelerator ex-
ploiting both weight and activation sparsity is proposed for
tinyML applications. RAMAN uses an activation sparsity
engine to leverage unstructured activation sparsity and a
hardware-aware balanced pruning to exploit structured weight
sparsity. We propose a novel dataflow inspired by Gustavson’s
algorithm that enables the Psum reduction with the PE array
and significantly reduces the writeback traffic. The dataflow
reduces the PW layer memory accesses by 1.9x compared to
output stationary dataflow and 6.5x compared to input/weight
stationary dataflow. Furthermore, we propose a technique to
lower peak memory activation by overlaying IA and OA on the
same memory space, which can reduce storage requirements
by up to 50%. These memory optimizations in terms of
memory accesses and memory storage enable RAMAN to be
deployable on edge with a small form factor.

RAMAN supports a wide range of DNN topologies from
standard CNN layers to modern DS-CNNs and can be con-
figured to support accuracy vs. power/latency tradeoffs using
techniques deployed at compile time and run time. RAMAN
architecture was implemented on Efinix FPGA with 37.2K
LUTs using 48 MAC units distributed across 3 × 4 PEs.
The design achieves an overall energy efficiency of 2355 and
6609 Inference/J for MobileNetV1† and DS-CNN† models
at 75 MHz on Efinix FPGA. The effective power efficiency
of the system is estimated to be 98.4 and 79.68 GOp/s/W
for MobileNetV1† and DS-CNN† models, respectively. A
demonstration video of the proposed RAMAN accelerator on
the Efinix Ti60 FPGA board for the keyword spotting task,
where we control the maze game using the keywords uttered
by the user, can be found here https://youtu.be/sCksj7nlBY8.
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