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Abstract—The growing use of acoustic classification systems
in edge computing and Internet of Things (IoT) devices has
created a demand for innovative technologies and methods that
can deliver high performance and energy efficiency. In this work,
we introduce a novel audio inference system that combines
RAMAN, a Re-configurable and spArse tinyML Accelerator
for infereNce, with a hardware-efficient Neuromorphic cochlea
for pre-processing. The neuromorphic cochlea mimics human
hearing, specifically by employing the ’Cascade of Asymmetric
Resonators (CAR)’ model to replicate the basilar membrane filter
in the human cochlea. In this study, we utilize a 30 cascaded-filter
cochlear section to process real-time audio data and a RAMAN
classifier for audio classification. RAMAN leverages activation
and weight sparsity within the neural network to reduce storage,
latency, and power consumption. The proposed audio inference
system has been implemented on a Microchip MPFS250T SoC
field-programmable gate array (FPGA) with 52.57k LUTs, all
while operating with a power consumption of 237.3 mW at
40 MHz clock frequency. The proposed audio inference system
is designed for low-power auditory edge applications such as
speaker verification, speech detection, and keyword spotting.

I. INTRODUCTION

Edge computing has transformed computational tasks by
moving data processing and computation closer to the data
source, enabling real-time analysis and rapid responses [1].
This shift away from centralized cloud servers to network edge
devices is particularly significant in the context of deep neural
networks (DNNs), which are widely used in various cognition
and learning domains [2]–[4]. The trend of deploying DNNs
directly on the edge has gained momentum due to its inherent
benefits, including enhanced privacy, reduced latency, and
optimized bandwidth utilization. However, challenges arise
when performing computations on edge devices, such as
power constraints, limited memory, and resource limitations,
preventing the direct deployment of power-intensive GPUs
and CPUs commonly found in cloud platforms. Specialized
accelerators designed for neural computations at the edge are
being developed to address these challenges. These accelera-
tors enable improved data flow, efficient memory access, and
the exploitation of network sparsity. One exciting application
of this advancement is in audio classification on the edge,
enabling real-time identification and categorization of audio
signals with faster response times and reduced reliance on
cloud resources.

In this paper, we introduce a novel approach for audio infer-
ence at the edge. Our method employs a neuromorphic cochlea

as a pre-processing stage to emulate the auditory function of
the human ear. This cochlea model incorporates a Cascade of
Asymmetric Resonators (CAR) model [5] and a low-pass filter
to replicate the behavior of in Basilar membrane and Inner hair
cells found within the human inner ear. Additionally, we utilize
the RAMAN tiny ML accelerator [6] for audio inference at the
edge.

The neuromorphic cochlear pre-processing stage is highly
compact, resource and energy-efficient compared to the exist-
ing mel-frequency cepstral coefficients (MFCCs) based pre-
processing and it is shown that the cochlea outperforms
MFCCs across various experimental conditions in terms of
classification accuracy [7], [8].

II. METHODOLOGY

Figure 1 presents the audio inference pipeline using Neu-
romorphic cochlear pre-processing and RAMAN tinyML ac-
celerator for classification. The setup involves capturing the
input audio from the speaker through a microphone and
subsequently, feeding it to the I2S (Inter-IC Sound) module
to obtain a 16-bit representation of the audio sample. The I2S
module assumes a crucial role in this process by facilitating
the conversion and generating the necessary control, enable,
and clock signals required for the proper functioning of the
microphone module.

The resulting 16-bit audio sample sampled at 16 KHz serves
as the input for the CAR-IHC cochlear module, which acts as
a pre-processing stage. In this work, we have employed the
CAR-IHC model proposed by Xu et al. [5] utilizing 30 filter
banks, each specifically tuned to a distinct cut-off frequency.
Consequently, the output of each filter bank is tapped for 1s
duration generating a cochleagram of size 30 × 16000. The
generated cochleagram is then downsampled to size 30 × 32
by employing a max pooling operation. The down-sampled
cochleagram is subsequently fed as an input to the RAMAN
tinyML accelerator for audio classification.

The RAMAN accelerator [6] is a compact, low-power, and
energy-efficient deep neural network accelerator comprising
memory, compute, and control subsystems. It employs a 3 × 4
processing element (PE) array for multiply-accumulate (MAC)
operations, with a three-level memory hierarchy comprising
global memory to store activations and parameters, a cache,
and a reg-file. The salient features of the RAMAN architecture
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Fig. 1: The audio inference pipeline using neuromorphic cochlear pre-processing for audio feature extraction and RAMAN
tinyML accelerator for audio classification.

involve employing both activation and weight sparsity to
reduce latency and storage, optimized dataflow to reduce
memory access, and memory optimizations like compression
and peak activation memory storage reduction by cache pre-
fetching and intelligent operation scheduling.

III. RESULTS

We implemented a sophisticated audio inference system,
leveraging a 30-CAR-section cochlear model for efficient pre-
processing and the tinyML accelerator RAMAN, running in
real-time on an FPGA platform. The design is extensively op-
timized and subsequently deployed on Microchip MPFS250T
SoC FPGA, utilizing 52.57k 4-input look-up tables (LUTs)
and 18.9k flip flops (FFs). The memory utilization of the sys-
tem is 564 uSRAM blocks and 50 LSRAM blocks. The total
power consumption of the design is 237.288 mW (123.596
mW static power and 113.692 mW dynamic power) at 40 MHz
clock frequency. The resource utilization of the implemented
acoustic classifier system is presented in Table I.

TABLE I: Resource utilization on MPFS250T SoC FPGA.

Resource Used Total Utilization (%)
LUTs (4-input) 52.57k 254.2k 20.7

Flip Flops 18.89k 254.2k 7.43
uSRAM(64x12) 564 2352 23.98
LSRAM(1Kx20) 50 812 6.16

Math Blocks (DSPs) 82 784 10.46

IV. CONCLUSION

Real-time audio classification has garnered significant atten-
tion in recent years due to its broad range of applications.
In this study, we have developed the audio inference sys-
tem that utilizes neuromorphic cochlea as a pre-processing
stage and RAMAN tinyML accelerator. The neuromorphic
cochlea serves as a hardware-efficient pre-processing module
that replicates the functionality of human hearing. We have
implemented the “Cascade of Asymmetric Resonators (CAR)
- Inner Hair Cells (IHC)” model of the cochlea on an FPGA.
The CAR component mimics the basilar membrane filter,
while the IHC component emulates the inner hair cells of
the cochlea. The overall system has been implemented on
Microchip MPFS250T SoC FPGA with 52.57k LUTs, 564

uSRAM blocks, and 50 LSRAM blocks while consuming
237.288 mW of power.
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