
978-1-7281-9369-4/20/$31.00 ©2020 IEEE

FPGA based Compressive Sensing Framework for

Video Compression on Edge Devices
Abin Bassam Ayub

Department of Mathematics

Indian Institute of Science

Bangalore, India

abinbassam@iisc.ac.in

Venkat Rangan

tinyVision.ai Inc.

 San Diego, California

venkat@tinyvision.ai

Pallab Kumar Nath

Department of Electronics and Systems Engineering

Indian Institute of Science

Bangalore, India

pallabkumar@iisc.ac.in

Chetan Singh Thakur

Department of Electronics and Systems Engineering

Indian Institute of Science

Bangalore, India

csthakur@iisc.ac.in

Abstract— Compressive Sensing (CS) is an emerging signal

processing methodology, which compresses the signal being

acquired at the time of sensing. As it relies on the sparsity of the

signals, CS allows us to sample the signal at a rate much below

the Nyquist sampling rate. Recent advancements in CS made us

able to capture compressed videos and images on a sensory level

in the camera. As CS cameras are still in the research phase, it

is not commercially available. In this paper, we propose a simple

FPGA based hardware architecture which makes conventional

cameras to produce the compressive sensed video. Here the

proposed hardware architecture emulates the sensing

methodology of pixel-wise coded exposure imaging for 13×

compression, which can be modified based on applications. Our

framework does not require any changes to the conventional

image sensor as it feeds off the video from the same sensor, this

is a huge advantage over previous works in CS video

compression. Our implementation results show that the

proposed method is effective and easily adaptable to any

conventional camera. The proposed framework can be deployed

on edge devices with low-cost conventional camera to reduce the

communication data rate and help in saving the significant

power.

Keywords— compressive sensing, FPGA, video

compression, Pixel-wise Coded Exposure imaging

I. INTRODUCTION

Compressive Sensing (CS) is a novel sensing
methodology where the signal is compressed at the time of
sampling/sensing. It requires the signal to sparsely
representable. This sensing technique has seen a lot of
advancement in recent years as most natural signals
can be represented sparsely (e.g. images in DCT domain).

It has been shown that compressive sensing can be used
effectively for temporal video compression [1,2].

CS video compression has been gaining a lot of attention
lately as it can achieve compression higher than that of the
conventional methods. Previous works in CS imaging systems
have either used optical image apparatus to pre-process
(modulation) the video before passing it to the image sensor
[1,2] or replaced the conventional image sensor with a sensor
based on a CMOS architecture [3,4,5] to produce the
compressed sensed video at the sensory level. But these CS
cameras are still in the research phase and it is not yet available
commercially. As the compression is done at the sensory level,
it can be implemented by modifying the control unit of the
sensor [1,2,3]. This makes it a perfect candidate for edge
devices with very low-cost cameras where we have very
limited on-device storage and low data transmission
bandwidth.

In this paper, we propose an FPGA based hardware
architecture (Figure 1) that makes conventional cameras to
emulate CS cameras. Our framework is helpful in building
low-cost imaging system with the capability of the CS camera.
However, it requires simple post-processing of the captured
video from the sensor, which can be easily implemented using
an FPGA as discussed in Section III.

Proposed method consists of 2 parts: Sensing (Encoding)
and Reconstruction (Decoding). For sampling, we emulate
Pixel-wise Coded Exposure (PCE) imaging [1,2,3]. Here each
image-pixel is independently exposed to only a specific
amount of time and the start time of that exposure is decided
by a randomly generated sensing matrix. This has shown to be
an efficient way to capture temporal compressed videos
[1,2,3].

Fig. 1. Our video compression framework for edge devices

Fig 2. A) First frame of Sensing Matrix. B)Time axis of the last column of Sensing Matrix in A. C) Compression of video using the Sensing matrix (Tb= 4).

For reconstruction, we learned an over-complete dictionary
(discussed in Section IV) to represent video patches sparsely
and we used common sparse approximation techniques for
reconstruction of the video patches. We did a weighted
average of these patches to reconstruct the whole video. We
used experiments and simulations to show the feasibility and
efficiency of our proposed framework.

II. OVERVIEW OF OUR APPROACH

 Let 𝑽(𝑴 × 𝑵 × 𝑻) denotes the video frames from the

camera. 𝑴, 𝑵 corresponds to spatial resolution and 𝑻 is

temporal resolution as shown in Fig. 2. To achieve ‘𝑻’ times

compression in the Temporal Domain, we encode 𝑽 into a

single image of size 𝑴 × 𝑵 using PCE imaging as follows.

A. Sensing (Encoding)

For Sensing we emulate PCE, where each pixel is exposed at

a random time for a ‘single-on’ fixed duration Tb (Bump Size)

within the Frames 𝑻. So, we get a single frame at the end of

‘𝑻-Frames’ (𝑰), which has necessary information for the

reconstruction of 𝑽. To achieve this process, we generate a

Sensing Matrix with random exposure for each pixel

𝑺(𝑚, 𝑛, 𝑓) ϵ {0,1}, where 𝑺 is 1 for the exposed pixel and 0

for the rest. For each pixel, there is only 1 bump of fixed

length (𝑻𝒃). Starting position of bumps is randomly generated

using modified uniform distribution (discussed in

Algorithm-1) to give equal exposure to all the frames in

video 𝑽. We sense the video by passing it through the sensing

matrix and then averaging over the exposed pixels.

As it is generated randomly, this can be easily implemented

in hardware using Linear Feedback Shift Register (LFSR) [9]

based architecture (discussed in Section III). The whole

process can be represented by the following equation.

 𝑰(𝑚, 𝑛) =
∑ 𝑺(𝑚,𝑛,𝑓)∗𝑽(𝑚,𝑛,𝑓)𝐹

𝑓=1

𝑻𝒃
 (1)

B. Reconstruction (Decoding)

Now we have the sensing matrix (S) and the compressed

image (𝑰). Equation (1) can be written in matrix form as

𝑰 = 𝑺𝑽, here we have an under-determined linear system as

our observation 𝑰 has a smaller number of elements than the

unknown 𝑽 . This can be solved if 𝑽 has a sparse

representation in a transformed domain (Learned-Dictionary-

𝑫) [5,6,8]. i.e., 𝑽 can be represented as:

 𝑽 = 𝑫𝜶 = 𝑫𝟏𝜶𝟏 + 𝑫𝟐𝜶𝟐+. . . . +𝑫𝒌𝜶𝒌 (2)

where 𝜶 is the sparse coefficient vector (i.e., most elements

𝜶𝒊s of 𝜶 are zero) and 𝑫𝒊 s are the atoms/elements of 𝑫.

So, our objective function becomes:

 min
𝛂

‖𝑰 − 𝑺𝑫𝛂‖2
2 Subject to ‖𝛂‖0 < P (3)

Where ‖𝛂‖0 is the L0 norm, which is just a count of non-zero

elements in 𝜶. The count P determines the sparsity of the

reconstructed frames. Equation (3) can be solved using

Sparse Approximation Algorithms such as Orthogonal

Matching Pursuit (OMP) as discussed in Section IV.

III. HARDWARE ARCHITECTURE

The proposed CS architecture has of two parts: Sensing

matrix generation and Compressed frame generation.

A. Sensing matrix Generation

The proposed architecture can easily be modified to achieve

any compression ratio by changing the dimension of the

sensing matrix. For ease of understanding, an architecture

that can generate a sensing matrix to achieve 13X

compression of the input video sequences is presented here.

In the proposed architecture, an 8×8 sensing matrix is

generated for each frame. Hence the size of the sensing

matrix for video compression is 8×8×13. The 8×8 sensing

matrix for an input frame raster scans the pixels in a non-

overlapping manner. The element of a matrix is either “0” or

“1”. The value “1” indicates that the pixel value of that

location for the current frame contributes to compute pixel

value of the same location in the compressed frame. The

LFSR based sensing matrix generating algorithm is as

follows:

Algorithm 1: LFSR based Sensing Matrix generation

Initialize sensing matrix (S) with zeros;

for m = 1 to no of row in sensing matrix do

for n = 1 to no of column in sensing matrix do

index = 1 to 13; //valid index generated from

LFSR

If (index <5) then

initial frame index = 1;

else if (index > 9) then

initial frame index = 10;

else

initial frame index = index;

end if

for k = 0 to 3 do

frame index = initial frame index + k;

S (m, n, f) = 1; // frame index=f

end for k;

end for n;

end for m;

Fig. 3. Architecture for LFSR based Sensing Matrix generation

The VLSI architecture for LFSR based sensing matrix

generation algorithm is shown in Fig 3. The upper 4 bits of

an 8-bit LFSR is used to generate the initial frame index of

the exposed pixel. The 8-bit LFSR is used to increase

randomness for choosing initial frame index. For the

proposed design, valid indexes are the 1 to 13. If we are using

uniform distribution for generating initial frame index our

initial and final frames get under exposed. To give equal

exposure to all the frames, we are considering the frame index

1 to 4 as 1 and the frame index 10 to 13 as 10. The frame

indexes for the 4 exposed pixel locations are generated in four

consecutive clock cycles by adding 0 to 3 values to the initial

frame index. A 2-bit binary counter is used to generate these

values. The frame index is fed to a 4:13 decoder circuit. The

outputs of the decoder unit are connected to active high SET

(S) inputs of D-flip flops (DFFs). At the positive edge of the

clock cycle, the output of DFF is set to “1” depending on the

values of S signal. The DFFs are arranged in two banks (bank

0 and bank 1). Each bank consists of 13 DFFs one for each

frame. Two banks are worked as ping-pong manner: when

one is used for storing the values of the sensing matrix, the

other is being initialized to zero using active high RESET (R)

signal. Bank 0 and bank 1 are used to store even and odd

indexed values of the sensing matrix respectively. The signals

S0 and S1 represent signal S for bank 0 and bank 1,

respectively. The output of a register bank is selected by

multiplexer and stored in 8×13-bit register stack with the help

of active high ld signal. The register stack become full after

processing 8-row elements of the sensing matrix. After that

active low shift signal left shifts the content of the register

Fig. 4. Architecture for compressed frame generation

stack for 13 clock cycles and generates an 8-bit output in each

clock cycle. The outputs are stored in a Block RAM (BRAM)

of dimension 104×8-bit. One output corresponds to one row

of an 8×8 sensing matrix for one frame. The first output is

stored in location 0, second is in location 8, third is in location

16 and so on. After storing all the 13 outputs, the same

process repeats for generating the entire sensing matrix.

B. Compressed frame generation.

The compressed frame generation process is instantiated after

the completion of sensing matrix generation. The architecture

for generating the compressed frame is shown in Fig 4. The

value of a pixel location in the compressed frame is the

average of the four exposed pixels in the video sequences. In

the proposed design, the frame size of the video sequences is

640×480. The compressed frame of dimension 640×480×8-

bit is stored in Dual-port RAM (DP-RAM) inside the FPGA

chip. Port “a” is used for reading and port “b” is used for

writing pixel value in the DP-RAM. The row of a sensing

matrix is fetched from the BRAM and stored in an 8-bit rotate

left register. The MSB (msbop) of this register is used as the

read enable signal (rden_a) of the DP-RAM. In each clock

cycle, rden_a (active high) signal along with a 19-bit address

(rdaddress_a) reads pixel from the DP-RAM for further

processing. The high value of msbop signal indicates that the

pixel value from the current frame of that location contributes

to generating the compressed frame. Input pixel is fetching

from video sequences (grayscale) in each clock cycle. The

input pixel value and the pixel value fetched from the DP-

RAM are added together and stored back in the DP-RAM at

the same location (wtaddress_b) in the next clock cycle with

the help of active high wten_b signal. In DP-RAM, the read

and write operations in a location are performed only if

msbop signal is high. The value for a pixel in the DP-RAM is

calculated by taking average of four-pixel values from the

same location of four consecutive input video frames. To

avoid overflow in the pixel values in the compressed frame,

input pixel values are divided by four (RS2, right shift by 2)

before addition. The next location of the BRAM is fetched

after the completion of one row of the input frame. This

process is continued until all the frames are scanned and

compressed frame is generated. For interfacing with the

camera, two input memory blocks (each has dimension of

640×480×8-bit) are associated with the proposed design and

operate as ping-pong fashion. When one memory block

acquires new frame from the camera, other delivers stored

frame to the proposed design as input for processing.

IV. RECONSTRUCTION

Video reconstruction from the generated compressed

frames (Section III. B) is done offline in software. It has been

shown that the video can be effectively reconstructed using a

learned overcomplete dictionary and OMP [1,2].

A. Dictionary Learning using K-SVD Algorithm

To represent the video as a sparse signal we learned an

overcomplete dictionary using the K-SVD algorithm

[1,2,5,7,8,10]. We use learned dictionary rather than 3D

Discrete Cosine Transform (DCT) or off-the-shelf dictionary

(scene-based) as the learned dictionary offers much more

versatility in dealing with videos from different scenes. To

maximize the scope of our dictionary, we trained it on video

patches from different scenes and rotated the patches at

different angles. But the videos were about the same frame

rate to match our target frame rate for reconstruction. To fix

the patch size we couldn’t go too low as it makes our

reconstruction process more time complex and we couldn’t

go much higher as it affects sparsity of the video patches. So,

we chose patches of dimension 8×8×13 (for 13×

compression). We trained the dictionary for 10000 basis

elements as it was giving good enough reconstructed results

as shown in Fig. 5. With this method, we were able to capture

complex edge shifting and rotations in videos, which would

have been hard to reproduce with an off-the-shelf dictionary.

B. Sparse Reconstruction using Orthogonal Matching

Pursuit

Once we learn the over-complete dictionary, we apply a
standard sparse approximation, Orthogonal Matching Pursuit
(OMP) to recover the video (𝑽) from a single compressed
image (𝑰). Combining (1) and (2), we get 𝑰 = 𝑺𝑫𝜶, where the
captured coded image 𝑰, the sensing matrix 𝑺, and the over-
complete dictionary 𝑫 are known. By taking 𝝓 = 𝑺𝑫, we can
write (3) as follows:

 �̂� = min
𝛂

‖𝑰 − 𝝓𝜶‖2
2 Subject to ‖𝜶‖0 < P (4)

We use the (OMP) algorithm to recover a sparse estimate of
the vector �̂� [4,6]. The reconstructed video is computed as

 �̂� = 𝑫�̂� (5)

We perform the reconstruction for all the 8×8 patches in the
image. Since the process of reconstruction is independent of
each patch, we can reconstruct the video parallelly.

V. RESULTS

A. FPGA implementation

In the hardware, we have configured our FPGA system for

13× compression ratio, but it can be extended for higher

compression ratio. The proposed CS architecture is modeled

by Verilog HDL and implemented in Xilinx Ultra96

Evaluation Platform (FPGA: XCZU3EG-SBVA484). The

implementation results are summarized in Table I. The FPGA

resources utilization summary for both the blocks are also

shown in Table I. The proposed design can encode 651

frames/second of 640×480 video sequences with the

maximum clock frequency of 200 MHz. The sensing matrix

generation block consumes 118 LUTs and 169 registers,

whereas the compressed frame generation block consumes

100 LUTs and 364 registers. The design consumes 128.5

Block RAM (each 36 Kbit) for storing compressed frame

(640×480×8-bit) and sensing matrix (104×8-bit).

Video 1-Compressed Frame(13X) Frame 1 Frame 13

 Video 2-Compressed Frame(13X) Frame 1 Frame 13

Fig. 5. Experimental Results: First Column: (13×) FPGA simulation results of the proposed design. Second and Third Column: Reconstructed Frame 1 and
13 respectively from a single CS image. PSNR (video-1) =24.15, PSNR (video-2) =24.36.

Table I: FPGA (XCZU3EG-SBVA484) implementation

results of the proposed design.

Architectures LUTs Registers BRAMs

(36Kbit)

Clock

(MHz)

Dynamic

Power

(mW)

Sensing

Matrix

Generation
118 169 0.5

200 339
Compressed

Frame

Generation

100 364 128

B. Reconstruction

We verified our framework on different video scenes, two are

shown in Fig. 5. Here, we have captured a single CS video

frame and 13 frames have been reconstructed from a single

image. The reconstructed frames 1 and 13 have been shown

in second and third column of the Fig. 5. In the first video,

we captured a ball thrown into the basket. Here we captured

the fast-paced ball with minimal motion blur. In the second

video, we were able to reconstruct the chains on the swings

including the gaps in between the chains and we were able to

capture the clear movement of swing with less motion blur.

The PSNR values of the reconstructed videos generated using

our architecture are shown in the description of Fig. 5.

VI. CONCLUSION

In this paper we proposed a hardware architecture to produce

compressive sensed videos in a conventional camera. We

implemented the design in FPGA to emulate PCE imaging on

a conventional image sensor. Our implementation results

show that the proposed compressive sensing framework is

efficient and easily adaptable to any conventional camera

unlike CMOS based sensors [3,4,5,11]. Hence, making it a

perfect candidate for edge devices as the compressed video

can be transmitted through low-bandwidth communication

channels.

Limitations in our framework comes from the fact that

compression rate need to be fixed beforehand. i.e. even for

static video, we had to limit ourselves for a pre-fixed

compression rate. Future work involves the development of

the adaptive compression ratio framework [11], which

changes the compression ratio based on the motion in the

video.

REFERENCES

[1] Yasunobu Hitomi, Jinwei Gu, Mohit Gupta, Tomoo Mitsunaga, and
Shree K. Nayar, “Video from a single coded exposure photograph
using a learned over-complete dictionary,” in Proceedings of the 2011
International Conference on Computer Vision, ICCV ’11 pages 287–
294, Washington, DC, USA, 2011. IEEE Computer Society.

[2] T. Xiong et al., "Spatiotemporal compressed sensing for video
compression”, IEEE 60th International Midwest Symposium on
Circuits and Systems (MWSCAS), Boston, MA, 2017, pp. 289-292, doi:
10.1109/MWSCAS.2017.8052917.

[3] Y. Oike and A. El Gamal, "CMOS Image Sensor With Per-Column ΣΔ
ADC and Programmable Compressed Sensing," in IEEE Journal of
Solid-State Circuits, vol. 48, no. 1, pp. 318-328, Jan. 2013, doi:
10.1109/JSSC.2012.2214851.

[4] Patrick Llull, Xuejun Liao, Xin Yuan, Jianbo Yang, David Kittle,
Lawrence Carin, Guillermo Sapiro, and David J. Brady, "Coded
aperture compressive temporal imaging," Opt. Express 21, 10526-
10545 (2013)

[5] Jie Zhang, Tao Xiong, Trac Tran, Sang Chin, and Ralph Etienne-
Cummings. “Compact all-CMOS spatiotemporal compressive sensing
video camera with pixel-wise coded exposure”. Opt. Express,
24(8):9013–9024, Apr 2016.

[6] M. Aharon, M. Elad, and A. Bruckstein. “K-svd: An algorithm for
designing overcomplete dictionaries for sparse representation.” IEEE
Transactions on Signal Processing, 54(11):4311–4322, Nov 2006.

[7] R. G. Baraniuk, T. Goldstein, A. C. Sankaranarayanan, C. Studer, A.
Veeraraghavan, and M. B. Wakin. “Compressive video sensing:
Algorithms, architectures, and applications”. IEEE Signal Processing
Magazine, 34(1):52–66, Jan 2017.

[8] T. T. Cai and L. Wang, "Orthogonal Matching Pursuit for Sparse Signal
Recovery With Noise," in IEEE Transactions on Information Theory,
vol. 57, no. 7, pp. 4680-4688, July 2011.

[9] Michael D. Ciletti. 1999. “Modeling, Synthesis, and Rapid Prototyping
with the Verilog HDL”. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

[10] E. Candes, J. Romberg, and T. Tao. “Stable signal re-covery from
incomplete and inaccurate measurements”. Communications on Pure
and Applied Mathematics, 59, 2006.

[11] J. Zhang et al., "A Closed-Loop, All-Electronic Pixel-Wise Adaptive
Imaging System for High Dynamic Range Videography," in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no.
6, pp. 1803-1814, June 2020, doi: 10.1109/TCSI.2020.2973396.

