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Abstract— Compressive Sensing (CS) is an emerging signal 

processing methodology, which compresses the signal being 

acquired at the time of sensing. As it relies on the sparsity of the 

signals, CS allows us to sample the signal at a rate much below 

the Nyquist sampling rate. Recent advancements in CS made us 

able to capture compressed videos and images on a sensory level 

in the camera. As CS cameras are still in the research phase, it 

is not commercially available. In this paper, we propose a simple 

FPGA based hardware architecture which makes conventional 

cameras to produce the compressive sensed video. Here the 

proposed hardware architecture emulates the sensing 

methodology of pixel-wise coded exposure imaging for 13× 

compression, which can be modified based on applications. Our 

framework does not require any changes to the conventional 

image sensor as it feeds off the video from the same sensor, this 

is a huge advantage over previous works in CS video 

compression. Our implementation results show that the 

proposed method is effective and easily adaptable to any 

conventional camera. The proposed framework can be deployed 

on edge devices with low-cost conventional camera to reduce the 

communication data rate and help in saving the significant 

power. 

Keywords— compressive sensing, FPGA, video 

compression, Pixel-wise Coded Exposure imaging  

I. INTRODUCTION 

Compressive Sensing (CS) is a novel sensing 
methodology where the signal is compressed at the time of 
sampling/sensing. It requires the signal to sparsely 
representable. This sensing technique has seen a lot of 
advancement in    recent    years   as  most    natural  signals  
can be represented  sparsely  (e.g.  images  in  DCT domain).  

It has been shown that compressive sensing can be used 
effectively for temporal video compression [1,2]. 

CS video compression has been gaining a lot of attention 
lately as it can achieve compression higher than that of the 
conventional methods. Previous works in CS imaging systems 
have either used optical image apparatus to pre-process 
(modulation) the video before passing it to the image sensor 
[1,2] or replaced the conventional image sensor with a sensor 
based on a CMOS architecture [3,4,5] to produce the 
compressed sensed video at the sensory level. But these CS 
cameras are still in the research phase and it is not yet available 
commercially. As the compression is done at the sensory level, 
it can be implemented by modifying the control unit of the 
sensor [1,2,3]. This makes it a perfect candidate for edge 
devices with very low-cost cameras where we have very 
limited on-device storage and low data transmission 
bandwidth.  

In this paper, we propose an FPGA based hardware 
architecture (Figure 1) that makes conventional cameras to 
emulate CS cameras. Our framework is helpful in building 
low-cost imaging system with the capability of the CS camera. 
However, it requires simple post-processing of the captured 
video from the sensor, which can be easily implemented using 
an FPGA as discussed in Section III.  

Proposed method consists of 2 parts: Sensing (Encoding) 
and Reconstruction (Decoding). For sampling, we emulate  
Pixel-wise Coded Exposure (PCE) imaging [1,2,3]. Here each 
image-pixel is independently exposed to only a specific 
amount of time and the start time of that exposure is decided 
by a randomly generated sensing matrix. This has shown to be 
an efficient way to capture temporal compressed videos 
[1,2,3].

Fig. 1. Our video compression framework for edge devices 



Fig 2. A) First frame of Sensing Matrix. B)Time axis of the last column of Sensing Matrix in A. C) Compression of video using the Sensing matrix (Tb= 4).

For reconstruction, we learned an over-complete dictionary 
(discussed in Section IV) to represent video patches sparsely 
and we used common sparse approximation techniques for 
reconstruction of the video patches. We did a weighted 
average of these patches to reconstruct the whole video. We 
used experiments and simulations to show the feasibility and 
efficiency of our proposed framework. 

II. OVERVIEW OF OUR APPROACH 

     Let 𝑽(𝑴 ×  𝑵 ×  𝑻)  denotes the video frames from the 

camera. 𝑴, 𝑵  corresponds to spatial resolution and 𝑻  is 

temporal resolution as shown in Fig. 2. To achieve ‘𝑻’ times 

compression in the Temporal Domain, we encode 𝑽 into a 

single image of size 𝑴 × 𝑵 using PCE imaging as follows.  

A. Sensing (Encoding) 

For Sensing we emulate PCE, where each pixel is exposed at 

a random time for a ‘single-on’ fixed duration Tb  (Bump Size) 

within the Frames 𝑻. So, we get a single frame at the end of 

‘𝑻-Frames’ (𝑰), which has necessary information for the 

reconstruction of 𝑽. To achieve this process, we generate a 

Sensing Matrix with random exposure for each pixel    

𝑺(𝑚, 𝑛, 𝑓) ϵ {0,1}, where 𝑺 is 1 for the exposed pixel and 0 

for the rest. For each pixel, there is only 1 bump of fixed 

length (𝑻𝒃). Starting position of bumps is randomly generated 

using modified uniform distribution (discussed in 

Algorithm-1) to give equal exposure to all the frames in 

video 𝑽. We sense the video by passing it through the sensing 

matrix and then averaging over the exposed pixels. 

As it is generated randomly, this can be easily implemented 

in hardware using Linear Feedback Shift Register (LFSR) [9] 

based architecture (discussed in Section III). The whole 

process can be represented by the following equation. 

 

          𝑰(𝑚, 𝑛) =
∑ 𝑺(𝑚,𝑛,𝑓)∗𝑽(𝑚,𝑛,𝑓)𝐹

𝑓=1

𝑻𝒃
       (1) 

B. Reconstruction (Decoding) 

Now we have the sensing matrix (S) and the compressed 

image (𝑰). Equation (1) can be written in matrix form as       

𝑰 = 𝑺𝑽, here we have an under-determined linear system as 

our observation 𝑰 has a smaller number of elements than the 

unknown 𝑽 . This can be solved if 𝑽  has a sparse 

representation in a transformed domain (Learned-Dictionary-

𝑫) [5,6,8]. i.e., 𝑽 can be represented as: 

 

         𝑽 = 𝑫𝜶 = 𝑫𝟏𝜶𝟏 + 𝑫𝟐𝜶𝟐+. . . . +𝑫𝒌𝜶𝒌                  (2) 

where 𝜶 is the sparse coefficient vector (i.e., most elements 

𝜶𝒊s of 𝜶 are zero) and 𝑫𝒊  s are the atoms/elements of 𝑫. 

So, our objective function becomes: 

                min 
𝛂

‖𝑰 − 𝑺𝑫𝛂‖2
2  Subject to ‖𝛂‖0 < P        (3)  

Where ‖𝛂‖0 is the L0 norm, which is just a count of non-zero 

elements in 𝜶. The count P determines the sparsity of the 

reconstructed frames. Equation (3) can be solved using 

Sparse Approximation Algorithms such as Orthogonal 

Matching Pursuit (OMP) as discussed in Section IV. 

III. HARDWARE ARCHITECTURE 

The proposed CS architecture has of two parts: Sensing 

matrix generation and Compressed frame generation. 

A. Sensing matrix Generation 

The proposed architecture can easily be modified to achieve 

any compression ratio by changing the dimension of the 

sensing matrix. For ease of understanding, an architecture 

that can generate a sensing matrix to achieve 13X 

compression of the input video sequences is presented here. 

In the proposed architecture, an 8×8 sensing matrix is 

generated for each frame. Hence the size of the sensing 

matrix for video compression is 8×8×13. The 8×8 sensing 

matrix for an input frame raster scans the pixels in a non-

overlapping manner. The element of a matrix is either “0” or 

“1”. The value “1” indicates that the pixel value of that 

location for the current frame contributes to compute pixel 

value of the same location in the compressed frame. The 

LFSR based sensing matrix generating algorithm is as 

follows:  

 

Algorithm 1: LFSR based Sensing Matrix generation 

 

Initialize sensing matrix (S) with zeros; 

for m = 1 to no of row in sensing matrix do 

for n = 1 to no of column in sensing matrix do 

index = 1 to 13;                          //valid index generated from 

LFSR 

If (index <5) then 

initial frame index = 1; 

else if (index > 9) then 

initial frame index = 10; 

else  

initial frame index = index; 

end if 

for k = 0 to 3 do 

frame index = initial frame index + k; 

S (m, n, f) = 1;           // frame index=f 

end for k; 

end for n; 

end for m; 



           
Fig. 3. Architecture for LFSR based Sensing Matrix generation 

 

The VLSI architecture for LFSR based sensing matrix 

generation algorithm is shown in Fig 3. The upper 4 bits of 

an 8-bit LFSR is used to generate the initial frame index of 

the exposed pixel. The 8-bit LFSR is used to increase 

randomness for choosing initial frame index. For the 

proposed design, valid indexes are the 1 to 13. If we are using 

uniform distribution for generating initial frame index our 

initial and final frames get under exposed. To give equal 

exposure to all the frames, we are considering the frame index 

1 to 4 as 1 and the frame index 10 to 13 as 10. The frame 

indexes for the 4 exposed pixel locations are generated in four 

consecutive clock cycles by adding 0 to 3 values to the initial 

frame index. A 2-bit binary counter is used to generate these 

values. The frame index is fed to a 4:13 decoder circuit. The 

outputs of the decoder unit are connected to active high SET 

(S) inputs of D-flip flops (DFFs). At the positive edge of the 

clock cycle, the output of DFF is set to “1” depending on the 

values of S signal. The DFFs are arranged in two banks (bank 

0 and bank 1). Each bank consists of 13 DFFs one for each 

frame. Two banks are worked as ping-pong manner: when 

one is used for storing the values of the sensing matrix, the 

other is being initialized to zero using active high RESET (R) 

signal. Bank 0 and bank 1 are used to store even and odd 

indexed values of the sensing matrix respectively. The signals 

S0 and S1 represent signal S for bank 0 and bank 1, 

respectively. The output of a register bank is selected by 

multiplexer and stored in 8×13-bit register stack with the help 

of active high ld signal. The register stack  become full  after 

processing 8-row elements of the sensing matrix. After that 

active low shift signal left  shifts  the content of  the   register  

 
Fig. 4. Architecture for compressed frame generation 

 

stack for 13 clock cycles and generates an 8-bit output in each 

clock cycle. The outputs are stored in a Block RAM (BRAM) 

of dimension 104×8-bit. One output corresponds to one row 

of an 8×8 sensing matrix for one frame. The first output is 

stored in location 0, second is in location 8, third is in location 

16 and so on. After storing all the 13 outputs, the same 

process repeats for generating the entire sensing matrix. 

 

B. Compressed frame generation. 

The compressed frame generation process is instantiated after 

the completion of sensing matrix generation. The architecture 

for generating the compressed frame is shown in Fig 4. The 

value of a pixel location in the compressed frame is the 

average of the four exposed pixels in the video sequences. In 

the proposed design, the frame size of the video sequences is 

640×480. The compressed frame of dimension 640×480×8-

bit is stored in Dual-port RAM (DP-RAM) inside the FPGA 

chip. Port “a” is used for reading and port “b” is used for 

writing pixel value in the DP-RAM. The row of a sensing 

matrix is fetched from the BRAM and stored in an 8-bit rotate 

left register. The MSB (msbop) of this register is used as the 

read enable signal (rden_a) of the DP-RAM.  In each clock 

cycle, rden_a  (active high) signal along with a 19-bit address 

(rdaddress_a) reads pixel from the DP-RAM for further 

processing. The high value of msbop signal indicates that the 

pixel value from the current frame of that location contributes 

to generating the compressed frame. Input pixel is fetching 

from video sequences (grayscale) in each clock cycle. The 

input pixel value and the pixel value fetched from the DP-

RAM are added together and stored back in the DP-RAM at 

the same location (wtaddress_b) in the next clock cycle with 

the help of active high wten_b signal. In DP-RAM, the read 

and write operations in a location are performed only if 

msbop signal is high. The value for a pixel in the DP-RAM is 

calculated by taking average of four-pixel values from the 

same location of four consecutive input video frames. To 

avoid overflow in the pixel values in the compressed frame, 

input pixel values are divided by four (RS2, right shift by 2) 

before addition. The next location of the BRAM is fetched 



after the completion of one row of the input frame. This 

process is continued until all the frames are scanned and 

compressed frame is generated. For interfacing with the 

camera, two input memory blocks (each has dimension of 

640×480×8-bit) are associated with the proposed design and 

operate as ping-pong fashion. When one memory block 

acquires new frame from the camera, other delivers stored 

frame to the proposed design as input for processing. 

IV. RECONSTRUCTION 

Video reconstruction from the generated compressed 

frames (Section III. B) is done offline in software. It has been 

shown that the video can be effectively reconstructed using a 

learned overcomplete dictionary and OMP [1,2].  

 

A. Dictionary Learning using K-SVD Algorithm 

To represent the video as a sparse signal we learned an 

overcomplete dictionary using the K-SVD algorithm 

[1,2,5,7,8,10]. We use learned dictionary rather than 3D 

Discrete Cosine Transform (DCT) or off-the-shelf dictionary 

(scene-based) as the learned dictionary offers much more 

versatility in dealing with videos from different scenes. To 

maximize the scope of our dictionary, we trained it on video 

patches from different scenes and rotated the patches at 

different angles. But the videos were about the same frame 

rate to match our target frame rate for reconstruction. To fix 

the patch size we couldn’t go too low as it makes our 

reconstruction process more time complex and we couldn’t 

go much higher as it affects sparsity of the video patches. So, 

we chose patches of dimension 8×8×13 (for 13× 

compression). We trained the dictionary for 10000 basis 

elements as it was giving good enough reconstructed results 

as shown in Fig. 5. With this method, we were able to capture 

complex edge shifting and rotations in videos, which would 

have been hard to reproduce with an off-the-shelf dictionary. 

B. Sparse Reconstruction using Orthogonal Matching 

Pursuit 

Once we learn the over-complete dictionary, we apply a 
standard sparse approximation, Orthogonal Matching Pursuit 
(OMP) to recover the video (𝑽) from a single compressed 
image (𝑰). Combining (1) and (2), we get 𝑰 = 𝑺𝑫𝜶, where the 
captured coded image 𝑰, the sensing matrix 𝑺, and the over-
complete dictionary 𝑫 are known. By taking  𝝓 = 𝑺𝑫, we can 
write (3) as follows: 

 �̂� = min 
𝛂

‖𝑰 − 𝝓𝜶‖2
2     Subject to ‖𝜶‖0 < P       (4) 

We use the (OMP) algorithm to recover a sparse estimate of 
the vector �̂�  [4,6]. The reconstructed video is computed as 

    �̂� = 𝑫�̂�         (5) 

We perform the reconstruction for all the 8×8 patches in the 
image. Since the process of reconstruction is independent of 
each patch, we can reconstruct the video parallelly. 

V. RESULTS 

A. FPGA implementation 

In the hardware, we have configured our FPGA system for 

13× compression ratio, but it can be extended for higher 

compression ratio. The proposed CS architecture is modeled 

by Verilog HDL and implemented in Xilinx Ultra96 

Evaluation Platform (FPGA: XCZU3EG-SBVA484). The 

implementation results are summarized in Table I. The FPGA 

resources utilization summary for both the blocks are also 

shown in Table I. The proposed design can encode 651 

frames/second of 640×480 video sequences with the 

maximum clock frequency of 200 MHz. The sensing matrix 

generation block consumes 118 LUTs and 169 registers, 

whereas the compressed frame generation block consumes 

100 LUTs and 364 registers. The design consumes 128.5 

Block RAM (each 36 Kbit) for storing compressed frame 

(640×480×8-bit) and sensing matrix (104×8-bit).

Video 1-Compressed Frame(13X)          Frame 1       Frame 13 

      Video 2-Compressed Frame(13X)          Frame 1                     Frame 13   

Fig. 5. Experimental Results: First Column: (13×) FPGA simulation results of the proposed design. Second and Third Column: Reconstructed Frame 1 and 
13 respectively from a single CS image. PSNR (video-1) =24.15,  PSNR (video-2) =24.36. 



Table I: FPGA (XCZU3EG-SBVA484) implementation 

results of the proposed design. 
 

Architectures LUTs Registers BRAMs 

(36Kbit) 

Clock 

(MHz) 

Dynamic 

Power 

(mW) 

Sensing 

Matrix 

Generation 
118 169 0.5 

200 339 
Compressed 

Frame 

Generation 

 

100 364 128 

 

B. Reconstruction  

 

We verified our framework on different video scenes, two are 

shown in Fig. 5. Here, we have captured a single CS video 

frame and 13 frames have been reconstructed from a single 

image. The reconstructed frames 1 and 13 have been shown 

in second and third column of the Fig. 5. In the first video, 

we captured a ball thrown into the basket. Here we captured 

the fast-paced ball with minimal motion blur. In the second 

video, we were able to reconstruct the chains on the swings 

including the gaps in between the chains and we were able to 

capture the clear movement of swing with less motion blur. 

The PSNR values of the reconstructed videos generated using 

our architecture are shown in the description of Fig. 5.   

VI. CONCLUSION 

In this paper we proposed a hardware architecture to produce 

compressive sensed videos in a conventional camera. We 

implemented the design in FPGA to emulate PCE imaging on 

a conventional image sensor. Our implementation results 

show that the proposed compressive sensing framework is 

efficient and easily adaptable to any conventional camera 

unlike CMOS based sensors [3,4,5,11]. Hence, making it a 

perfect candidate for edge devices as the compressed video 

can be transmitted through low-bandwidth communication 

channels.  

Limitations in our framework comes from the fact that 

compression rate need to be fixed beforehand. i.e. even for 

static video, we had to limit ourselves for a pre-fixed 

compression rate. Future work involves the development of 

the adaptive compression ratio framework [11], which 

changes the compression ratio based on the motion in the 

video. 

 

 

 

 

 

 

 

REFERENCES 

[1] Yasunobu Hitomi, Jinwei Gu, Mohit Gupta, Tomoo Mitsunaga, and 
Shree K. Nayar, “Video from a single coded exposure photograph 
using a learned over-complete dictionary,” in Proceedings of the 2011 
International Conference on Computer Vision, ICCV ’11 pages 287–
294, Washington, DC, USA, 2011. IEEE Computer Society. 

[2] T. Xiong et al., "Spatiotemporal compressed sensing for video 
compression”, IEEE 60th International Midwest Symposium on 
Circuits and Systems (MWSCAS), Boston, MA, 2017, pp. 289-292, doi: 
10.1109/MWSCAS.2017.8052917. 

[3] Y. Oike and A. El Gamal, "CMOS Image Sensor With Per-Column ΣΔ 
ADC and Programmable Compressed Sensing," in IEEE Journal of 
Solid-State Circuits, vol. 48, no. 1, pp. 318-328, Jan. 2013, doi: 
10.1109/JSSC.2012.2214851. 

[4] Patrick Llull, Xuejun Liao, Xin Yuan, Jianbo Yang, David Kittle, 
Lawrence Carin, Guillermo Sapiro, and David J. Brady, "Coded 
aperture compressive temporal imaging," Opt. Express 21, 10526-
10545 (2013)  

[5] Jie Zhang, Tao Xiong, Trac Tran, Sang Chin, and Ralph Etienne-
Cummings. “Compact all-CMOS spatiotemporal compressive sensing 
video camera with pixel-wise coded exposure”. Opt. Express, 
24(8):9013–9024, Apr 2016. 

[6]  M. Aharon, M. Elad, and A. Bruckstein. “K-svd: An algorithm for 
designing overcomplete dictionaries for sparse representation.” IEEE 
Transactions on Signal Processing, 54(11):4311–4322, Nov 2006. 

[7] R. G. Baraniuk, T. Goldstein, A. C. Sankaranarayanan, C. Studer, A. 
Veeraraghavan, and M. B. Wakin. “Compressive video sensing: 
Algorithms, architectures, and applications”. IEEE Signal Processing 
Magazine, 34(1):52–66, Jan 2017. 

[8] T. T. Cai and L. Wang, "Orthogonal Matching Pursuit for Sparse Signal 
Recovery With Noise," in IEEE Transactions on Information Theory, 
vol. 57, no. 7, pp. 4680-4688, July 2011. 

[9] Michael D. Ciletti. 1999. “Modeling, Synthesis, and Rapid Prototyping 
with the Verilog HDL”. Prentice-Hall, Inc., Upper Saddle River, NJ, 
USA.  

[10] E. Candes, J. Romberg, and T. Tao. “Stable signal re-covery from 
incomplete and inaccurate measurements”. Communications on Pure 
and Applied Mathematics, 59, 2006. 

[11] J. Zhang et al., "A Closed-Loop, All-Electronic Pixel-Wise Adaptive 
Imaging System for High Dynamic Range Videography," in IEEE 
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 
6, pp. 1803-1814, June 2020, doi: 10.1109/TCSI.2020.2973396. 

 

 

 

 


