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Abstract—Wildlife conservation using continuous monitoring
of environmental factors and biomedical classification, which gen-
erate a vast amount of sensor data, is a challenge due to limited
bandwidth in the case of remote monitoring. It becomes critical
to have classification where data is generated. We present a novel
multiplierless framework for in-filter acoustic classification using
Margin Propagation (MP) approximation used in low-power edge
devices deployable in remote areas with limited connectivity.
The entire design of this classification framework is based
on template-based kernel machine, which uses basic primitives
like addition/subtraction, shift, and comparator operations, for
hardware implementation. Unlike full precision training methods
for traditional classification, we use MP-based approximation
for training, including backpropagation mitigating approxima-
tion errors. The proposed framework is general enough for
acoustic classification. However, we demonstrate the hardware
friendliness of this framework by implementing a parallel Finite
Impulse Response (FIR) filter bank in a kernel machine classifier
optimized for a Field Programmable Gate Array (FPGA). The
FIR filter acts as the feature extractor and non-linear kernel
for the kernel machine implemented using MP approximation.
The FPGA implementation on Spartan 7 shows that the MP-
approximated in-filter kernel machine is more efficient than
traditional classification frameworks with just less than 1K slices.

Index Terms—IoT, FPGA, Filtering, Edge Computing.

I. INTRODUCTION

One of the biggest challenges in biomedical classification
is capturing data from different biosensors and providing
interpretable information to improve diagnosis [1]. On the
other hand, in the case of wildlife conservation, identifying and
localizing the threatened species is a challenge [2]. Emerging
technologies in edge computing devices like low-power wire-
less sensor networks are currently being used in agriculture
[3] and healthcare, [4] in combination with Machine Learning
(ML) techniques, known as tinyML. Most of the edge-based
sensor data are time-series, and it has been proven that
such data can be efficiently used for tinyML classification
[5]. This type of classification can be applied to healthcare
with Electrocardiogram (ECG), Electroencephalogram (EEG),
Electromyography (EMG), and other time-series biomedical
sensor data [1]. These sensors may generate a high amount
of data, but the relevant training data will be sparse, like in
the case of rare or near-extinct species detection [6]. Hence,
classification at the sensor node becomes even more critical as

Fig. 1: Ecological Conservation and Corrective System.

large data transmission over the network will require higher
bandwidth.

Despite performing well for a high volume of data, Deep
Neural Networks (DNNs) do not generalize well in IoT
applications, as training data is rare [7]. Moreover, training a
DNN requires high-powered systems to generate appropriate
learned parameters. Machine learning techniques like Support
Vector Machines (SVMs), K-Nearest Neighbour (KNN), and
kernel machines have proven to be robust and interpretable
for rare event classification [8]. However, these techniques
have traditionally been computationally intensive for train-
ing and inference. As most of the computation is based
on Matrix-Vector Multiplication (MVM) operation, replac-
ing multipliers with more fundamental basic primitives like
addition/subtraction will enable designing an energy-efficient
classification framework. [9]. We can exploit the computa-
tional primitives and approximations inherent in digital units
like counters, underflow/overflow, and additions/subtraction. In
literature, there have been ways to tackle precision explosion
due to multiplication for multiply-accumulate operations like
quantization [10].

Traditionally, IoT-based machine learning and neural net-
works train offline with full precision and deploy the inference
at lower precision fixed point [11]. Even with quantization-
aware training, the backpropagation in training is done in full
precision, and only the forward pass is quantized [12]. This
may be an efficient training technique, but it still is expensive
for re-training on the IoT platform. There have been instances
where the gradients in backpropagation have been quantized
[13]. However, these systems fail to achieve convergence



during backpropagation [10], or they work well only when
training data is available in large numbers. Moreover, the front-
end, like filters and feature extractors in most edge devices,
are implemented at higher precision with only the classifier
quantized.

This paper leverages the energy-efficient bird density detec-
tion tinyML system [14] which uses the in-filter computing [5]
with template-based SVM architecture [15]. Here we apply the
Margin Propagation (MP) principle [16] to this architecture to
develop a multiplierless in-filter computing framework, which
exploits the computing and nonlinear primitives in the feature
extraction process. The multiplierless MP-based kernel ma-
chine has been proven to provide energy-efficient classification
[17]. In our design, we implement an FIR filter bank, used as a
feature extractor and kernel function, arranged in a multi-rate
frequency model [18] using a multiplierless approach based on
MP. We believe that our proposed framework has the following
key advantages:
• End-to-end multiplierless framework for acoustic clas-

sification using only basic primitives like addi-
tion/subtraction, underflow/overflow, shift, and compar-
ison operations.

• Feature extraction and kernel function are combined to
form an efficient computational system.

• Scalable system with user-defined memory footprint
based on IoT hardware constraints.

• Integrated training using MP-based approximation mit-
igates approximation errors introduced in filtering and
classifier.

• Since our framework uses basic computational primitives
(no multipliers), it enables the implementation to push
for much higher clock frequency (in this case 166MHz).

We have implemented the inference framework on an FPGA as
proof of concept IoT implementation. We have validated our
architecture on the environmental sound dataset [19], which
showcases the capabilities of potential deployment to identify
wildlife sounds or even sounds that may indicate possible
poaching or timber smuggling.

II. IN-FILTER COMPUTATION USING MARGIN
PROPAGATION KERNEL MACHINE

In-filter computation described in [5] and [14], combines
the feature extraction and non-linear SVM kernel into a single
function [15] as opposed to a traditional SVM. We leverage
this principle, use an FIR filter as the kernel function, and
implement this framework using MP-based approximation.
MP-based kernel machine has proven to be an energy-efficient
system for implementing a classification framework for edge
devices [17].

A. Multiplierless Kernel Machine using MP
We develop a classification framework based on multi-

plierless kernel machine using the MP approximation [17].
Consider a vector x ∈ Rd, the decision function for kernel
machines [20] is given as,

f(x) = wTK + b. (1)

Here, K is a function of x. Following the derivations in [17],
we can rewrite eq.(1) in MP domain as,

fMP (x) = z+ − z−. (2)

where,

z+ = MP ([w+ + K+,w− + K−,b+], γ1). (3)
z− = MP ([w+ + K−,w− + K+,b−], γ1). (4)

γ1 is a hyper-parameter that is learned using gamma annealing.
Here K+ = K and K− = −K. K is the kernel which we
derive using in-filter computation described in Section II-B.
We normalize the values for z+ and z− for better stability of
the system using MP,

z = MP ([z+, z−], γn). (5)

Here, γn is the hyper-parameter used for normalization. In this
case, γn = 1. The output of the system can be expressed in
differential form,

p = p+ − p−. (6)

Here, p ∈ R, p+ + p− = 1 and p+, p− ≥ 0. As z is the
normalizing factor for z+ and z−, we can estimate the output
using reverse water filling algorithm [21], which is generated
by the MP function for each class,

p+ = [z+ − z]+.
p− = [z− − z]+. (7)

As shown in the Fig.2, the kernel function forms a vector
(p × 1) defined as K. Using the principle of template based
classification described in [15] and [5], we use the parallel
FIR filterbank as the kernel as well as the feature extractor.

B. FIR Filter Bank as Kernel

Filter banks are commonly used for feature extraction in
acoustic classification [22]. We use FIR filter bank due to it’s
stability and ease of implementation especially in approximate
computing [23]. Each filter in the filter bank has resonators
with center frequencies based on the Greenwood function [24].
Fig.2 shows the detailed block architecture of the filter bank.
The input x(n) ∈ x is an acoustic instance sampled at 16 kHz
frequency, i.e, N = 16000. Bp denotes the pth bandpass FIR
filter and p ∈ P , i.e., P is the total number of filters in the
filter bank.

Bp(n) =

M−1∑
k=0

hp(k)x(n− k). (8)

Here, hp is the filter coefficient based on pth filter cut off
frequency. M is the order of the filter. The output of the band
pass filter is Half Wave Rectified using HWR block, which is
then accumulated over N samples and then standardized (STD
block) to get the kernel function Φp ∈ R. The STD block is
used for standardizing the values based on the inputs.

The filter bank has been divided into multiple octaves with
a bank size of 5 filters per octave. Octaves are defined based
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Fig. 2: FIR parallel filter bank framework for MP based classification for p× 1 Kernel. Here, the input xn is provided to the
parallel FIR filter bank to generate a p× 1 kernel. This kernel is used as input for a single layer classification network formed
using MP modules. The parallel filter bank and the downsampling low pass filter blocks also use MP modules for computation.

Fig. 3: MP Filter bank output (Gain Response) for chirp signal.
This response shows distortion due to MP approximation
errors.

on the sampling frequencies in decreasing order. The cut-
off frequencies is equally spaced within the octaves. The
coefficients (hp(n)) are precomputed and provided as inputs
to each filter. We use the technique of downsampling input
sampling frequency and segregating the cut-off frequencies
into separate octaves, as shown in Fig.2. The cut-off fre-
quencies are arranged in descending order which helps to
reduce input sampling frequency. This is a proven efficient
way of implementing a filter bank, as shown in [18]. The
downsampling employs a low pass filter (L) used for anti-
aliasing at the input for each octave. Downsampling of input
ensures usage of lower order FIR filter to obtain the desired
output. The additional low pass filter required the same order
as the bandpass filter of the filter bank. This down-sampling
technique provides an efficient way of implementing an FIR
filter bank for low-powered devices.

C. Filtering operation in MP domain

We use two types of filtering operation in our filter bank,
i.e., a low pass filter for downsampling and a bandpass
filter. These filtering operations result in an inner product
computation between the filter coefficients (hp(n) ∈ h) and
input samples (x(n)) as per eq.(8). Following the derivations
in [17], we can express this filtering operation in MP domain
as below,

y = MP
([
h+ + x+,h− + x−

]
, γf
)

−MP
([
h+ + x−,h− + x+

]
, γf
)
. (9)

For this implementation, we have h+ = h, h− = −h, x+ =
x and x− = −x. γf is the MP parameter for the filtering
operation. Since the property of MP inherently exhibits low
pass filtering, based on the reverse water filling algorithm
described in [21], we require a lower-ordered low pass filter
implementation in the case of the MP domain. We can see
the frequency response of the filter bank in the MP domain in
Fig.3.

We observe some amount of distortion in the gain response
of the chirp signal output. This is due to the MP approximation
of the inner product for filtering operation. The learning
algorithm can mitigate this approximation error, where the
weights will be adjusted, considering the approximation error.
MP approximation technique minimizes the error rather than
mitigating the approximation itself, improving the system’s
overall accuracy. This technique requires basic primitives like
comparators, shift operators, counters, and adders to imple-
ment the system, making it hardware-friendly.

III. FPGA IMPLEMENTATION

The proposed design shown in Fig.2 is modeled by Verilog
HDL and implemented in Spartan 7 series FPGA, as this



TABLE I: Comparison of architecture and resource utilization of related work.

Related Work Mahmoodi, et al.
[25]

Cutajar, et al.
[26]

Boujelben, et. al.
[27]

Ramos-Lara et al.
[28]

Nair et al.
[5] This work

Year 2011 2013 2018 2009 2021 2022

FPGA Virtex4
xc4vsx35

Virtex-II
xc2v3000

Artix-7
xc7a100T

Spartan 3
xcs2000

Spartan 7
xc7s6cpga196

Spartan 7
xc7s6cpga196

Operating Frequency 151.286 MHz 42.012 MHz 101.74 MHz 50 MHz 25 MHz 50 MHz2

Input Sampling Frequency NA1 16 kHz 6 kHz 8 kHz 16 kHz 16 kHz
Flip Flop 11589 1576 17074 5351 2864 2376
LUTs 9141 11943 16563 6785 1517 1503
RAM (18 Kb) 99 NA1 4 NA1 0 0
DSP 81 64 87 21 4 0
Power (mW/MHz) NA1 NA1 1.12 NA1 0.32 0.34

Techniques SVM DWT and
SVM

MFCC and
SVM

FFT and
SVM

CAR-IHC IIR
and SVM

FIR and
Kernel Machine

Datasets Persian
Digits [29]

TIMIT
Corpus [30]

Respiratory
Sound [27]

Speaker
Verification [28]

ESC-10 and
FSDD [19]

ESC-10 and
FSDD [19]

Average Accuracy (%) 98 61 94 95 88 88
1 These works did not report this entity for their designs. 2 Maximum operating frequency of the proposed design is 166 MHz.

FPGA caters to edge applications. The target frequency of the
proposed design is set to 50 MHz, and the input sampling rate
is set to 16 KHz. The number of clock cycles available in be-
tween two samples are 3125. The architecture is designed such
a way that processing of a new sample is completed within
this time limit. There are two sections, kernel computation and
inference, in the proposed design. Here, 3 MP modules (MP0-
2) work simultaneously to compute kernel value and meet the
time limit of 3125 clock cycles. The MP0 is used to implement
4 low pass (LP) filters and other two MP modules (MP1-2)
are responsible for Band Pass (BP) filtering operation. The
internal architecture and working principle of a MP module is
described in [17]. The window size of LP filter is 6 and the
samples are stored in a register bank of dimension 6-bit. In
LP filter section, four register banks are used to store inputs
for four LP filters. The multiplexers are used to select one
of the registers. The coefficients for the LP filter are stored
in ROM (ROM0). The precision of the data path is set to
10 bits for the proposed design. Initially, the input samples
(x(n)) are stored in a register bank and fed to the MP0 for
implementing LP filter L1, and the output of L1 is down-
sampled by 2 and passed to the corresponding parallel BP filter
bank (for generating octave 2) (as discussed in Section. II-B).
Here, MP0 implements 4 LP filters in time multiplexed fashion
and generates desired outputs for Octave 1, 2, 3 and 4. The
outputs are stored in same register banks for the next iteration.
The contents of the register banks are used for parallel BP
filtering operation and generates kernel function Φ5 to Φ30.

One single MP module (MP1) is used repeatedly to generate
outputs for octave 1. The window size of the BP filter is 16.
The coefficients are stored in another ROM (ROM1). The
MP2 is used for BP filter outputs of octaves 2,3,4 and 5.
Here also, a single MP module is used repeatedly to generate
desired outputs. The down sampling of the LP filter outputs
provides more time span between two outputs which are the
inputs to the BP filters generating octaves 2,3,4 and 5. Hence
a single MP (MP2) is sufficient to produce Φ5 to Φ30 in time
multiplexed fashion. The output of the BP filters is stored in

a Register bank which is the kernel function Φ1 to Φ30 of the
proposed design. The coefficients of BP filters for octaves 2,
3, 4, and 5 are stored in another ROM (ROM3).

The inference engine starts working after the completion
of kernel computation. The three MP blocks MP3, MP4 and
MP5 are used in the inference engine to generate the output p.
The architecture and working principle of the inference engine
are discussed in Section II-A. The w+ and w− are the weight
matrix and are stored in a ROM (ROM4). The kernel function
Φ and weight matrix w+ and w− are the inputs to the inference
engine. The high-level block diagram of an MP module and
the implementation details of the inference engine have been
discussed in [17].

Table I shows the resource utilization and power consump-
tion of our design compared with similar ML-based FPGA
implementations. We clearly see advantages of our design in
terms of resource and power over other designs. We were able
to implement our design with 903 FPGA slices (less than 1K)
and the dynamic power consumption is limited to 17 mW for a
50 MHz operating frequency. Table I compares similar designs
using varied edge datasets for resource utilization and power
consumption. We see a better resource utilization of our design
in comparison to these systems with lower power consumption
in mW/MHz. The proposed study consumes almost the same
amount of LUTs and 488 fewer FFs than the similar design
presented in [5]. Due to multiplierless design, the proposed
architecture does not consume any DSPs, whereas the design
reported in [5] consumes 4 DSPs. We computed the number
of LUTs required to replace 4 DSPs for fair comparisons. We
have implemented 4×4, and 8×8 signed multipliers (Baugh
Wooley) in FPGA and found that they have consumed 19
and 72 ( 4× more) LUTs, respectively. The design reported
in [5] uses 4 signed multipliers and the dimensions are
20×12, 20×12, 12×12, 16×8 respectively. The approximation
calculation shows that all 4 multipliers consume at least 890
LUTs. Hence the proposed multiplierless design can save at
least 25% hardware resources (LUTs + FFs) compared to the
design presented in [5]. The power consumption (mW/MHz) is



TABLE II: ESC-10 dataset classification accuracy results in percent. Number of filters for our work is fixed at 30. We used
8-bit fixed point for our design

Classes
Normal SVM CARIHC SVM MP In-Filter Compute
Floating Point Floating Point Floating Point Fixed Point (8-bit)

SVs Train Test Train Test Train Test Train Test
Dog (129/33) 42 90 94 89 90 91 94 91 94
Rain (119/40) 44 86 90 89 87 90 90 88 88

Sea Waves (200/50) 80 87 90 84 78 89 88 88 88
Crying Baby (144/49) 37 93 84 91 87 92 87 89 88
Clock Tick (114/50) 54 81 76 92 85 85 86 85 84

Person Sneeze (101/44) 49 85 75 87 80 86 80 85 80
Helicopter (197/50) 45 92 88 95 90 88 85 85 86
Chainsaw (99/34) 41 90 85 93 82 92 81 92 80
Rooster (124/54) 40 93 93 93 96 90 94 91 94

Fire Crackling (152/66) 46 93 83 89 87 89 92 90 88

TABLE III: FSDD classification accuracy results in percent. Number of filters for our work is fixed at 30. We used 8-bit fixed
point for our design

Classes
Normal SVM CARIHC SVM MP Kernel
Floating Point Floating Point Floating Point Fixed Point

SVs Train Test Train Test Train Test Train Test
Theo (761/254) 107 96 96 93 91 92 93 92 92

Nicolas(889/297) 15 100 100 98 97 99 99 98 98

almost same for the proposed design and the design presented
in [5], as the design is small and only 4 multipliers are
used. However, for the bigger network such as DNN our
multiplierless approach would give significant benefit. The
proposed design can achieve maximum operation frequency of
166 MHz which can be used to support more input sampling
rate.

Fig. 4: Impact of bit-width on dataset accuracy for Crying
Baby class from ESC-10.

IV. RESULTS AND DISCUSSION

The framework’s classification ability is showcased using
the environmental sounds dataset. Identification of different
environmental sounds shows the versatile nature of the frame-
work that can be put to use in various acoustic applications. As
wildlife conservation would result in rare data event detection,
Environmental Sounds Classification (ESC-10) dataset [19]
would be an ideal dataset to showcase the framework capa-
bilities in case of ecological application. Also, we compared
our system with [5] using ESC-10 and Free Speech Digit
Dataset (FSDD), where we use speaker identification as the
application.

ESC-10 dataset consists of sound clips constructed from
recordings publicly available through the Freesound project.
It consists of 400 environmental recordings with 10 classes,
i.e., 40 clips per class and 5 seconds per clip. Each class
contains 40 wav format audio files. These clips had a lot of
silence, so we trimmed the silence part and further trimmed the
remaining clips into a 1-second version of the same class, thus
increasing the dataset’s number of samples. Table II shows the
results for this dataset, having classes like a dog bark, rain, sea
waves, crying baby, clock ticking, person sneezing, helicopter,
chainsaw, crawing rooster, and fire crackling. The classifica-
tion uses one versus all methodology to identify the classes,
where the data is balanced and randomly arranged for train and
test sets (shown in brackets). We use the in-built MATLAB
library with default command lines for the traditional SVM.
Here, the CARIHC SVM employs a completely different
approach compared to standard SVM for arriving at the
accuracy, which is detailed in [5], [15]. Since the dataset size is
small, the accuracy values differ by a bigger margin for some
classes between the traditional SVM and the other two SVM
implementation, as small variations in positive or negative
classification will lead to a greater impact on accuracy number.
Similarly, we compare the identification of two speakers from
the FSDD dataset. These results show that our framework takes
advantage of template SVM methodology with a fixed number
of templates and the MP approximation technique, delivering
comparable results. We have also compared our system with
similar systems, which is area efficient, as shown in Table I.

We use an 8-bit fixed point for implementing the hardware.
We performed an empirical analysis of the dataset (using the
crying baby class) with different bit widths. As shown in
Fig.4, the training and testing accuracy remains stable till 8-bit
and decreases sharply for bit width lower than 8-bit. We use
Keras implementation for training our system, as this software



framework is robust and highly optimized. The FIR filter banks
are quantized at 8-bit, and a custom layer for the MP function
is written for the Keras framework. The optimization of the
model is done using Tensorflow libraries for quantization.

V. CONCLUSION

This paper presents a novel multiplierless framework for
acoustic classification using an FIR filterbank as the feature
extraction and kernel function stage simultaneously. This
framework is entirely multiplierless since the FIR filter bank
is implemented using MP approximation along with the in-
ference logic. This makes the system highly efficient for
deployment in battery-powered edge devices. Furthermore, the
framework is tunable to any time series data by tuning the filter
parameters in the FIR filter bank. A network of edge devices
running our proposed classification framework can be used
for continuous monitoring of wildlife species and detecting
anomalies in case of poaching or timber smuggling. This
framework can be extended to other biomedical applications
using edge devices capable of healthcare monitoring with raw
ECG, EMG, and EEG signals. Wearable IMU sensors with
this framework can be used to detect anomalies in posture. To
make our framework more energy efficient, we can fabricate
this system into an Application Specific Integrated Chip.
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