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Abstract—We present a hardware architecture that uses the 
Neural Engineering Framework (NEF) to implement large-
scale neural networks on Field Programmable Gate Arrays 
(FPGAs) for performing pattern recognition in real time. 
NEF is a framework that is capable of synthesising large-scale 
cognitive systems from subnetworks. We will first present the 
architecture of the proposed neural network implemented 
using fixed-point numbers and demonstrate a routine that 
computes the decoding weights by using the online 
pseudoinverse update method (OPIUM) in a parallel and 
distributed manner. The proposed system is efficiently 
implemented on a compact digital neural core. This neural 
core consists of 64 neurons that are instantiated by a single 
physical neuron using a time-multiplexing approach. As a 
proof of concept, we combined 128 identical neural cores 
together to build a handwritten digit recognition system using 
the MNIST database and achieved a recognition rate of 
96.55%. The system is implemented on a state-of-the-art 
FPGA and can process 5.12 million digits per second. The 
architecture is not limited to handwriting recognition, but is 
generally applicable as an extremely fast pattern recognition 
processor for various kinds of patterns such as speech and 
images.  

Keywords: neural engineering framework; time-multiplexing; 
pattern recognition; pseudo inverse; MNIST; neuromorphic 
engineering 

1. Introduction 
Neural networks have been proved to be powerful tools 

for real world tasks, such as pattern recognition, 
classification, regression, and prediction. However, their 
high computational demands are not ideally suited to 
modern computer architectures. This constraint has so far 
often prohibited their use in applications that need real-time 
control, such as interactive robotic systems. On the other 
hand, scientists have been developing hardware platforms 
that are optimised for neural networks over the past two 
decades (Vogelstein et al., 2007; Boahen, 2006; Pfeil et al., 
2013; Wang et al., 2014d). However, these systems are not 
capable of synthesising large-scale neural networks for 
these real world tasks from subnetworks and therefore are 
not very suitable, as pointed out by Tapson et al. (Tapson et 
al., 2013).  

Here, we present a generic hardware architecture that 
uses the Neural Engineering Framework (NEF) (Eliasmith 
and Anderson, 2003) to implement large-scale neural 
networks on FPGAs, which are capable of processing up to 

millions of pattern recognitions in real time. The NEF, 
which was first introduced in 2003, is a framework that is 
capable of building large systems from subnetworks with a 
standard three-layer neural structure (the first layer contains 
the input neurons; the second layer is a hidden layer, which 
consists of a large number of non-linear neurons; and the 
third layer is the output layer, which consists of linear 
neurons). The NEF has been used to construct SPAUN, 
which is the first brain model, implemented in software and 
is capable of performing cognitive tasks (Eliasmith et al., 
2012). This demonstrates that the NEF is a powerful tool for 
synthesising large-scale cognitive systems.  

We have previously presented a compact neural core 
architecture specifically for FPGA implementation of large 
NEF networks (Wang et al., 2014a). In this paper, we 
present an application that uses this neural core to build 
pattern recognition systems. The outline for this paper is as 
follows: Section 2.1 introduces the basic concepts of the 
NEF; the algorithm and theory is presented in Section 2.2; 
the hardware implementation is presented in Section 2.3; 
the performance for different design choices will be 
thoroughly compared in Section 3; in section 4 we compare 
our work with other solutions and discuss future works. 

2. Materials and methods  
2.1 Background 

In this section, we review the theoretical framework of a 

Figure 1 | A typical NEF network. The stimulus X(t) is 
encoded into a large number of nonlinear hidden layer 
neurons N using randomly initialised connection weights. 
The output of the system, Y(t), is the linear sum of the 
weighted spike trains from the hidden neurons. 
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typical NEF system, which encodes an input stimulus into a 
spiking rate of neurons of a heterogeneous population and 
decodes the desired function by linearly combining the 
responses of these neurons. The topology of the NEF 
network is illustrated in Figure 1. A NEF network performs 
three tasks to calculate a desired function f(X): 

 1. Encoding: An encoder will have a fixed random 
weight (RW) for each hidden layer neuron, and multiplies 
the input stimulus by this weight. The firing rate of 
individual neurons is a nonlinear function of the input 
stimulus weighted by the random weights. The parameters 
of the neurons are also randomised, so that each neuron in 
the hidden layer exhibits a distinct tuning curve. An 
example of such tuning curves is shown in Figure 2.  

2. Decoding: The activity, H, of the hidden neurons (i.e. 
the spike rate of each neuron) can be measured over the 
desired range of input values X. The output of each neuron 
will be multiplied by their decoding weights such that WH = 
f(X) = Y. Since this is a linear system, these weights can be 
found by calculating W = YH+, where H+ is the Moore-
Penrose pseudo-inverse (Penrose and Todd, 1955) of H. 

3. Averaging: The output of the system, Y(t), is the 
linear sum of the weighted spike trains from the neurons. 

2.2 Algorithm and Theory 
2.2.1 Methodology 

Recognition or classification of handwritten digits is a 
standard machine learning problem, and in the form of the 
MNIST database (Lecun et al., 1998) it has become a 
benchmark problem. Hence, as a proof of concept, we have 
used the proposed design framework to implement a digit 
recognition system (Figure 3). Importantly, the same system 
could be used for other pattern recognition applications. In 
the MNIST database, the digits are represented as 28 × 28 = 
784 pixels, and the training and testing dataset contain 
60,000 and 10,000 digits, respectively. The system is 

trained using the training dataset only and is subsequently 
validated using the test dataset. 

The proposed digit recognition system is a three-layer 
feed forward neural network, consisting of 784 input layer 
neurons (pixels), 8192 (8k) hidden layer neurons and ten 
output layer neurons. The input layer neurons are connected 
to the hidden layer neurons using randomly weighted all-to-
all connections. The hidden layer neurons are also 
connected to the output-layer neurons using all-to-all 
connections but with weights calculated using a 
pseudoinverse operation. 

In the digit recognition system, a single input digit 
(28x28=784 pixels) is mapped onto a layer of input 
neurons, which we refer to as a vector Img with a dimension 
of 784×1. The Img matrix is multiplied by a matrix, 
Random_weights, with a dimension of 8192×784. The 
resultant vector, referred to as Vin with a dimension of 
8192×1, is thus given by: 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡×𝐼𝐼𝐼𝐼𝐼𝐼 (1) 

Each value in Vin is the sum of the randomly weighted 
pixels, and is the stimulus for the corresponding neuron in 
the hidden layer. Each neuron of the hidden layer responds 
to its Vin value according to a distinct tuning curve (Figure 
2). The output of the hidden layer neurons for each input 
digit is collected in a matrix referred to as H with a 
dimension of 8192×1. Finally, the response of the output 
layer neuron is given by:  

𝑌𝑌   = 𝑊𝑊×𝐻𝐻 (2) 

where, W is the decoding weight (a matrix with a dimension 
of 10×8192, ten columns for ten digits: 0-9) and Y (a 
Boolean matrix with a dimension of 10×1) represents the 
corresponding value of the input digit. For example, if the 
input digit represents 2, then, during training, Y[2] will be 
set to 1 and the other values in Y will be set to 0. Since this 
is a linear system, the weights can be found by 
calculating W = H+Y, where H+ is the pseudo-inverse of H. 

The above description is for one single digit. For 
training purposes, we used 60000 sample digits and hence 
the dimensions of Img, Vin, H and Y will change to 
784×60,000, 8192×60,000, 8192×60,000 and 10×60,000, 
respectively. When we use the digits from the test dataset 
with 10,000 digits, the dimensions of Img, Vin, H and Y will 
change to 784×10,000, 8192×10,000, 8192×10,000 and 
10×10,000, respectively. In the testing phase, the predicted 
output Y will be the product of W*H and will be compared 
with the expected output to obtain the error rate (the number 
of unrecognised digits among 10000 test digits). We will 
address the details of testing in Section 3. 

2.2.2 Modelling 

Our aim is to develop a fast hardware pattern 
recognition system running in real time, rather than aiming 
for the lowest test error. Thus, we have adopted a hardware-
driven method to implement our system, which will achieve 
the best trade-off between performance and hardware 
resources. This method will first consider the hardware 

 
Figure 2 | Tuning curves maps input stimuli to spike 
rates. For clarity, this figure only shows the tuning curve of 
16 neurons. Each neuron in the neural layer has a distinct 
tuning curve.  
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constraints, and then all the building blocks will be 
optimised. 

For FPGA implementations, there will be a significant 
difference in the hardware cost between fixed-point and 
floating-point implementations, as the latter requires many 
more digital signal processors (DSPs). More importantly, 
the floating-point number is represented by 64-bits, which 
would lead to a huge data storage requirement, which would 
be a bottleneck for the system. Thus, we have implemented 
our system using fixed-point numbers.  

Before implementing the design in hardware, we have 
modelled our system in Python, which is a popular software 
programming language, using the fixed-point 
representation. This will ensure that the software and the 
hardware results are the same, and avoid any performance 
drop or malfunctioning of the system in hardware due to 
conversion from floating to fixed point numbers. The 
models presented in the remaining part of this section were 
all software models unless otherwise specified. 

2.2.3 Input layer 

The input layer will read digits from the MNIST 
database and map them into the input layer pixels (one by 
one). This task consists of not only converting the 
dimension from 28×28 to 784×1 but also converting the 
grey scale value (an 8-bit number that ranges from 0 to 255) 
of the pixels to a binary value. The latter is a major 
difference between our system and existing algorithms 
(Tapson and van Schaik, 2013) (Lecun et al., 1998). This 

conversion will reduce the hardware cost significantly with 
a negligible performance loss, and will be presented in 
detail in Section 2.3.2. We will compare the performance 
differences in section 3.1. This conversion is carried out by 
comparing the grey scale value with 0 - if it is larger than 0, 
that pixel will be set 1; else it will be set to 0. 

To guarantee that the pixels of each digit from the input 
layer will be nonlinearly projected to the high dimensional 
hidden layer, for each neuron in the hidden layer, the 
encoder will first generate a uniformly distributed random 
weight for each pixel of one input digit and then sum these 
weighted pixels up for generating the stimulus. For 
verification of our hardware system, the random weights 
used in the software and in the hardware models should be 
the same and produce identical results. In a software model, 
random weights are generated using special routines, which 
is difficult to implement on hardware. 

One option is to use a look up table (LUT) in the FPGA 
to store the random weights generated by the software 
model. The major drawback of this solution is that it 
requires a significant amount of memory, which scales 
linearly with number of input neurons and hidden layer 
neurons. For FPGA implementations, the most efficient way 
to generate random numbers is to use linear feedback shift 
registers (LFSRs), as we have previously used to implement 
a randomly weighed all-to-all connectivity in a spiking 
neural network (Wang et al., 2014c). Based on that work, 
we have developed an encoder, which uses LFSRs to 
perform the nonlinear projection. We have implemented the 

 
Figure 3 | System Topology. The inputs are the pixels; they are connected to a higher-dimensional hidden layer with 8k 
neurons, using randomly weighted connections. The output layer consists of linear neurons and the output layer weights are 
solved analytically using the pseudoinverse operation. 
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same LFSR encoder in software to ensure that the random 
weights are identical in both implementations. We have 
highly optimised the encoder for hardware implementation, 
and details of this will be presented in Section 2.3. 

2.2.4 Rate neuron 

The NEF intrinsically uses spike rates to calculate the 
weights, and low-pass filters to sum the weighted output 
spikes to implement the desired function. In contrast, we 
have implemented our neurons as non-spiking neurons that 
compute their firing rate directly. If these neurons were to 
be implemented as leaky-integrate-and-fire neurons on 
FPGA, as we have done previously (Wang et al., 2014c), 
their average firing rates would have to be measured for 
each value of the input stimulus to compute the decoding 
weights. This method is quite inefficient and inflexible, as 
we would have to repeat the measurements each time the 
parameters of the neurons change. Another drawback is that 
spiking neurons running in real time would not be able to 
accurately communicate their firing rate in a short time 
period, e.g., 1ms. This would significantly limit their usage 
in real time applications. Using non-spiking neurons, their 
actual firing rate can be communicated immediately after 
presenting the stimulus to the neurons. This feature is quite 
important for applications that need real-time control, such 
as interactive robotic systems.  

In a system with non-spiking neurons, the system will 
not compute correctly if these neurons cannot reproduce the 
same firing rate as the one used to calculate the decoding 
weights. In other words, the computed firing rate must be 
repeatable for a given input value. Based on these 
requirements, we proposed to compute the firing rate of 
each neuron using its index in the array together with the 
stimulus value to produce a ‘broken-stick’ nonlinearity 
using the following algorithm: 

FOR N_index in (0, N_A-1): 

  IF N_index < N_A/2: 

        T = Max_Stim - (Stim + 4×N_index) 

  ELSE: 

T = Stim + 4×N_index  

F_rate = max(2 × N_index × T / N_A , 0) 

END 

Here F_rate represents the firing rate of the neuron as a 
result of the input stimulus, N_index represents the index of 
the neuron in the neural core, and T is calculated as shown 
for the different neurons. N_A represents the size of the 
hidden layer, Max_Stim represents the maximum value of 
the stimulus and Stim represents the current value of the 
input stimulus using an integer in the range of [0, 
Max_Stim) to code for an input range of [-1, 1). Figure 4 
shows the tuning curves of a set of N_A = 64 of the 
proposed fixed-point neurons, using Max_Stim = 255. The 
transfer function is thus a nonlinear function of the stimulus 
since the value of F_rate cannot go negative. Our system 
requires the stimulus to be nonlinearly encoded into the 
firing rate of the neuron and it is hardware intensive to use 
digital circuits to implement conventional nonlinear 
functions such as tanh.  Instead, this piecewise linear 
function can be easily implemented using a single 9-bit 
fixed-point multiplier. We will present its implementation in 
detail in section 2.3.3.  

2.2.5 Hidden layer 

We refer to the set of 64 neurons as a neural core, which 
will be used as the standard building block for our digit 
recognition system. Multiple neural cores can easily be 
combined to build real-time large-scale neural networks 
using our design framework. Furthermore, the development 
cycle of large-scale neural networks will be significantly 
shortened as there is no requirement for measurement of the 
firing rate anymore, since each neural core has the same set 
of known tuning curves. 

The hidden layer was implemented with 128 identical 
neural cores, for a total of 8192 (8k) neurons and 
8192×(784+10) ≈ 6.5M synaptic connections. This hidden 
layer size has achieved the best trade-off between 
performance and memory usage and we will compare the 
performance differences in Section 3.2. Given an input 
image, the encoder will generate, via the random weight 
projection, a different Vin for each neuron in each core, 
even if each core contains identical neurons. In other words, 
even though neuron[0] in neural core[0] and neuron[0] in 
neural core[1] have the same tuning curve as a function of 
Vin, the are highly likely to get different Vin so that their 
firing rates will be different too.  

2.2.6 Regression 

The decoding weights are obtained by 
calculating W = H+Y, where H+ is the pseudoinverse of H. 
However, the pseudo-inverse of the matrix H of size 60000 
× 8192 requires a huge amount of memory and 
computational time. We have previously developed an 
online pseudoinverse update method (OPIUM) (Tapson and 
van Schaik, 2013), which is an incremental method to 
compute the pseudoinverse solution to the regression 

 
Figure 4 | The tuning curves of the proposed fixed-point 
non-spiking neuron. This figure shows the tuning curve of 
64 neurons.  
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problem, which requires significantly less memory. Hence, 
we use this method here to compute the decoding weights.  
We chose to use a 6-bit resolution for the decoding weights, 
to obtain the best trade-off between performance and 
memory usage. We will address this in details in section 
3.1.  

The pseudoinverse method only gives the best solution 
with the lowest square root error for any given H matrix, 
i.e., any given set of random weights; it does not necessarily 
achieve the lowest test error for the MNIST data set. So we 
adopted a regression method to find the best seed, which 
will be used by the encoder to generate random weights, 
and will in turn change the H matrix. In this way, we can 
obtain the lowest possible test error in our system. Figure 5 
shows the flow of this regression method. It uses a 
simplified version of OPIUM, called OPIUM lite (Tapson 
and van Schaik, 2013), which is a fast online method for 
calculating an approximation to the pseudoinverse. It is 
significantly quicker than the full-scale OPIUM, but will 
find output weights resulting in a slightly worse test error. 
OPIUM lite is used with different random seeds, i.e., for 
different random weight vectors, until a seed is found with a 
target error below a desired threshold. After that, the full 
scale OPIUM is used to compute the decoding weights with 
that seed. As there is no guarantee that OPIUM lite will be 
able to achieve a target error below the desired threshold, a 
time-out mechanism is introduced. In our system, this time-
out will be activated when the regression has run for 1000 
seeds. If a time-out happens we simply use the seed that has 
so far resulted in the lowest error and then use the full scale 
OPIUM to compute the decoding weights. 

2.3 Hardware implementation 
2.3.1 Topology 

To efficiently implement the system on an FPGA, we 
use a time-multiplexing approach (Cassidy et al., 2011; 
Wang et al., 2013, 2014d, 2014c, 2014b, 2015; Thakur et 
al., 2014), which leverages the high-speed digital circuit. 
State-of-the-art FPGAs can easily run at a clock speed of 
266MHz (clock period 3.75ns). Thus, we can exploit time-
multiplexing approach to simulate 218 neurons (256k, 
powers of two are preferable as they optimise memory use 
for storage) in ~1 millisecond by only implementing one 
physical neuron on an FPGA. We refer to these neurons as 
time-multiplexed (TM) neurons. This means that on every 
clock cycle, a TM neuron will be processed. Each TM 
neuron is updated every 256k/266MHz ≈ 943 µs while a 
sub-millisecond resolution is generally acceptable for neural 
simulations.  

The time-multiplexing approach is however constrained 
by its data storage requirement. The on-chip SRAM is 
limited in size (usually only tens of MBs). Due to 
bandwidth constraints it is difficult to use off-chip memory 
with the time-multiplexing approach, as new values need to 
be available from memory every clock cycle to provide 
real-time simulation. Furthermore, the architecture of the 
system will be more complex when using off-chip memory 
because it needs a dedicated memory controller. 
Nevertheless, using off-chip memory promises the ability to 
implement much larger networks and we will investigate 
this option for future designs. However, we chose to use on-
chip memory for the current work to keep the architecture 
simple.  

 
Figure 5 | The flow of the proposed regression method.  
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Figure 6 shows the topology of the FPGA 
implementation of the system, which consists of an input 
layer (the encoder), a hidden layer with 128 neural cores 
and an output layer with 10 neurons. The encoder and the 
hidden layer are both implemented with the time-
multiplexing approach and Figure 6b shows their internal 
structure. It consists of a physical encoder, a physical 
neuron, a global counter and a weight buffer. The global 
counter processes the time-multiplexed (TM) encoders and 
neurons sequentially. The decoding weights of the physical 
neuron are stored in the weight buffer. For simplicity, let us 
assume that each TM encoder and TM neuron are processed 
in only one clock cycle. This means that in every clock 
cycle, a TM encoder will generate the stimulus for an input 
digit, and the corresponding TM neuron will generate a 
firing rate with that stimulus and then multiply it with the 
decoding weights (ten numbers for ten digits obtained by 
using the OPIUM). The input digit will not change and will 
remain static until all the TM neurons finish their 
processing. The output of every TM neuron will be ten 
weighted firing rates, each of which will be accumulated by 
its corresponding output neuron. Using a pipelined 
architecture, the result from calculating one time step for a 
TM encoder and neuron only has to be available just before 
the turn of that TM encoder and TM neuron comes around 
again. The above description assumes that it only takes one 
clock cycle to process one TM encoder and TM neuron, 
while this timing requirement is quite difficult to meet in a 
practical design. We will address this issue in detail in next 
section. 

2.3.2 Physical encoder 

The encoder will generate a uniformly distributed 
random weight for each pixel of the input digit, and then 
sum these weighted pixels to generate the stimulus for each 
neuron in the hidden layer. We have pre-processed the input 
digit by converting grey-scale value of each pixel to a 

binary value. This saves significant hardware resources in 
the FPGA, since otherwise we would need 784 multipliers 
to compute the multiplication between all pixels and their 
corresponding random weights. Each binary pixel is used to 
control a 2-input multiplexer, one is connected to its 
corresponding random weight and the other is tied down to 
zero. If the value of a pixel is high, that corresponding 
random weight will be accumulated for the generation of 
stimulus for a hidden layer neuron.  

The major challenge in implementing the encoder in 
hardware using the time-multiplexing approach is to meet 
the timing requirement. We need to sum all the 784 
weighted pixels in 3.75 ns, since each TM neuron needs to 
be processed in one clock cycle. Moreover, this operation 
will require 784 adders, which will cost a significant 
amount of hardware resources. The introduction of 
pipelines will mitigate the critical timing requirement, but 
will need even more adders. As a compromise we chose to 
process each TM encoder and TM neuron in a time slot of 
four clock cycles. So the encoder will perform this sum 
operation in four cycles, each of which will sum 784/4=196 
weighted pixels. This modification not only mitigates the 
critical timing requirement, but also reduces the number of 
adders that are needed. The price paid is that the time-
multiplexing rate has to be divided by four. Hence, we can 
only time-multiplex 64k neurons rather than 256k neurons. 

Figure 7 shows the structure of the physical encoder, 
which consists of an input buffer, a global counter, 49 
random weight (RW) generators (each implemented with an 
20-bit LFSR), 196 2-input multiplexers and a sum up 
module. When an input digit arrives, it is stored in the input 
buffer. In each time slot, the global counter sends that stored 
digits to multiplexers for generating the weighted pixels. 
The lowest 196 bits are sent in the first clock cycle (of that 
time slot) and then the higher 196 bits in the next clock 

 
Figure 6 | FPGA implementation of the proposed system. (a) The system topology;(b) The internal structure of the time-
multiplexed system. 
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cycle, one by one, and highest 196 bits in the fourth clock 
cycle.  

Each RW generator generates a 20-bit random number, 
which is divided into four 5-bit random signed numbers. 
Hence, 49 RW generators will provide totally 49x4 = 196 5-
bit random weights, each is sent to its corresponding 
multiplexer. All these LFSRs will reload their own initial 
seed (obtained using the pseudoinverse method) on the 
arrival of an input digit. After that, it keeps generating 
random numbers until a new input digit arrives. In this way, 
we can guarantee that the encoder will generate the exact 
same set of random weights (for each incoming digit) with 
any given seed. This “on the fly” generation scheme 
reduces the usage of the memory significantly, as there is no 
requirement for storing the random weights anymore – only 
the seeds need to be stored.  

The accumulator module sums the 784 weighted pixels 
(in four clock cycles) for generating the stimulus for that 
TM neuron. A naive implementation would need a 196-
input 5-bit parallel adder and create a large delay (~20 ns). 
To mitigate this critical timing requirement, we use a 2-
stage pipeline, which consists of fourteen 14-input 5-bit 
parallel adders and one 14-input 9-bit parallel adder. Since 
it is a pipelined design, the stimulus (for each TM neuron) is 
still being generated every time slot (with a latency of two 
clock cycles). 

2.3.3 Physical neuron 

The rate neuron achieves a significant reduction in 
memory usage, since it computes its firing rate with its 
index, the input stimulus and fixed parameters, none of 
which need memory access. Memory access is only needed 
to read the decoding weights. In our previous work (Wang 
et al., 2014a), the physical neuron has already been 

implemented with a single 9-bit multiplier, which computes 
the F_rate and multiplies it with one and only one decoding 
weight. In the digit recognition system implemented here, 
the neuron needs to multiply F_rate with ten decoding 
weights (for ten digits: 0-9). A naïve implementation would 
instantiate ten identical neurons, each with one decoding 
weight (for each output neuron), and would cost 10 
multipliers. The whole operation would require 11 
multiplications. Since the time slot consists of four clock 
cycles, we can distribute these 11 multiplications to these 
four clock cycles so that only 11/4=3 multipliers will be 
needed. Based on this strategy, the neuron has been 
efficiently implemented with three identical 9-bit 
multipliers as shown in Figure 8. The number of the 
implementable multipliers is usually one of the bottlenecks 

 
Figure 8. The structure of the physical neuron  

 
Figure 7. The structure of the physical encoder  
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of large-scale FPGA/ASIC design. 

The multiplier’s inputs A and B are 9 bits wide and the 
output result is 18 bits wide. All of the three multipliers will 
need four clock cycles to process the algorithm. For 
multiplier [0], the first cycle computes the F_rate, which is 
represented by a 7-bit number, by multiplying N_index and 
T; the second cycle latches F_rate at input A of the 
multiplier; the third and fourth cycle multiplies F_rate with 
the decoding weight [0] and [1], respectively. For multiplier 
[1], the first, second, third and fourth cycle multiplies F_rate 
with the decoding weight [2],[3],[4] and [5] respectively. 
For multiplier [2], the first, second, third and fourth cycle 
multiplies F_rate with the decoding weight [6],[7],[8] and 
[9] respectively. Again, since it is a pipelined design, the 
output of each TM neuron is updated only once in its time 
slot (with a latency of four clock cycles).  

2.3.4 Output layer 

The output layer consists of ten neurons (Figure 6) that 
will linearly sum the results of all the 8k TM neurons. Since 
it is a time-multiplexed system, this sum is just an 
accumulation of the outputs of the TM neurons of each time 
slot and the computational cost can be reduced in 
magnitudes. Hence, the implementation of each output 
neuron will only need a register and an adder. When all the 
8k neurons have all been processed, the index of the output 
neuron with the maximum value will be sent out as the 
result, which indicates the most likely input digit.  After 
that, the values of the ten output neurons are cleared. 

2.3.5 Utilisation 

The system was developed using the standard ASIC 
design flow, and can thus be easily implemented with state-
of-the-art manufacturing technologies, should an integrated 
circuit implementation be desired. A bottom-up design flow 
was adopted, in which we designed and verified each 
module separately. Once the module level verification was 
complete, all the modules were integrated together for top-
level verification. We have successfully implemented 128 
proposed neural cores, yielding 8k neurons, on an Altera 
Cyclone V FPGA (on a Terasic Cyclone GX starter kit). 
The design uses less than 6% of the hardware resources 
(with the exception of the RAMs, Table I). Note that this 
utilisation table includes the circuits that carry out other 
tasks such as the JTAG interface.  

3. Results 
The results presented here will focus on how different 

design choices will affect the performance of the proposed 

system as our goal is to develop a hardware system running 
in real time, rather than exploiting an algorithm that is as 
accurate as possible. The performance results were obtained 
using the full test set of 10,000 handwritten digits after 
training on the full 60,000 digit training set, unless 
otherwise specified. The results presented in Section 3.1-3.2 
were all obtained using the software (Python) models. The 
results presented in section 3.3 were obtained from the 
hardware implementation. 

3.1 Comparison across different configurations   

TABLE I 

Device utilisation Altera Cyclone 5CGXFC5C6F27C7 

Adaptive Logic Modules 
(ALMs) 

RAMs DSPs 

2162/29080 480k/4.5M	
   3/450 

 

Figure 9. (a) and (b) The histogram of the error rate for 
configuration 1 and configuration 2; (c) the normalised 
histogram of the difference between the paired errors 
(blue) and sample T distributions modelling the data 
(red); (d) the distribution of the estimated mean of the 
difference data. 
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Compared to our previous work (Tapson and van Schaik, 
2013), we have made three major modifications: the grey-
scale pixel in the input images were replaced by black & 
white (binary) pixels; tanh neurons in the hidden layer were 
replaced by rate neurons; and 64-bit floating-point numbers 
for the decoding weights were replaced by 6-bit fixed-point 
numbers. We investigated the effects of these modifications 
using four configurations: configuration 1 was the 
configuration used in our previous work (Tapson and van 
Schaik, 2013); configuration 2 used black and white images; 
configuration 3 used black and white images and rate 
neurons instead of tanh neurons; and configuration 4 had all 
three modifications. The hidden layer consisted of 8k 
neurons in all four configurations.  

For each configuration, 100 test runs were conducted, 
each with a different random seed. The same set of 100 
seeds was used for all four configurations, so that the 
encoder will generate the same random weights. Since the 
goal of this exercise was simply to investigate the impact of 
the three modifications on performance, rather than to find 
the best possible performance, we only used the first five 
steps of the regression method, i.e., we only used OPIUM 

lite to calculate the decoding weights and the test error. This 
significantly reduces the simulation time needed for these 
tests while still providing a fair comparison between the 
four configurations. 

We first investigated the effect of using the binary 
values in the input layer. We compared the performance 
result between the one using the grey-scale values and 
binary values (see Figure 9). The top two panels show a 
histogram of the number of errors out of 10,000 test 
patterns. Given the skewed nature of the two error 
distributions, rather than simply reporting p-values to 
indicate the statistical significance of this difference, we 
have chosen to display the full distribution here. Because 
the same set 100 random weight vectors was used for each 
configuration, we can determine a paired difference 
between the two configurations, shown as a histogram in 
Figure 9c. We then modelled the distribution of the 
difference of errors using a non-central T distribution, 
which is optimal for modelling distributions that are 
approximately Gaussian but contain outliers. We followed 
the Bayesian estimation method according to Kruschke 
(Kruschke, 2012) using Markov Chain Monte Carlo 

Figure 11. (a) The histogram of the error rate for 
configuration 4; (b) the normalised histogram of the 
difference between the paired errors (blue) and sample 
T distributions modelling the data (red); (c) the 
distribution of the estimated mean of the difference 
data. 

Figure 10. (a) The histogram of the error rate for 
configuration 3; (b) the normalised histogram of the 
difference between the paired errors (blue) and sample 
T distributions modelling the data (red); (c) the 
distribution of the estimated mean of the difference 
data. 
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simulation. We simulated the Markov Chain for 110,000 
steps and discarded the first 10,000 steps as a burn in 
period. Figure 9d shows the distribution of the 100,000 
mean values for the T distribution modelling the data, and 
the red curves in Figure 9c show 50 examples of the T 
distribution with parameters (mean, standard deviation, and 
a normality parameter – see (Kruschke, 2012)) taken at 
random from the Markov Chain.  

From the distribution of the mean value for the 
difference data (Figure 9d), we can see that configuration 2 
results in 59.5 more errors on average. If we define a 
difference of 10 or fewer errors as a region of practical 
equivalence (ROPE), or, in other words, we consider as 
insignificant a change of 10 or fewer errors out of 10,000 
tests, i.e., a change of less than 0.1%, we note that the 95% 
highest density interval (HDI) of the distribution of the 
mean of the difference of errors is outside the ROPE, and 
therefore we conclude that changing the input images from 
grey scale to binary values results in a small but significant 
increase in error of around 0.6%. 

Next, we investigated the effect of using the rate 
neurons in the hidden layer. The distribution of errors for 
this configuration (configuration 3) is shown in Figure 10a. 
This should be compared with configuration 2 (Figure 9b) 
and their paired difference is shown in Figure 10b. Figure 
10c shows the distribution of the mean of the difference in 
errors between configuration 3 and configuration 2. It 
shows that changing from tanh neurons to rate neurons 
increases the number of errors by approximately 18.5. 
However, this difference is not strongly significant, as the 
95% HDI is not entirely outside the ROPE, indicating that a 
difference within the region of practical equivalence is 
amongst the possible mean values. Finally, we investigated 
the effect of using limited-resolution decoding weights. 
Figure 11a shows the distribution of errors for this 
configuration and the difference between configuration 3 
and configuration 4 is close to zero (Figure 11b). In fact the 
distribution of the mean of the error difference is entirely 
within the ROPE, indicating that somewhat surprisingly 
there is no significant loss in performance when using 6-bit 
fixed-point output weights instead of floating point weights.  

The performance drop between configuration 1 and 4 
was merely 0.8%. We can therefore conclude that, in this 
digit recognition system, the modifications that we made 
achieved significant reductions in terms of hardware cost 
with a minimal drop in performance.  

3.2 Size of the hidden layer 

In this scenario, we used configuration 4 from the 
previous section and changed the hidden layer size in the 
range from 1k to 16k neurons. For each size, ten test runs 
(each with a different random seed) were conducted. Again, 
to reduce the testing time, we used OPIUM lite to calculate 
the decoding weights and then calculate the test error. 

The median error over 10 runs (Figure 12) for the 
hidden layer with 1k, 2k, 4k, 8k, 12k and 16k neurons was 
14.5%, 10.4%, 6.96%, 5.01%, 4.47% and 4.33% 

respectively. It is clear that the error decreases with the 
number of hidden layer neurons, although with a 
diminishing return. Since the system used the time-
multiplexing approach and rate neurons, the hardware cost 
of a single TM neuron is almost negligible. The memory 
required by the decoding weights is linearly proportional to 
size of the hidden layer and is thus the bottleneck of the 
system. To achieve a good balance between the desired 
accuracy and memory, we chose to implement the hidden 
layer with 8k rather than 16k neurons. 

3.2 System performance 

To explore the best performance that the proposed 
system can achieve, 1000 runs were carried out using the 
full regression method (Figure 5) with different random 
seeds. The lowest error achieved with lite and full version 
of OPIUM is 4.52% and 3.45%, respectively. After that, the 
decoding weights (obtained with full version of OPIUM) 
were loaded into the FPGA board for real time digit 
recognition. The pixels of input digits were converted to 
binary values in software and a Python-based front-end 
client software sent the selected test digit to the FPGA via 
JTAG interface. Since the system runs at 266MHz and the 
hidden layer contains 8k neurons, each of which has a time 
slot of four clock cycles, the processing time for one input 
digit will be 8k×4/266MHz ≈ 120 µs, yielding 1s/120µs ≈ 
8k digit recognitions per second. Due to the fact that our 
system only used 8k out of 64k neurons in one single TM 
neuron layer, the maximum number of the digit recognitions 
that can be processed by one TM neuron layer is ~64k per 
second. The system used less than 6% of the hardware 
resources (with the exception of the RAMs), multiple TM 
neuron layers can be instantiated to run in parallel. It is 
practical to scale this system to process millions of digit 
recognitions in one second. We will address this in details 
in section 4.2.  

4. Discussion 
4.1 Comparison with other solutions 

The work reported here constitutes the basis for building 
real-time, large-scale, general purpose hardware pattern 
recognition systems using the NEF, hence we are mainly 
interested in the trade-off between the scale, the 

Figure 12. Error rates as a function of the number of 
neurons in the hidden layer.  
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performance and the hardware cost. We will concentrate on 
comparing our work with the solutions that were developed 
for similar goals, rather than the solutions that are extremely 
optimised for achieving the lowest error rate of MNIST 
although they cannot be efficiently implemented on 
hardware.  

The IBM TrueNorth system is a general-purpose system 
for building large-scale neural networks running in real time 
(Merolla et al., 2014). When it was programmed for digit 
recognition, it achieved a result of 8.06% error rate in the 
10000 test set of the MNIST with 13 cores, each of which 
consisted of TM 256 spiking neurons and needs ~96k bits 
memories (Esser et al., 2013). Hence, our system achieved a 
much lower error rate while with significantly fewer 
hardware resources, especially the memories (Table II). 
Regarding the processing speed, their system needs 20 time 
steps (each one is 1 ms) to process one digit, whereas our 
system needs only 120 µs (approximately 167 times 
speedup). Moreover, while their system consists of a feature 
extractor that clusters and extracts features from data, our 
system is feature-less, hence can be easily configured for 
different input data without feature extractions. The 
TrueNorth system however has much more applications 
besides pattern recognition task, as compared to our system. 

The Minitaur, which is an event–based neural network 
accelerator, achieved an error rate of 8% on a deep spiking 
network with 1785 neurons (Neil and Liu, 2014). Since the 
scheme it used is a variant of the time-multiplexing 
approach, which only needs very few neurons to be 
physically implemented, the cost of one single neuron is 
also negligible and the bottleneck again is the memory. 
Each of the neuron used by the Minitaur needs 73 bits 
memories and the connection weight needs 16 bit 
memories. Our neuron needs 60 bit memories for the 
decoding weights. The processing time of the Minitaur for 
one digit is 0.152s (table II), which is approximately 1300 
times slower than our system. 

4.2 Future work 
Since the larger the scale is, the more pattern 

recognitions can be carried out, our future work will focus 
on scaling up the network that we have presented here. It is 
a scalable design as it is a fully digital implementation. The 
number of TM hidden neurons implemented by a single 
physical neuron will increase linearly with the amount of 
available memory, as long as the multiplexing scale keeps 
the time resolution within the biological time scale. The 
number of physical neurons will increase linearly with the 
number of available ALMs.  

In the following calculation, we will use the digits 
recognition system as a metric and different applications 
will require different amounts of hardware resources while 
still using the same topology. We can calculate the 
theoretical maximum network size on a state-of-the-art 
FPGA board, such as the Terasic DE5 board containing an 
Altera Stratix V (5SGXEA7N2F45C2) FPGA with ~230k 
ALMs, two DDR3 SDRAMs and four QDRII+ SRAMs. 
One single TM hidden layer requires ~1600 ALMs, which 

is mainly used by the encoders. Hence, the maximum 
number of the physical hidden neurons that can be 
implemented is 230k/1600 ≈ 143. The memory requirement 
of one single TM hidden neuron layer is 64k×60bits = 
3840k bits. The on-chip SRAM, which is 52M bits, can be 
used to implement up to 13 TM hidden neuron layers. To 
further scale up the system, we need to use external 
memories. The bandwidth requirement is indeed a 
bottleneck for the time-multiplexing approach, as new 
values need to be available from memory every four clock 
cycles.  

The maximum theoretical bandwidth of one DDR3 
SDRAM memory and one QDRII+ SRAM memory on the 
DE5 board is 512 bits and 72 bits @266MHz, respectively. 
The DDR3 memory, in general, can only achieve an 
efficiency of 70% (of the theoretical bandwidth) as it will 
need flow control, which takes into consideration the bus 
turn around time, refresh cycles, and so on. The maximum 
number of neuron arrays is ((512bits × 2 × 70% + 
72bits×4)×4)/60bits ≈ 67. Adding the ones using the on-
chip SRAM, the theoretical maximum number of neuron 
layers is 80, yielding 64k×80 = 5.12M neurons. As the 
maximum number of the digit recognitions that can be 
processed by one TM neuron layer is ~64k per second, the 
maximum number of the digit recognitions that can be 
processed by the system with 80 parallel layers is therefore 
5.12M per second.  

The programmability of the FPGA, especially the 
decoding weights, makes the integration of the system with 
the desired pattern recognition applications seamless. 
However, the advantages of running large-scale networks in 
real-time are strongly reduced if such neural networks take 
a long time to compute the decoding weights. Hence, 
another major improvement is to speed up this 
computationally extensive task. One promising solution is 
to implement the OPIUM on FPGA, since this algorithm is 
an adaption procedure without the requirement of hundreds 
of Gigabyte RAMs and is quite friendly for hardware 
implementation. Running OPIUM in real time makes it 
possible to upgrade the system to be a true turnkey solution 
for pattern recognition in real world. In addition, since the 
proposed system does not need feature extraction, it could 
be used for any other pattern recognition tasks such as 
speaker recognition, natural language processing and so on.  

TABLE II 

Comparison with other solutions 

 Error Computation 
time 

Resources 

Minitaur 8% 0.152 s 155k bits 

TrueNorth 8.06% 20 ms 1.248M bits 

This work 3.45% 120 µs	
   480k bits 
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