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Abstract— Recent advances in the unsupervised and gen-
erative models of deep learning have shown promise for
application in biomedical signal processing. In this work, we
present a portable resource-constrained ultrasound (US) system
trained using Variational Autoencoder (VAE) network which
performs compressive-sensing on pre-beamformed RF signals.
The encoder network compresses the RF data, which is further
transmitted to the cloud. At the cloud, the decoder reconstructs
back the ultrasound image, which can be used for inferencing.
The compression is done with an undersampling ratio of 1/2,
1/3, 1/5 and 1/10 without significant loss of the resolution.
We also compared the model by state-of-the-art compressive-
sensing reconstruction algorithm and it shows significant im-
provement in terms of PSNR and MSE. The innovation in this
approach resides in training with binary weights at the encoder,
shows its feasibility for the hardware implementation at the
edge. In the future, we plan to include our field-programmable
gate array (FPGA) based design directly interfaced with sensors
for real-time analysis of Ultrasound images during medical
procedures.

I. INTRODUCTION

High-resolution ultrasound imaging systems generate a
large amount of data with a high frame rate to provide
high-resolution imaging for bio-medical applications. It re-
quires computational intensive resources and high-speed
data transfer links, further making the system bulky and
power consuming. This results in a lack of portability and
deployment of the system on the remote-location where
power budget is limited, further restricting the health-care
accessibility. There has been a trade-off between the quality
of image and cost of equipment, which limits the use of
ultrasound imaging at an affordable cost with good image
resolution. In recent year, the problem of recovering under-
sampled measurements has shown a growing interest along
with the emergence of compressed sensing (CS) framework
[1]. In ultrasound imaging, compressive sensing framework
has been used for compressed data acquisition [2] and
beamforming [3], opening a path to the reconstruction of
high-resolution images with under-sampled data.

A signal x ∈ RN can be represented as a linear combi-
nation of the elements of some basis function ψ, x = Ψα,
where ψ ∈ RN×N and α ∈ RN . With a correct choice of
basis ψ, a large number of entries in α are zero or close
to zero, with only K � N coefficients having useful
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information. The compressive sensing framework utilizes this
sparsity of signal in ψ basis and reconstructs the original
signal from a few measurements sampled at a low rate. A
simple approach of compression could be computing all the
α from x and then storing only the values and positions
of K significant α. In the compressive sensing approach,
we need not compute all N coefficients. Instead, we collect
M � N measurements of x in basis φ ∈ RM×N

(original representation of signal), which is independent and
incoherent to basis ψ.

M measurements of signal x can be obtained by multiply-
ing a M ×N measurement matrix to N × 1 column vector
x.

y = φx (1)

The signal x can be accurately recovered from it’s com-
pressed measurements y under certain conditions on matrices
φ and ψ. First, the matrix θ = φ × ψ should obey the
Restricted Isometry Property (RIP) of order K (sparsity of x
in basis ψ) and the matrices φ and ψ should be incoherent.
The incoherence between φ and ψ is assured by generating
matrix φ randomly with the Bernoulli (±1) or i.i.d Gaussian
entries and choosing ψ an N × N DCT or Haar matrix (when
φ and ψ are sufficiently large matrices). The reconstruction
of original signal x from compressed measurement y relies
on solving the following convex optimization problem:

min‖α̂‖1
(

=
∑
|α̂n|

)
such that y = φψα̂ (2)

However, the compressive sensing framework suffers some
major bottlenecks when it comes to ultrasound imaging. The
matrix φ satisfies RIP properties only if M is sufficiently
large. Real-time, high frame-rate US systems impose diffi-
culty in generating such large matrices. Also, the CS recon-
struction involves the use of convex optimization algorithms
that require hundreds of iterations to converge, which limits
its use in real-time implementation in ultrasound imaging
systems at the health-care node.

In the recent literature Bora et al.[4] have shown
compressed-sensing using generative models, they have
shown VAE based compressive-sensing on non-biomedical
images. Perdios et al.[5] have shown a Denoising Autoen-
coder based architecture for compressive-sensing on ultra-
sound signals. The goal of our work is to present a non-
iterative algorithm for recovering under-sampled ultrasound
signals using generative models, Variational Autoencoders
[6][7], and we also propose a cloud and edge-based dis-
tributed Ultrasound imaging System architecture, where RF



Fig. 1: Proposed System Architecture. The encoder network is implemented at a portable edge node and the decoder and
image reconstruction algorithm is implemented on the cloud platform.

data reconstruction and image formation is done on cloud and
edge device is responsible for compressed data acquisition.
Variational Autoencoders provide an efficient, method to
recover a latent representation z (”encoding”) of our data-
points x (the ”decoded” observations). By training VAE on
a large dataset, we develop an effective encoding mechanism
for our observations, which can be used to either generate re-
alistic new data or reconstruct a data item from a compressed
measurement.

The proposed framework can also be used for other
medical imaging areas like computed tomography, rapid
MRI and neuronal spike train recovery. We will further
explore the system level implementation of hardware with
less computational complexity and low power consumption.

II. ARCHITECTURE

A. Proposed Architecture

In the proposed cloud-based system, we implement the
first layer of the encoder part of the VAE at edge devices,
which we call it data acquisition layer. In our design, we
fix the weights of this layer with randomly generated binary
entries (+1,-1), which reduces the computations at the edge
nodes, making the design of the edge devices compact, low-
power and portable. The edge device acquires an analog RF
data from US transducer probes, performs pre-processing and
converts an analog signal into digital bit streams by Analog
to Digital converters (ADC). The digital bit stream is further
under-sampled at the first layer of the encoder. The M/N
(M � N ) undersampling is achieved by multiplying
input vector (N × 1) with the encoder matrix (M×N). The
encoder matrix is formed by randomly generated entries of
’+1’ and ’-1’. The random entries can be generated using

a conventional Linear feedback shift register (LFSR) based
random sequence generators in real time and we do not need
to store encoder weights in system memory, which reduces
the system memory requirement at edge nodes significantly.

The decoder layers of VAE and image reconstruction
algorithms using delay-and-sum beamforming can be imple-
mented on the cloud platform. Figure 1. presents a block
diagram of our proposed architecture.

B. VAE Architecture

The Variational Autoencoder is a deep Bayesian generative
model framework, which tries to learn the distribution from
which data has been generated. It models the similarity
between two random variable x and latent variable z. The
Mathematical representation of VAE is the marginal distri-
bution on observation x defined by a prior distribution p(z)
and a conditional distribution Pθ(x|z).

Pθ(x) =

∫
Pθ(x|z)Pθ(z) dx (3)

A prior p(z) distribution is usually assumed to be a multi-
variate unit Gaussian with zero mean N (0, I). Also, in VAE
a conditional distribution Pθ(x|z) is a generator network pa-
rameterized by θ and is usually a Gaussian N (µθ(x), σ2

θ(x))
where µθ(x) and σ2

θ(x) is modeled using the network.
In VAE standard training procedure involves maximizing the
evidence of the lower bound (ELBO) on the true posterior
Pθ(z|x) with the help of an auxiliary known posterior
distribution qφ(z|x), where qφ(z|x) is parameterized by φ
and is assumed to be a Gaussian N (µφ(x), σ2

φ(x)), also
µφ(x) and σ2

φ(x) are derived by fitting a network.
The ELBO (L) is defined in equation (4-6).



Under-sampling Ratio PSNR in dB MSE
Model (a) Model (b) Model (a) Model (b)

1/2 23.19 23.35 312.10 300.86
1/3 23.31 23.19 303.74 311.92
1/4 22.96 23.22 328.68 309.17
1/5 23.30 23.39 304.07 297.71

1/10 22.85 22.63 337.48 354.76
1/30 21.92 21.92 417.68 417.68
1/100 21.40 21.62 470.69 447.89

TABLE I:
Peak-Signal-To-Noise Ratio and Mean-Square-Error computed on the reconstructed images for different under-sampling ratios. Model (a) corresponds to

encoder layer with trainable weights and model (b) corresponds to encoder layer with fixed binary weights as described in section II

Fig. 2: Layer-wise representation of VAE network

L(x : θ, φ) ≥ logPθ
(x)−KL[qφ(z|x) || Pθ(z|x)] (4)

= Eqφ(z|x) [ logPθ
(x) + logPθ

(z|x) − logqφ(z|x)] (5)

= Eqφ(z|x) [ logPθ
(z|x) − logqφ(z|x)] (6)

The model defines the KullbackLeibler divergence (KL) term
in the loss equation (4), which is also intractable due to the
term involving calculation of true posterior Pθ(x|z). Further,
with the use of reparameterization trick on z we can redefine
optimization with θ and φ as equation (7)

L(θ, φ : x) ≈ arg max
θ, φ

M∑
m=1

logPθ
(x|zm)

+KL[qφ(zm|x) || Pθ(z)]
(7)

Where M denotes a total number of samples used for sam-
pling. Single layer encoder and decoder network is imple-
mented via the tanh perceptron with θ and φ as parameters
respectively. Figure 2. shows the layer-wise representation of
implemented VAE network.

III. EXPERIMENTS, RESULTS AND PERFORMANCE
EVALUATION

For the training and validation of proposed architecture
we use the PICMUS challenge [9][10][11][12], simulation
resolution/distortion test and PICMUS challenge: in vivo
carotid cross-section dataset. Both the dataset consists of 75
plane-wave sequences. One plane wave sequence consists
of 128 RF samples corresponding to 128 channels in the

Fig. 3: (a) represents traditional CS-reconstruction by solving
equation (2) as described in section I and (b) represents
reconstruction with VAE, Under-sampling ratio = 1/2

transducer probe. For generalized training of VAE, we used
all the samples from both the datasets, we extracted a total
2 ∗ 75 ∗ 128 = 19200 RF samples, which we split into
training and test dataset (15360 samples used for training
and 3840 for testing). The VAE model was trained for
undersampling ratios of 1/2, 1/3, 1/4, 1/5, 1/10, 1/30, and
1/100. We validated the image reconstruction on simula-
tion resolution/distortion test dataset. After reconstruction,
image formation was done using standard delay and sum
beamforming. Further, the envelope detection is done using
Hilbert transform, which is normalized and log compressed
with 60 dB range to generate the final B-mode image.

We examined the performance of VAE architecture with
two models : (a) Trainable weights at Data acquisition
layers, (b) fixed binary weights (+1,-1) from the Bernoulli
distribution, at data acquisition layers. It is noticed that model
(b) outperforms over (a) in performance and is also suitable
for low power portable hardware at edge devices. Figure 5.
presents the reconstructed images for each compression ratio
(using binary weights). Table I summarizes the performance
evaluation for both models. Figure 4. shows the plot of
PSNR vs undersampling ratio for models (a) and (b). We
also compared our reconstruction algorithm with reconstruc-
tion using CS-framework (compressing with random i.i.d
Gaussian matrix φ and reconstruction by solving equation
(2)). Figure 3. compares the reconstruction using the CS



Fig. 4: PSNR vs undersampling ratio for model (a) and (b)

Fig. 5:
(a) is the ground truth image without any compression:

(b)-(g) shows reconstructed images with VAE from
undersampled signals with undersampling ratios of (b) 1/2,

(c) 1/3, (d) 1/4, (e) 1/5, (f) 1/10, (g) 1/30 and (h) 1/100
respectively.

framework(using Orthogonal Matching Pursuit Algorithm
(OMP) ) [8] and VAE network for the under-sampling ratio
of 1/2. It is interesting to note that the proposed algorithm
shows a significant improvement of 8.6 dB in PSNR over
CS-reconstruction for the undersampling ratio of 1/2. As
the US RF signals are less sparse, the CS-reconstruction
method could not reconstruct the signals sampled at lower
undersampling ratios. In terms of computational efficiency,
for the under-sampling ratio of M/N, The VAE decoder
network involves two matrix-vector multiplications of com-
putational complexity O(M2) and O(MN) which is in order
of the computational complexity of single iteration in CS-
reconstruction algorithms.

IV. CONCLUSIONS

In this work, we propose a cloud-based Ultrasound Imag-
ing System with portable edge devices. The proposed system

uses a compressed data acquisition model using Variational
Autoencoders. The first layer of the VAE implemented using
non-trainable fixed binary weights is used for compressed
data acquisition. These fixed weights are generated in real
time with a LFSR based random sequence generator. Recon-
struction of the compressed samples and image formation
algorithms are implemented at the cloud platform. The
proposed VAE architecture for compression is evaluated
using open-source PICMUS dataset, and we demonstrate
that VAE architecture outperforms CS-reconstruction both
in terms of PSNR of the reconstructed image and computa-
tional complexity. Using VAE architecture, we achieved an
improvement of 8.6 dB in PSNR for the undersampling ratio
of 1/2, over CS-reconstruction. The proposed architecture
also promises an efficient hardware implementation using
binary weights at the encoder.
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