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Abstract—Despite advances in understanding the mechanisms
of movement disorders, controlling voluntary movements remains
challenging, with limited treatment options. However, the inte-
gration of machine learning (ML) accelerators into the brain-
computer interface (BCI) pipeline offers promising solutions by
harnessing the capabilities of ML algorithms to decode intended
motor actions accurately. While there have been numerous efforts
to classify intended hand movements into discrete classes, the
challenging problem of decoding continuous hand kinematics has
seen limited research efforts. Our work focuses on tackling this
challenge using RAMAN, an energy-efficient tinyML accelera-
tor. We demonstrate the successful decoding of macaque hand
kinematics from the MC_Maze dataset on the Efinix Ti60 FPGA
with RAMAN architecture. Our approach achieves an R2-score of
0.91 across 108 different maze configurations with a significantly
low memory footprint of 230 KB, a latency of 86.7 ms while
consuming 52.23 mW of power at a 5 MHz clock rate and 5.78
ms latency with the peak power efficiency of 102.34 GOp/s/W at
75 MHz and 75% pruning.

Index Terms—BCI, Hand kinematics, Regression, tinyML
accelerator, RAMAN, Sparsity, Energy-efficient, FPGA

I. INTRODUCTION

Movement disorders encompass a range of conditions that
affect the ability to control voluntary movements. These dis-
orders, including stroke, paralysis, and spinal cord injuries,
are characterized by intricate pathophysiological processes
involving damage to the central nervous system, disruption of
neural connections, and impaired motor control circuits [1],
[2]. While medical research has made remarkable progress
in understanding the underlying mechanisms of movement
disorders, effective treatments remain limited. Studies have
revealed that even the mental imagery of motor movements,
known as motor imagery (MI), activates the same neural cir-
cuits as actual physical movement [3], [4]. These findings and
the recent advancements in brain-computer interfaces (BCI)
and neurostimulation techniques offer promising avenues for
treating movement disorders.

Invasive BCI systems, as depicted in Figure 1, offer superior
spatiotemporal resolution by directly recording intracortical
and cortical brain activities [3], [5] while also providing
the capability for direct brain stimulation. It also leverages
signal processing and ML techniques to process neural data

*Equal contribution.

Fig. 1: Closed-loop BCI system: Real-time recording, decod-
ing, and feedback. Decoding is performed by the RAMAN-
based tinyML accelerator (highlighted in green) by extracting
useful features from the digitized neural data to decode hand
kinematics.

and decode the intended motor actions. This combination
allows a closed-loop feedback system to significantly enhance
neuroplasticity and restore motor control. The primary ob-
jective of an implantable BCI system is to achieve surgical
placement within the brain. This necessitates a hardware-
software codesign approach that prioritizes compactness, high
accuracy, robustness, adaptability, real-time operation, low
power consumption, and the ability to handle many recording
channels [6].

The ML accelerator plays a critical role in BCI, and
its design and implementation are greatly influenced by the
factors mentioned earlier. These factors guide the objectives of
achieving low memory requirements and minimizing multiply-
accumulate (MAC) operations to reduce power consumption
while simultaneously ensuring high decoding performance.
Increasing the recording capacity of BCI systems leads to
a substantial increase in data dimensionality [6]. The BCI
hardware, especially the ML accelerator, must exhibit scala-
bility to handle high-dimensional data without compromising
power consumption and physical space. Furthermore, the ML
algorithm should be robust to mitigate the risk of model
overfitting as data dimensionality increases [7], [8].



Many studies in motor action classification, both on-chip
and off-chip, emphasize the use of separate feature extraction
and classification stages [9]–[15]. However, the dependence on
handcrafted feature engineering presents challenges in manag-
ing large datasets and does not fully capture the variability
of neural signals, thereby limiting the system’s scalability
for diverse individuals and tasks. The current landscape of
on-edge deep learning algorithm implementations, such as
convolutional neural networks (CNN), primarily focuses on
classification tasks with binary or quaternary classes [16].
These implementations often utilize shallow CNN architec-
tures with fewer layers to address memory limitations [17].
While hardware-friendly architectures like EEGNet [18] have
shown successful deployment on field-programmable gate
array (FPGA) platforms through techniques like quantization
and efficient resource utilization, they lack important features
such as pruning, leveraging weights and activation sparsity,
and configurability for optimizing accuracy, power, and latency
trade-offs [19]–[21]. While on-edge implementations of ML
algorithms for classification tasks in hand decoding have
been widely explored, there has been relatively less focus
on addressing the more challenging task of real-time on-edge
decoding of continuous hand kinematics. Certain approaches
attempt to tackle this regression problem by converting it
into a classification problem by quantising kinematic signals
[6], which may not yield optimal results. A few studies with
decoded hand kinematics often employ sophisticated networks
like recurrent neural networks (RNN) and transformer models,
although on-edge demonstrations are missing [22], [23].

In this work, we address the challenge of on-edge decoding
of continuous hand kinematics by utilizing a tinyML acceler-
ator named RAMAN, a Re-configurable and spArse tinyML
Accelerator for infereNce proposed in [24]. The architecture
is designed to handle both classification and regression tasks
on neural signals with the following features: (a) It leverages
weight and activation sparsity to reduce storage, power, and
latency, (b) Inspired by Gustavson’s algorithm [25], RAMAN
employs a dataflow that maximizes input and output activation
reuse, minimizing memory access and data movement costs,
(c) It offers an instruction memory and a dedicated instruction
set to store and program different network topologies, and
(d) Our hardware-software co-design approach incorporates
hardware-aware weight pruning to improve MAC utilization
and performs quantization of weights and activations to en-
hance hardware efficiency.

The structure of this paper is as follows. Section II describes
the details of the dataset. Section III presents the software
model architecture and implementation details. In Section IV,
we delve into the design and implementation details of the
FPGA. The results and a comprehensive comparison study
are outlined in Section V. Section VI concludes the paper and
summarises the key findings and contributions.

II. DATASET DESCRIPTION

We utilized the MC_Maze dataset [26], which comprises
four recording sessions of a macaque engaging in delayed
centre-out reaches. During the experiment, the macaque was

seated on a chair, fixating its eyes on a frontoparallel screen
positioned ∼ 27cm away. The experiment started with a
fixation period followed by target on-set, which involved
presenting a maze configuration to the macaque, consisting of
at most three targets, with only one target being reachable, as
depicted in Fig. 1. Upon appearance, the targets underwent
slight jittering for a variable duration ranging from 0 to
1000 ms, allowing the macaque to plan its movement. The
cessation of the jitter served as the cue for the macaque
to initiate hand movement and perform the reach, which
lasted approximately 200 to 600 ms, depending on the maze
configuration. Each recording session comprised 27 different
maze configurations, resulting in a variety of reach scenarios.
These maze configurations included: (a) configurations with a
single reachable target and no barriers, (b) configurations with
a single reachable target and barriers, and (c) configurations
with at most three targets and barriers, of which one was
reachable while the others were not. This paradigm allowed the
examination of neural activity during movement preparation
and execution.

Neural activity was recorded from the dorsal premotor
cortex and primary motor cortex of the macaque using two
96-channel Utah arrays. The recorded signals were sampled
at 30 kHz and underwent offline spike sorting, followed
by manual evaluation of sorted units based on stability and
signal quality. Additionally, cursor position, eye position, hand
position, target onset time, go cue time, and movement onset
time were recorded. Hand velocity was calculated after data
capture by differentiating the hand position over time.

III. MODEL: ARCHITECTURE AND IMPLEMENTATION

We employ the MobileNetV1 [27] architecture for predict-
ing the hand velocity using the neural spiking data. This
architecture uses depthwise separable convolutions compris-
ing depth-wise (DW) and point-wise (PW) convolutions as
building blocks with lower parameters and MAC operations
than a standard convolution (CONV). We thin out the base
MobileNetV1 architecture by scaling down the number of
channels in each layer by a factor of 0.25×. Our experi-
ments showed that this significantly reduced our solutions’
computational complexity and latency without affecting the
performance. It is well known that neural networks are over-
parameterized, and many connections can be removed without
any significant loss in accuracy [28]. Most MAC operations
(92.64%) are distributed in our network’s PW layers. We
implement a structured pruning strategy to remove a fixed
percentage of output channels in these layers in an iterative
manner. Neural networks have many degrees of freedom,
making them suitable candidates for compression [29]. We
compress our model to 8-bit, making them smaller and more
efficient. We perform quantization-aware training (QAT) to
reduce errors introduced during quantization, which emu-
lates the behavior during inference-time quantization. Since
convolution and batch norms are linear operations, we fold
their parameters together to reduce unnecessary parameters
and operations during inference. These architectural design
considerations reduce our model size from 3.23M to 0.06M



parameters and 32-bit to 8-bit, providing greater than 99%
compression and latency reduction.

We resample the original MC_Maze dataset using a bin
size of 5 ms and create trials considering a window size of
(-130 ms, 370 ms) around movement onset time. We split the
resulting 2295 trials using a 60/20/20 ratio to create the train,
validation, and test sets. The spiking data is smoothed using
a Gaussian kernel of 50 ms, and the hand velocity is lagged
by 80 ms before splitting into trials. We implement channel
dropout as a data augmentation technique wherein we set a
certain number of the spiking channels to zero before feeding
it to the network. We use the Adam optimizer [30] with an
initial learning rate of 0.01 for training and pruning our model
and scale this down by a factor of 100 for quantization-aware
training. We use the L1-loss for optimization and reduce the
learning rate by half upon loss saturation. We prune our model
to 75% sparsity iteratively in 20 steps, finetuning the model
for 100 epochs after each step. To determine the scales for
compression, we consider the max values of the tensor and
perform per-channel quantization. As a post-processing step,
we smoothen the predictions of our network using a moving
average filter of window size 5. We split a single trial into five
slices and performed computations on them.

IV. FPGA IMPLEMENTATION

The top-level architecture of the RAMAN tinyML accel-
erator is shown in Fig. 2. The design consists of Compute,
Memory and Control subsystems. The computing subsystem
encompasses a processing element (PE) array to perform MAC
operations, an activation sparsity engine to leverage sparsity
in activations, and a post-processing module (PPM) for the
rectified linear unit (ReLU) activation, quantization, pooling,
bias addition, and residual addition. The memory subsystem
comprises on-chip global memory to store layer parameters
and input/output activations of the network, activation and
parameter cache to exploit temporal data reuse and instruction
memory to store layer configuration instructions for program-
ming RAMAN. The control subsystem includes a top-level
controller coordinating data traffic and issuing control signals
to individual modules. A detailed description of each module’s
functionality is provided in [24].
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Fig. 2: RAMAN top-level architecture.

V. RESULTS

This section presents our approach’s quantitative and quali-
tative results and the resource utilization details on the FPGA.

TABLE I: Quantitative comparison of our model (0.25×
width multiplier, 75% pruning, 8-bit quantized, and operation
folding). The hyperparameter tuning of the Ridge Regression
model is done using grid search. Our model achieves the best
R2-score with significantly reduced size and latency. The MAC
operations are listed in Millions.

Model Parameters MAC R2-Score(↑)
Ridge Regression (RR) 366 0.08 0.64

Base MobileNetV1 3.23M 618.39 0.91
Ours 0.063M 40.92 0.91

Fig. 3: Ablation study of our approach for different width
multipliers, pruning ratios, and bit-widths. The size of the dots
is proportional to the model size.

A. Benchmarking

Table I compares our model’s computational efficiency and
task performance against baseline approaches. We can see that
the Ridge Regression (RR) model is not sufficiently complex
enough to capture the relationship between the neural data and
hand kinematics. Our model can surpass the performance of
the Base MobileNetV1 model across all metrics supporting our
architectural modification choices. Fig. 3 shows the ablation
results of our neural network. We can see that pruning is
helping the model generalize better, achieving a higher R2-
score on the test set.

Interestingly, the performance of larger models with higher
sparsities is more adversely affected by quantization. We
compare the predicted hand velocities of the Ridge Regression
model and ours against the ground truth (GT) in Fig. 4.
We can see that the trajectories predicted by our model are
consistent with the ground truth, whereas the Ridge Regression
predictions have a significant offset. The Pearson correlation
coefficients of our model predictions are significantly higher,
especially for the hand velocity along the y-direction.



Fig. 4: Comparison of the ground truth (GT) against Ridge Regression (RR) and our model predictions. Each color in the
plot represents a different trial. In the legend, we show the Pearson correlation coefficient (r-value) for the predictions against
ground truth.

B. FPGA Implementation Results

The MobileNetV1 model, trained on the MC_Maze dataset
with a width multiplier of 0.25×, was programmed on RA-
MAN and subsequently deployed on an Efinix Ti60 FPGA
[31]. The hardware specifications of the RAMAN architecture
and resource utilization details are presented in Table II.

TABLE II: Specifications and resource utilization.

Platform Efinix Ti60

Layers Supported
CONV, DW, PW,

FC and Max/Average pooling.
Number of PEs 12 (4 MACs/PE)

Reg-file Memory 0.896 KB
Clock Rate 5 - 75 MHz

Precision
Weights & Activations: 8b fixed point,

Partial-sums: 24b fixed point.

Power (mW)
75 MHz: 138.25 (Dynamic: 90.6, Static: 47.65)

5 MHz: 52.23 (Dynamic: 6.8, Static: 45.43)
XLR cells 52261 (85.96% util.), 37.23k LUTs & 8.6k FFs

DSPs 61 (38.12% util.)
Memory Blocks
(10Kb Blocks)

184 (Parameters: 90, Activations: 60,
Cache: 27, Rest: 7)

MAC Operations
(in Millions)

40.9 (CONV: 0.131, DW: 2.86,
PW: 37.89, FC: 0.0102)

Throughput 14.16 GOp/s @75MHz

Latency (ms)
Without sparsity: 13.5 @75MHz, 202.5 @5MHz

With sparsity: 5.78 @75MHz, 86.7 @5MHz
Parameter
Memory

No pruning: 221.65 KB
75% PW Pruning: 100.88 KB

Peak Efficiency 102.34 GOp/s/W (1251 Inferences/J) @75MHz.

The PW layer is the most computationally intensive, as
depicted by Table II. Thus, we exploit sparsity specifically in
the PW layer in reducing latency by skipping processing cycles
with zero activations and weights and minimizing storage by
applying weight pruning and model compression techniques at
the compile time. These zero skipping and model compression
schemes reduce latency by 57% and memory storage by 54%,
respectively. The power consumption is estimated to be 138.25

mW at 75 MHz; however, the latency reductions achieved by
leveraging sparsity enable the design to operate at a much
lower frequency lowering the power consumption. The archi-
tecture could run as low as 5 MHz for our target application
(decoding hand kinematics) and still achieve the required
latency target by consuming just 52.23 mW (6.8 dynamic
+ 45.43 static) of power. The theoretical peak throughput
of the design is 7.2 GOp/s, with 48 MACs operating at 75
MHz. However, since operations involving zero are skipped
in the PW layer, we achieve an effective throughput of 14.16
GOp/s with a peak power efficiency of 102.34 GOp/s/W. The
architecture utilizes 37.23k 4-input look-up tables (LUTs) and
8.6k flip flops (FFs), which are mapped as eXchangeable
Logic and Routing (XLR) cells on Efinix FPGA.

VI. CONCLUSIONS

In this study, we introduced RAMAN, an energy-efficient
tinyML accelerator for continuous hand kinematics decoding.
Our approach, incorporating depthwise separable convolu-
tions and architectural design strategies like channel thinning,
pruning, and quantization-aware training, achieved significant
improvements in model size, complexity, latency, and main-
tained a high-performance level with an R2-score of 0.91.
RAMAN on Efinix Ti60 FPGA demonstrated peak power
efficiency (102.34 GOp/s/W at 75 MHz), and consumed 52.23
mW power at a 5 MHz clock rate with a 230 KB memory
footprint. The results highlight RAMAN’s effectiveness and
efficiency for real-time movement analysis and brain-computer
interfaces, with future plans for integration into the BCI
pipeline for closed-loop testing.
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