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Abstract—Bayesian models are challenging to implement on
hardware with the conventional design methodologies due to
their high computational complexity. Conventional digital archi-
tectures are designed for deterministic computation and are not
optimal for implementing probabilistic algorithms on hardware.
In this work, we propose an alternative method to implement the
probabilistic algorithms such as Bayesian models on hardware
using a stochastic computation (SC) framework. This framework
leverages on the probabilistic nature of the Bayesian models and
facilitates the implementation of complex probabilistic models
using simple logic gates. From an application standpoint, we
propose a novel Bayesian source localization model (BSLM)
that estimates a source’s position in a noisy environment by
solving the Bayesian recursive equation implemented on Field
Programmable Gate Array (FPGA) with low resource utilization.
The proposed SC design framework will pave the way to build
complex probabilistic algorithms for real-time edge computing
applications.

Index Terms—Bayesian Inference, Field Programmable Gate
Array, Unmanned Ground Vehicle, Hardware Architectures.

I. INTRODUCTION

Bayesian systems are widely adopted in various state es-
timation applications such as object tracking [1]–[3], simul-
taneous localization and mapping (SLAM) [4], [5], inertial
navigation [6], etc. These systems are computationally ex-
pensive, and real-time implementation using a conventional
software based model is not feasible. Hence, there is a need
to develop real-time computing hardware implementation, and
many existing works have attempted the same [7]–[9]. Vigoda
[7] proposed an analog VLSI circuits for probabilistic message
passing. Shapero [8] developed configurable analog hardware
for neuromorphic Bayesian inference. However, it isn’t easy
to scale and build large systems using analog circuits due to
their non-programmable nature. Moreover, due to the lack of
standard design and test flows, the development and testing
of large analog implementations are challenging relative to
digital systems. Additionally, the implementation of proba-
bilistic Bayesian models on deterministic digital circuits has
drawbacks such as, the area, and performance inefficiencies.

In this work, we propose a circuit based on the paradigm of
Stochastic Computation (SC) originally suggested by Gaines
[10], which is ideally suited for the implementation of prob-
abilistic algorithms with the low area and low power require-
ments. In the SC framework, the digital values are represented
by bit streams and can be processed using simple digital logic
gates. For instance, multiplication of two-bit streams can be
implemented using a simple AND gate in the SC framework.
Our Bayesian system design using SC primitives is developed
using simple logic gates and supports massive parallelism.

Since the mathematical framework of all the Bayesian systems
remains same, our design can serve as a potential building
block to implement other complex Bayesian models.

From the application standpoint, we attempt to solve the
source localization problem in real-time using the hardware
architecture proposed. In this model, we try to estimate the
position of a source based on noisy measurements by com-
puting the Bayesian recursive equation online using SC.

II. ALGORITHMIC FRAMEWORK

In this work, an experimental framework similar to the one
presented in [11] is used. The major contribution of this work
is, we propose a novel Bayesian source localization model
(BSLM) and demonstrate its implementation using SC.

A. Bayesian source localization model

Fig. 1 shows an overview of the Bayesian source localiza-
tion in the 2D arena. The entire arena is divided into K ×K
grids, assuming that the source is present in one of the grids.
As a proof of concept, we employ an omnidirectional light
source as the source to be localized. The space around the
UGV is divided into eight sectors with 45° angular separation
and an array of eight photodiodes, each having 45° field of
view is mounted atop the UGV to sense and localize the
source. Photodiodes provide the bearing information of the
source, which is used by the UGV to traverse and eventu-
ally converge at the source location. Depending on the light
incident on each photodiode, we consider the photodiode’s
output to be either 0 or 1. Reflective sources and other stray
light sources are potential sources of noise picked up by the
sensor, producing false detections. The challenge is to estimate
the source’s location or, in other words, the co-ordinate of the
grid with the highest likelihood of having the source using
noise corrupted sensor measurements. For this, we employ a
triangulation concept wherein we triangulate the region around
the UGV into eight sectors, and depending on the output of
photodiodes, we assign the probabilities to each grid in the
arena using Bayes theorem. In our study, we assume that
there is only one source present in the arena spanned by
K × K grids, as shown in Fig. 1 and the direction of the
UGV movement is restricted to a 45° angle in 2D arena.

Some probabilities relevant to the BSLM are discussed
below.

• The probability of noise due to reflective or stray light
sources is: P (n) = β.



• The probability of the jth photodiode output being 1 i.e.,
(zj = 1) either due to a light source (s(k,l)) in grid (k, l)
or noise (n) is: p(zj |s(k,l), n) = α.

• If there is a light source in grid (k, l) of sector j, then the
jth photodiode output will be 1 with a probability of α
irrespective of noise. The likelihood of photodiode output
being 1 or 0 in the presence of source in grid (k, l) is:

L1k = p(zj |s(k,l)) =

{
α, for zj = 1.

1− α, for zj = 0.
(1)

• If there is no source in the sector j, then there is a noise
source (distractor) with a probability β. The likelihood of
photodiode output being 1 or 0 in the absence of source
is:

L0k = p(zj |s̃(k,l)) =

{
αβ, for zj = 1.

1− αβ, for zj = 0.
(2)
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Fig. 1: An overview of the Bayesian source localization model.
The entire arena is divided into K ×K grids with the source
positioned at (3,K−1). The region around the UGV is divided
into eight sectors with 45° angular separation, and a set of
eight photodiodes is mounted on the UGV. The photodiode
may fire (i.e., output 1) due to the presence of a distractor or
light source. For instance, photodiodes in sector 2 and 5 fires
due to the presence of distractors at positions (K,K − 1) and
(1, 2) respectively, whereas the photodiode in sector 3 fires
due to the light source positioned at (3,K − 1). There is no
activity in other sectors, and photodiode output remains 0.

B. Bayesian Inference

The BSLM aims to estimate the posterior probability of the
source in grid (k, l) given the measurement zj :

P (s(k,l)|zj) =
P (zj |s(k,l)).P (s(k,l))

P (zj)

=
L1k.P (s(k,l))

L1k.P (s(k,l)) + L0k.P (s̃(k,l))
(3)

P (s(k,l)|zj) represents the required posterior probability,
P (s(k,l)) represents the prior probability that the source is

present in grid (k, l), L0k and L1k represents the likelihood
functions discussed in Section II-A. The posterior probabilities
of all K2 grids are evaluated for T time steps and the grid with
maximum posterior probability gives an estimate of the source
location. The pseudocode for the BSLM model is provided in
Pseudocode 1.

Pseudocode 1 : BSLM pseudocode

Method: Xs = BSLM(XUGV , z)

1: for t = 1 to T do
2: for k, l in ((a, b) for a in range(K) for b in range(K)):
3: Triangulation: ind = sector_index(XUGV , Xg(k, l))
4: . Xg(k, l) represents the position of the grid (k, l).
5: zj = z[ind]
6: Posterior Update:

7: Pt(k, l) =
L1k.Pt−1(k, l)

L1k.Pt−1(k, l) + L0k.(1− Pt−1(k, l))
8: . Refer Eq. 1 & Eq. 2 for estimating L1k & L0k.
9: end for

10: end for
11: Max computation and Xs estimation:
12: Pmax = max(Pt(:, :))
13: Xs = pos_of(Pmax)

III. HARDWARE IMPLEMENTATION

The top-level architecture of the proposed Bayesian source
localization model on hardware is shown in Fig. 2. Since there
are K×K grids (possible source locations), we divide the net-
work into K ×K parallel inference paths, one corresponding
to each grid. Each inference path consists of a triangulation
module, a stochastic Bayesian module, and a register. A set
of eight photodiode measurements (z) and the instantaneous
position of the UGV (XUGV ) are fed to the triangulation
module, which estimates the sector in which a particular grid
is located. A photodiode measurement associated with the
particular grid sector is selected and fed as the input to the
stochastic Bayesian module. The register’s output is the prior
probability of the grid, which is fed back to the Bayesian
module. The Bayesian module estimates the grid’s posterior
probability using Bayes’ theorem (cf. Eq. 3). The posterior
probability computed in each path is fed to a Max module to
estimate the position of the source (Xs).
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Fig. 2: Overview of BSLM hardware architecture.



A. Triangulation Module

A triangulation module is used to triangulate the region
around the UGV into eight sectors and identify the sector
in which a particular grid is located. This is achieved by
knowing the instantaneous position of the UGV (XUGV =
(xUGV , yUGV )) and position of the grid (Xg = (xg, yg))
in 2D arena. A set of eight photodiode measurements (z =
{z1, z2, · · · z8}) are provided as the input. After identifying
the sector index of a particular grid, we output the photodiode
measurement corresponding to that sector. For instance, if a
particular grid is located in sector 2 relative to the UGV, then
z2 is selected from z and given as the output.

B. Stochastic Bayesian Module

A stochastic Bayesian module calculates the posterior prob-
ability of each grid from the prior probability and the input
measurement using the Bayesian equation given below:

Pt = P (s(k,l)|zj) =
L1k.Pt−1

L1k.Pt−1 + L0k.(1− Pt−1)
(4)

where, Pt and Pt−1 represents the posterior and prior proba-
bility of the grid respectively.

The Bayesian equation presented in Eq. 4 is implemented
using the SC framework which gives the capability to perform
complex division and normalization operations using simple
logic gates. The circuit implementation of Eq. 4 using the SC
is shown in Fig. 4. The basic computational elements that we
have used to implement the Bayesian equation are:

1) Stochastic number generator (SNG): In the SC frame-
work, we first convert the binary input into a stochastic domain
wherein a binary number is represented by a bit stream, using
a stochastic number generator (SNG) [3]. A bit stream is a
sequence of binary digits (1s and 0s) in which information
is contained in the primary statistics of the bit stream or the
probability of any given bit in the stream being a logic 1. The
conversion from binary to stochastic bit stream involves gener-
ating an n-bit random binary number (ri) in each clock cycle
employing a pseudo-random number generator and comparing
it to the n-bit input binary number (X). For each time instant,
if ri ≤ X , the comparator outputs 1, otherwise 0 is generated.
The circuit of a stochastic number generator is shown in Fig. 3.
Stream of random numbers is generated by a Linear Feedback
Shift Register (LFSR) circuit [3], [12].

Comparator
x

LFSR y

n

n

Binary
Number

Stochastic
Bit StreamCLK

y ≤ x
1

Fig. 3: Digital implementation of stochastic number generator.

2) Likelihood and Normalization Circuit: Calculation of
the posterior probability using the Bayesian equation (cf. Eq.
4) mainly involves likelihood estimation and normalization
operation. For this, we employ a likelihood module and a
normalization module, as shown in Fig. 4. To begin with,

the probabilities α, αβ, and prior Pt−1 are converted into
a stochastic domain by utilizing SNGs. Their equivalent
stochastic versions are denoted by αs, αβs and Pt−1s . A
likelihood module estimate the likelihoods L1k and L0k as
per Eq. 1 and Eq. 2 respectively in the stochastic domain.
It is evident that the likelihood function’s behavior is similar
to a multiplexer, which selects one of the inputs at a time
depending on the input measurement zj which acts as a select
line of the multiplexer. 1−αs and 1−αβs are computed using
an inverter in the stochastic domain. Further, the multiplication
of likelihoods L1k and L0k with the prior probability is
implemented using AND gate in the stochastic domain. Thus,
the output of two AND gates P1 and P2 in the stochastic
domain are given by:

P1 = L1ks
.Pt−1s ; P2 = L0ks

.(1− Pt−1s)

P1 and P2 are then fed to a normalization module to estimate
the posterior.
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Fig. 4: Stochastic Bayesian module architecture.

The normalization module shown in Fig. 4 uses two AND
gates to perform multiplication in the stochastic domain and
a counter as an accumulator. The counter has one excitatory
input, E1, and two inhibitory inputs, I1 and I2. Two AND
gates inside the normalization module performs the multi-
plication of Po with P1 and P2, respectively. The counter
increments by one unit when E1 is logic 1, and both I1 &
I2 are logic 0, decrements by one unit when E1 is 0 and
either of the inhibitory inputs is 1 or if E1 is 1 and both
the inhibitory inputs are 1, decrements by two units if E1

is 0 and both the inhibitory inputs are at logic 1 and remains
unchanged otherwise. Thus, the counter accumulates the value
P1 − P1Po − P2Po, and its output is given by,

Po =

∫
P1 − P1Po − P2Po ; Ṗo = P1 − P1Po − P2Po

At equilibrium, the change in output probability is zero, i.e.,
Ṗo = 0, thus we have:

P1 = P1Po + P2Po

Po =
P1

P1 + P2
=

L1ks
.Pt−1s

L1ks
.Pt−1s + L0ks

.(1− Pt−1s)

Thus, the architecture successfully implements the Bayesian
equation in the stochastic domain. The counter’s output pro-
vides the posterior probability (Pt) as an 8 bit binary value.
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Fig. 5: 2D source localization experimental result with the source positioned at [8, 33] marked by a ’red’ circular dot. (a)
Trajectory of the UGV at different time instants t. At the start, UGV is positioned at [34, 10]. Estimated position of the source
(Xs) at time instant t = 30 obtained by BSLM is marked by a ’yellow’ circular dot. (b) Corresponding posterior probability
maps of 40× 40 grids at different time instants.

C. Max Module

As the name suggests, the max module determines which
of the K × K inference paths or grids have the maximum
posterior probability and outputs the grid’s co-ordinate, which
most likely contains the source. Thus, providing an estimate
of the source position (Xs). We employ digital comparators
arranged in a tree structure [13], [14] to evaluate the maximum
posterior probability with minimum computational time.

IV. EXPERIMENTAL RESULTS

To study the performance of the proposed BSLM frame-
work, we first modeled the entire system in MATLAB, and
the experimental result is shown in Fig. 5 with α = 0.8
and β = 0.4 in a 2D area spanned by 40 × 40 grids. We
have simulated the system for 30 time steps, and the results
demonstrate the effectiveness of the proposed framework by
successfully localizing the source. We then implemented the
model on Zynq UltraScale+ (xczu3eg-sbva484-1-e) FPGA
using the SC framework and verified the FPGA results with
the MATLAB version. The FPGA implementation was able to
estimate the source location accurately and matched the results
with the software version. Verilog HDL (Hardware Description
Language) was used for the implementation on FPGA. Further,
resource utilization of the implemented system on FPGA is
provided in Table I. All the internal variables were converted
from a floating-point to an 8 bit fixed-point representation. The
counter used in normalization module (cf. Fig. 4) is 8 bit wide.
Table. II shows the time steps (T ) required to localize the
source as a function of β for α = 0.8, and compares the fixed
point SC implementation with the MATLAB floating-point
implementation. Here, the source is assumed to be localized if
the Euclidean distance between the true and estimated source
positions is below the specified threshold which is 1.5 in
our case. Each value of T in the Table. II is obtained by
taking the mean of 100 different simulations. It is evident
that as β increases T also increases and the SC framework
has relatively higher T due to the quantization and stochastic
computation. However, the latency (L) of the single time step
(t) for MATLAB implementation on Intel Core i7-7700 CPU
with 8 cores clocking at 3.60 GHz is significantly greater
than the SC implementation on FPGA using 100 MHz clock.

Thus, the total computational time on FPGA using SC is very
low compared to the MATLAB version. For instance, with
β = 0.6, the total computational time for MATLAB and SC
implementations are 6.6 s and 0.76 ms respectively.

TABLE I: Device utilization summary on Zynq UltraScale+
(xczu3eg-sbva484-1-e) FPGA.

Resource Used Available Utilization(%)

LUTs 8, 974 70, 560 12.72

Registers 5, 773 141, 120 4.09

TABLE II: Mean time steps (T ) required to localize the source
as a function of β and comparison of latency (L) for MATLAB
and SC implementations for single time step (t).

Implementation
Time steps (T) Latency

β=0.2 β=0.4 β=0.6 β=0.8 (L)

MATLAB 20 23 30 52 0.22 s

SC Framework 23 27 37 54 20.66 µs

V. CONCLUSIONS AND OUTLOOK

This paper presents a novel implementation of the Bayesian
Source Localization Model on an FPGA using the SC frame-
work. Simple logic gates are used in our design for recur-
sive Bayesian computation. Our architecture supports massive
parallelism for Bayesian implementation, which is otherwise
not feasible with conventional architectures. The system was
validated for solving the source localization problem in real-
time. The experimental results indicate the efficacy of the
model proposed, and the hardware implementation reaffirms
the feasibility of Bayesian computation in real-time using SC.
The model was implemented on Zynq UltraScale+ FPGA with
12.72% LUT utilization. The architecture is modular and thus,
can be easily scaled for building large systems with minimum
design and programming effort. Our real-time implementation
of BSLM on hardware finds numerous applications in robotics
for developing autonomous systems that can perform localiza-
tion tasks without any human intervention. The system would
also help implement other Bayesian probabilistic algorithms
on hardware efficiently using the SC framework for edge
computing applications.
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