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Hybrid architecture based on two-dimensional memristor
crossbar array and CMOS integrated circuit for edge
computing
Pratik Kumar 1, Kaichen Zhu2, Xu Gao3, Sui-Dong Wang3, Mario Lanza 4✉ and Chetan Singh Thakur1✉

The fabrication of integrated circuits (ICs) employing two-dimensional (2D) materials is a major goal of semiconductor industry for
the next decade, as it may allow the extension of the Moore’s law, aids in in-memory computing and enables the fabrication of
advanced devices beyond conventional complementary metal-oxide-semiconductor (CMOS) technology. However, most circuital
demonstrations so far utilizing 2D materials employ methods such as mechanical exfoliation that are not up-scalable for wafer-level
fabrication, and their application could achieve only simple functionalities such as logic gates. Here, we present the fabrication of a
crossbar array of memristors using multilayer hexagonal boron nitride (h-BN) as dielectric, that exhibit analog bipolar resistive
switching in >96% of devices, which is ideal for the implementation of multi-state memory element in most of the neural networks,
edge computing and machine learning applications. Instead of only using this memristive crossbar array to solve a simple logical
problem, here we go a step beyond and present the combination of this h-BN crossbar array with CMOS circuitry to implement
extreme learning machine (ELM) algorithm. The CMOS circuit is used to design the encoder unit, and a h-BN crossbar array of 2D
hexagonal boron nitride (h-BN) based memristors is used to implement the decoder functionality. The proposed hybrid architecture
is demonstrated for complex audio, image, and other non-linear classification tasks on real-time datasets.
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INTRODUCTION
The need for improved performance, greater throughput and
higher integration density has pushed the scaling boundaries of
the complementary metal-oxide-semiconductor (CMOS) technol-
ogy. With the rise in artificial intelligence (AI), even this has
proved to be insufficient in implementing machine learning (ML)
and other generic neural algorithms on existing hardware
architectures1,2. Additionally, the processing of AI algorithms on
the edge devices needs to simultaneously address issues such as
privacy, security, cost, latency, and bandwidth3. Therefore, the
implementation of such algorithms on the hardware requires
highly energy-efficient and massively parallel architectures with
low latency and memory requirements. Achieving these para-
meters with CMOS technology utilizing traditional von-Neumann
architectures is challenging because of communication and
memory bottleneck along with non-linear effects that traditional
designs suffer from4,5.
However, the implementation of ML algorithms using analog

CMOS design techniques can offer a significant improvement
in system performance parameters6,7. The analog implementa-
tion allows designers to utilize full MOS device physics; hence
the architecture can be optimized down to transistor level. But,
the analog implementation comes with its own challenges
such as the designed circuits are sensitive to device mismatch
and non-linear effects8. This makes it difficult to design analog
circuits in state-of-the-art technology nodes. On the contrary,
one could design systems that utilize these shortcomings (i.e.,
mismatch, non-linearity) as an advantage rather than engineer-
ing out the design9–15.

Additional degradation in conventional system design comes
from the fact that today’s systems are increasingly dependent on
memory technologies such as random-access-memory and Flash.
These memories are essentially based on the charge storage
mechanism, resulting in degradation of performance, reliability,
and noise margin in lower technology nodes. To overcome the
von-Neumaan bottleneck, several emerging memory devices are
being explored where the data can be processed in situ within the
memory by exploiting the physical principles of resistive switching
(RS). While the transition metal-oxide (TMO) based resistive RAM
(RRAM) technology is nearing commercialization, the recent time
has witnessed a surge of experimental demonstrations of 2D
material-based RRAM. These 2D RAMs can overcome the vertical
scaling limit of TMO RRAMs since the remarkable RS is
demonstrated even at monolayer16. The fundamental mechanism
of RS in 2D RRAM appears to be different17,18, and thus it may
outperform the TMO RRAM in terms of operating speed and
power. In addition, we show that the state-currents expand
multiple orders of magnitude (from sub-nano Ampere to milli
Ampere) in 2D RAM, which is, to our best knowledge, not yet
reported for any TMO based RRAM.
Here, we propose the use of a hybrid architecture based on

extreme learning machine (ELM algorithm) for edge computing
by integrating existing CMOS technology with emerging
memristive technologies made of two-dimensional (2D) materi-
als. The result is a hybrid architectural framework (Fig. 1a) that
can surpass the current technological limitations while offering
outstanding advancements in overall system performance. Our
system utilizes the non-linearity offered by the CMOS circuit and
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the inherent device mismatch along with minimum transistor
count to offer efficient design in terms of area and power. We
show the system performance for generic classification applica-
tions such as audio, image, and other real-time datasets.

RESULTS
Hybrid system architecture
The proposed architecture consists of a CMOS Encoder chip
followed by the Memristor Decoder chip, as shown in Fig. 1b.
These two units work in tandem yet being isolated from one
another. The CMOS Encoder chip consists of an ELM encoder, a
row-select encode unit, a bias generator unit, and a control unit.
The core of the proposed architecture employs local receptive
fields-based extreme learning machine (LRF-ELM) algorithm
(Fig. 1a). LRF-ELM19 is a variant of the ELM algorithm where the
weights between input and hidden layer are local and random20.
The only trainable weights are the output weights, which can be

learned using the least square method for a given classification or
regression task. The output function of the ELM for a generalized
single layer feed-forward topology is given by19,20:

FðxjÞ ¼
XL

i¼1

wi � G aj ; bi ; xj
� �

; j ¼ 1; ¼ ; ¼ ;N (1)

where wi 2 RM is the weight connecting the ith hidden node to
M target nodes, aj 2 Rn and bi 2 R are the are random and
fixed parameters of ith hidden node, xj 2 Rn belongs to any
N arbitrary distinct sample input and G �ð Þ is a non-linear
continuous function.
For the non-linear function being a Gaussian kernel, G �ð Þ can be

written as:

G aj ; bi ; xj
� � ¼ e �bi jjxj�aj jj2ð Þ (2)

where aj and bi are the random and fixed parameters of ith

Gaussian node arising from device mismatch. For an arbitrary
distinct sample, xj 2 Rn is the jth sample input vector and t 2 RM

Fig. 1 CMOS-memristor hybrid architecture framework. a Hybrid LRF-ELM classification architecture which can be used for high input
dimensional data such as image and audio spectrogram. b System architecture showing CMOS encoder chip and Memristor decoder chip
along its functional sub-blocks.
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is the target vector, the output function corresponding to jth

sample input can be written as:

F xj
� � ¼ hj �W (3)

Where hj
� �N

j¼12 R1 ´ L is the hidden layer output vector for any
Nth arbitrary sample input and W 2 RL ´M is the output weight
matrix. The output layer weight matrix W is then be analytically
calculated using modified quantization aware stochastic gradient
descent (SGD) learning algorithm explained in detail in “Quantiza-
tion aware learning for LRF-ELM”.
Figure 1a shows the network level architecture of the hybrid

LRF-ELM network used in our framework for a generic case of
one target nodeðT 2 RN ´ 1Þ. The same architecture can also be
generalized for multiple target nodes. The output weight vector
for jth training sample, mth output node and L hidden nodes and
can then be written as wm ¼ ½w1m;w2m;::::::::;wLm�. For the case of
4 target node ðT 2 RN ´ 4Þ, the input and the hidden layer of the
LRF-ELM network shown in Fig. 1a form the ELM encoder unit in
the CMOS-Memristor chip in Fig. 1b. The output of this ELM
encoder (a row of matrix H) is passed as an input to the row-
select encode unit. Depending on the select signal Sel < 0 : n>ð Þ,
the output of hidden node is passed to the Memristor Decoder
chip. The Memristor Decoder chip consists of a row-select
decode, a memristor crossbar array and a mixed-signal interface
unit. The weight matrix W is implemented using a memristor
crossbar array made of 2D materials, as shown in the Memristor
Decoder chip of Fig. 1b. Each output node of the LRF-ELM
network in Fig. 1a is a differential pair integrator21 (DPI) whose
array is implemented in the mixed-signal interface unit of the
Memristor Decoder chip. We designed the CMOS Encoder chip
in a 180 nm technology node, and post-layout simulations with
hidden node parasitics were carried out to verify the results.
CMOS circuit non-linearity was captured during training and
inferencing, and weights were stored in memristors as the
quantized conductance states. The main advantages of the
proposed framework are: (1) the framework is tolerant to device
variability and utilizes inherent MOS device mismatch as random
weights to its advantage, hence get away with any memory
storage requirement for the first layer weights; (2) the
architecture is robust to process variations and therefore can
be designed to much lower CMOS technology node, leading to
further improvement in system performance parameters; (3) the
overall energy consumption of the proposed system is very low;
thus, a good candidate for edge computing applications; (4) in
the proposed hybrid system, the CMOS Encoder Chip and the
Memristor Decoder Chip are two significant parts of the ELM
framework, and each part can be optimized separately. This
arrangement enables to explore other types of emerging
memories just by replacing the decoder chip, without affecting
the overall system; (5) the memristor array performs multiply
and accumulate (MAC) operation between the higher-
dimensional input feature map and the stored quantized
weights on a time-multiplexed basis; (6) the LRF-ELM framework
for real-time dataset classification uses 9D Gaussian CMOS
circuit operating in the subthreshold regime. The circuit,
therefore, offers the desired non-linearity with minimum
transistor count, hence, offering a low area and low power;
and (7) the framework offers a substitute for digital memory
with the multi-state memristive device, thus could save energy
and area footprint.

Quantization aware learning for LRF-ELM
The classification network was trained off-chip using modified
quantization aware SGD learning22. To incorporate the variability
in each state (total 26 states) arising due to device to device and
cycle to cycle variations, we included the statistical device
variabilities σkf g26k¼ 1 as a parameter while training the algorithm.

Here, we have used quantization aware SGD algorithm rather
than batch gradient descent and modified it to incorporate
statistical variability while training. The algorithm is described
below with the dimensions of the parameters. Algorithm 1 shows
the modified SGD based learning. The algorithm takes into
account the quantization error arising due to the mapping of
learned weight to the closest available memristor states along
with the statistical variability present in the memristor device. In
each learning iteration, the function f �ð Þ assigns each element of
the intermittent weight matrix ~wlmð Þ to one of the closest
available memristor state smeankð Þ. Here, Smeanf g1 ´ 26 and σf g1 ´ 26
are the mean and the variance vectors obtained from the
memristor data matrix MDatað Þ (explained in detail in Supplemen-
tary Fig. 1 and Supplementary Note 1). Thereafter, each element
of the quantized weight vector wQ

lm is defined as a random
number picked from the Gaussian distributions with mean as
smeank and variance corresponding to that mean as σk . Here,
M Target class matrix for N training samples:

Tf gN ´M¼
t11 ¼ t1M
..
. . .

. ..
.

tN1 � � � tNM

0
B@

1
CA;

Intermittent output weight matrix for L hidden nodes:

~W
� �L ´M¼

~w11 ¼ ~w1M

..

. . .
. ..

.

~wL1 � � � ~wLM

0
B@

1
CA;

Quantized output weight matrix for L hidden nodes:

WQ
� �L ´M¼

wQ
11 ¼ wQ

1M

..

. . .
. ..

.

wQ
L1 � � � wQ

LM

0
B@

1
CA;

A row of Target class matrix corresponding to an input sample:
tj

� �N
j¼12 R1 ´M;

Mean vector and mean of each state:
Smeanf g1 ´ 26¼ smean1 ; smean2 ; � � � � � � ; smean26½ �; smeankf g26k¼12 R1 ´ 1;
Variance vector and variance of each state:
σf g1 ´ 26¼ σ1; σ2; � � � � � � ; σ26½ �;σ 2 R1 ´ 26;α 2 R; hj

� �N
j¼12 R1 ´ L;

Algorithm 1. Quantization aware stochastic gradient descent
learning for hybrid LRF-ELM

CMOS encoder chip (ELM encoder unit)
The LRF-ELM19 architecture overcomes the high-dimensionality
problem by assigning the sparse connection between input and
hidden nodes, as shown in Fig. 1a. For a particular feature input,
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the value of weights for LRF of all the hidden nodes is the same.
Each input node corresponds to a local receptive field generated
by taking windows of dimension 3 ´ 3 and shifting by the stride of
two. For the input matrix of dimension 31 ´ 51, a total of 375 input
nodes will be obtained. The output layer has time-multiplexed all-
to-all connectivity with the hidden layer through a row-select
encode, a row-select decode, and a memristor array. In an LRF-
ELM architecture, the output of each hidden node depends on the
different combinations of input nodes. This enables the learning of
local correlations more appropriately and is invariant to small
translations and rotations. We use a Gaussian function as a hidden
node in our architecture, which is implemented using subthres-
hold MOS circuits23–25. Each hidden node in Fig. 1a implements a
9D Gaussian circuit for LRF-ELM network. These Gaussian circuits
were implemented by cascading one-dimensional (1D) Gaussian
cells sequentially in an N-P-N-P fashion, where N and P are NMOS
and PMOS cells, respectively.
Figure 2a shows the block level architecture of a 9D Gaussian

cell (one hidden node) formed by cascading N and P-type
Gaussian cells, which allows the circuit to work at a lower swing
and reduces settling time. Figure 2b shows the structure of a
single NP Gaussian cell made by cascading an N-type and a P-type
cell, and Fig. 2c, d illustrate the CMOS architecture of the N-type

and P-type Gaussian cells, which closely approximate to Gaussian
characteristics. The output current equation of the Gaussian cell
for jth input sample and ith feature input as shown in Fig. 2c is
given by24,25:

Iout1 ¼
~Ibias
2

sech2
xji � aji
2ηUT

� �
(4)

where ~Ibias is the bias input current, xji is a feature input, aji is the
random offset emerges due to device mismatch and Vx is a
constant voltage. The DC characteristic plots of Iout2 and Iout1
shown in Fig. 2c always satisfy the constrain given by
Iout1 þ Iout2 ¼ ~Ibias. A similar equation can be obtained forIout4.
On approximating, (4) closely resembles the Gaussian function in
(5)24,25 and can be rewritten as:

g aji; bi; xji
� � ’ C1e

�bi jjxji�aji jj2ð Þ (5)

Where C1 is a constant and bi is a Gaussian kernel parameter
obtained by scaling the input voltages. By cascading 9 of such 1D
Gaussian structures, a nine-dimensional (9D) Gaussian cell can be

Fig. 2 Hidden layer neuron block and its equivalent MOS architecture. a Block diagram representation of a hidden node implementing 9D
Gaussian cell using 2D NP Gaussian cells. b Block level representation of a generic 2D NP Gaussian cell made by cascading N and P-type
Gaussian cells and current mirrors. c MOS structure of P-type Gaussian cell. d MOS structure of N-type Gaussian cell. e Layout of a single
hidden layer node in Fig. 2a implementing 9D Gaussian cell using 180 nm CMOS TSMC technology.
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obtained, whose equation is approximated by:

G aj ; bi ; xj
� � ’ C2

Y9
i¼1

g aji; bi; xji
� �

(6)

Where aj 2 R9 and xj 2 R9 Fig. 2a shows the block diagram for
the implementation of (6) for 9D Gaussian cell.

CMOS encoder chip (row-select encode and control unit)
In LRF-ELM, the number of hidden nodes depends on the size of
the input feature map to capture local correlations, the input
feature dimension, the strides for convolution, and the accuracy
desired by the application. For instance, the hidden nodes count
required for digit recognition can be significantly lower than digit
classification. In all the cases, the output pin count in the CMOS
chip cannot be scaled in proportion to the number of hidden
nodes. To overcome this challenge, we designed a row-select
encode unit whose detailed explanations are mentioned in
Supplementary Fig. 2 and Supplementary Note 2, respectively.
The circuit utilizes cascode analog multiplexers26 designed using
transmission gate. It can be noted that the number of cascoded
multiplexer circuits inside the row-select encode unit is equal to
the number of outputs in CMOS Encoder chip. The control unit
consists of a voltage bias generator and a scan chain flip-flop; the
scan chain flip-flop controls the select line of the row-select
encoder in the CMOS chip and the row-select decode of the
memristor chip. This helps in time-multiplexing the output of the
hidden node to the memristor crossbar array. At each clock edge,
n0 rows are connected to the row-select decode unit of the
memristor chip. The control unit simultaneously provides the
timing control pulse voltage Out Pulse in Fig. 1b to the DPI21

circuit in the memristor chip. It can further be noted that the pulse
width of the Out Pulse is kept such that the capacitor in the DPI
does not reach its saturation level until all the hidden nodes are
scanned through select inputs.

Memristor decoder chip (memristor crossbar)
The learned weights between the hidden node and the output
node were programmed in the memristor crossbar array, where
each memristor device can have multiple quantized conductance
states. Memristor crossbar performs MAC operation between the
hidden nodes output voltage and memristor conductance. It also
decodes the input feature from the hidden layer to a higher-
dimensional space. The hidden node voltages h1; ¼ ¼ ; hLð Þ in
the LRF-ELM network of Fig. 1a are passed through the row-select
encode unit of the CMOS chip to row-select decode unit of the
memristor chip on a time-multiplexed basis. The row selection
timing is precisely controlled using the timing control block of the
CMOS chip. These voltages are then passed as an input to the
memristor crossbar where each memristor device is programmed
to one of the 26 possible states corresponding to 26 pre-trained
conductive states. Each column’s output in a memristor crossbar is
stored as a charge in a capacitor of a DPI integrator circuit21

(Fig. 1b). At each time step, the capacitor (C in Fig. 1a) in the DPI
array keeps on integrating the output from the memristor crossbar
array till the complete hidden nodes are scanned for particular
data inputs. The final results are then obtained by comparing the
voltages at the DPI output nodes.
The crossbar array of memristors has been fabricated using

chemical vapor deposited (CVD) multilayer hexagonal boron
nitride (h-BN) as RS medium27, which was sandwiched by Au
electrodes (see “Methods” and Fig. 3a). These devices exhibit non-
volatile bipolar RS at low currents down to ~2 pA in high resistive
state and ~10 nA in low resistive state, as shown in Fig. 3b.
The device-to-device variability of the electrical properties of these
devices is low. As an example, Fig. 3c shows the distribution of
the set and reset voltages (VSET and VRESET) for 16 devices; the

coefficient of variance (CV) is calculated as the mean value (µ)
divided by the standard distribution (σ), and the values reported
are 6.2% for VSET and 12.4% for VRESET. The value of CV of VSET and
VRESET is calculated for every single device (see Fig. 3d, f) and for an
accumulated number of devices (see Fig. 3e, g), when using
current limitations of 1 µA (pink spheres) and 1mA (blue/red
spheres), and these values are compared with the values reported
in the literature (which is mainly focused on cycle-to-cycle
variability, although some studies reporting device-to-device
variability have also been reported)28–40. The amount of data
presented is much superior to that reported in any other study
and shows a realistic picture of the real cycle-to-cycle and device-
to-device variability, which is amongst the lowest in both cases.
Compared to memristors made of traditional metal oxides (which
are the reference in this field), the use of h-BN is beneficial
because it allows better control of the potentiation process; while
the potentiation in most metal oxides is only controllable at high
currents and it shows an erratic trend (the currents go up in some
pulses and down in others, with an overall upward trend)41–44, the
potentiation in h-BN memristors is controllable even in the sub-
microampere regime, and it shows a very smooth trend45 (refer
Fig. 3j). The reason is that the conductance modulation in CVD-
grown multilayer h-BN takes place in few-atoms-wide native
defects that are surrounded by highly stable crystalline 2D layered
h-BN; thus, ionic migration takes place in a very confinement
volume and cannot propagate laterally46, allowing to control it
more accurately. The Au/h-BN/Au devices here presented
exhibited more than 26 stable conductance states47 starting at
10 nS (i.e., the lowest conductance, see Fig. 3d), something very
challenging to achieve when using standard memristors made of
TMO. The lateral size of the memristors used in the crossbar array
is 5 µm × 5 µm, although good miniaturization has been demon-
strated using 150 nm × 200 nm cross-point devices48 and nanodot
devices with a radius of ~25 nm47, exhibiting excellent potential
for high integration density. The fact that only scalable methods
have been used during this process facilitates the integration of
the proposed setup in the semiconductor fabrication line46.

Memristor decoder chip (row-select decode unit and mixed
interface circuit)
The output of the CMOS chip is passed to the row-select decode
unit of the memristor chip. Depending on the select signal
Sel < 0 : n >ð Þ in the row-select decode block, the outputs are
routed to the memristor crossbar array. The row-select decode is a
network of CMOS pass transistors and charge-based switching
gates. The block architecture and detailed explanation are
presented in Supplementary Fig. 3 and Supplementary Note 3,
respectively. It can be noted that the select lines of the row-select
decode unit in memristor chip and the row-select encode in CMOS
chip are synchronized with the clock edge of the control-and-
timing unit, and the number of analog pass transistors is equal to
the number of outputs coming from the CMOS Encoder chip. The
mixed interface circuit (Fig. 1b) of the output nodes consists of an
array of current mode log-domain DPI synapses working in the
subthreshold regime. The output response (IY1) of one DPI circuit
receiving a cumulative input current Io1ð Þ from all the memristors
in a column of a crossbar and arriving at t0 while ending at t1 is
given by21:

IY1ðtÞ ¼ IgainIo1
Iτ

1� e
�ðt�t0Þ

τ

� 	
þ IY1ðt0Þe

�ðt�t0Þ
τ (7)

for the charging pulse period, and:

IY1ðtÞ ¼ IY1ðt1Þe
�ðt�t1Þ

τ (8)

for the discharge pulse; IY1ðt0Þ and IY1ðt1Þ represent the initial

condition at t0 and t1 respectively, and Igain ¼ I0e
� ð Vg�VDDj jÞ

ηUT

� 	
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represents the virtual p-type subthreshold current, η is the sub-
threshold slope factor and UT is the thermal voltage. At each clock
edge, when the row-select encode and row-select decode
switches their select inputs Sel < 0 : n>ð Þ, the resultant DPI current
(IYj; j 2 ð1 : 4Þ) starts falling. This fall is accumulated till the output
of each hidden node is scanned by the row-select encode and
row-select decode. The outputs of the mixed-signal interface unit
are then compared with a pre-defined threshold value. Above and
below the threshold value, the outputs are classified as one and
zero, respectively, which are then used to identify which class the
dataset belongs. It is noted that the capacitor Cð Þ and voltages Vg,
Vτ and VW are set such that the output does not saturates while
discharging even when all the rows are scanned. The integration
time period (here charging and discharging time of C) is kept
proportional to the switching time of the select inputs
Sel < 0 : n >ð Þ. Here, the settling time of the circuit and the
operating frequency of the flip-flop decide the clock frequency
and hence indirectly control the integration time period through
the Out Pulse.

System performance analysis
Device mismatch poses a major challenge in analog circuit
design8. Several methods are proposed to overcome this issue as
it affects system performance in one way or another. The
proposed framework utilizes inherent device mismatch for
implementing random weights between input and hidden nodes.
Figure 2a shows one of the hidden nodes of an LRF-ELM
architecture of Fig. 1a implementing 9D Gaussian cell. Device
mismatch between each transistor in a 9D Gaussian cell (hidden
node) adds randomness to these offset voltages aj shown in (5)
and (6). Figure 4a shows the output current characteristic plot at
each N and P Gaussian cell output port in a 9D Gaussian
architecture shown in Fig. 2a. The characteristic plots are obtained
when two inputs xj1 and xj2 in Fig. 2a are varied simultaneously
from 0 to 1.8 volts, while other inputs are assigned a constant
fixed voltage. One can analyze the variation in the non-linear
Gaussian curve when inputs are varied. It can also be seen that the
available output range for maintaining this non-linearity should be

Fig. 3 Memristive crossbar array. a SEM image of a 10 × 10 crossbar array of metal/h-BN/metal memristors. The scale bar is 40 µm. b I–V
curves measured in one of the memristors in a when programmed using ICC= 1 µA, demonstrating the presence of stable bipolar RS.
c Statistical analysis of the VSET and VRESET for a population of 16 devices. d, f Comparison of coefficient of variation (CV) of VSET and VRESET of all
our h-BN memristors (respectively) with the values reported in previous publications. The Cv is calculated from different devices and is
ordered from smaller to higher. e, g Change of CV of VSET and VRESET (respectively) with increasing population of tested devices. For example,
the value of CV for n memristors indicates the cumulative CV for a population of n memristors. h Current signal measured when applying
sequences of pulsed voltage stresses, demonstrating analog transitions between different conductance states (up: amplitude 5.8 V, duration
1ms and interval 1 ms; middle: amplitude 5.8 V, duration 500 µs and interval 500 µs; bottom: amplitude 4 V, duration 20ms and interval
25ms). i Cumulative probability plot of the currents registered during a constant voltage stress at 0.1 V for 100 s, at 26 different current levels
during the potentiation of the Au/h-BN/Au device. In all cases the current is stable. More stable states may be registered if the reading is
carried out at other resistance levels.
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preferably kept between 0.8 to 1.6 V. Hence, all the inputs were
normalized in this range before being applied to the classification
network. It can further be noted that this range can be tuned by
changing the aspect ratio of transistors. We choose the aspect
ratio of NMOS and PMOS as 2 to satisfy minimum power and area
constraints. Figure 4b shows the output current plot when Vbias
(corresponds to current Ibias in Fig. 2b) is varied from 0 to 1.8 V and
all the input is kept constant and fixed. This Vbias acts as a tunable
hyperparameter for adjusting the current amplitude and non-
linearity characteristics in the design. Figure 4c shows the change
in the output current amplitude of 9D Gaussian cells for 200
hidden neurons due to process, device mismatch, and gain
variation. It can be seen that the output current varies for input
voltages according to a log-normal distribution due to the
exponential relationship between the voltage and the current of
a transistor in the subthreshold region. This is a significant source
of non-linearity to random offset voltage aji in the Gaussian cell.

Framework testing and dataset
A generic ELM network (fully connected) is deemed suitable for
classification and recognition of low dimensionality datasets but
possess hardware challenges for datasets having high feature
dimension because of significant increase in hardware complexity.
We tested the proposed hybrid LRF-ELM framework for both
classification and recognition results on high-dimensional audio
and image datasets. For classification, we utilized environmental
sound classification (ECS-50) dataset49 and free-spoken-digit
(FSDD) dataset50. Pre-processing and feature extraction was done
offline using cascade of asymmetric resonators-inner hair cell
(CAR-IHC) cochlear model51. The extracted feature (cochleogram)

was then passed to the LRF-ELM network for classification. The
size of the extracted feature dimension (cochleogram matrix) was
31 ´ 51 for ECS-50 dataset and 47 ´ 51 for FSDD datasets. This
feature matrix size was optimized to properly capture all the
relevant feature in the respective datasets. Table 1 shows the
classification results for ESC-5049 and FSDD50 datasets. For ESC-50
dataset, classification was performed on pre-processed data
samples (where each data point is a cochleogram matrix of 1-s
audio signal). Dataset for ESC-50 was created by combining 200
data samples each from 5 different classes belonging to different
groups where each group belongs to different class categories
such as animal, natural landscape, human non-speech, interior
domestic, and exterior urban sounds. Speaker recognition was
performed on FSDD dataset where average accuracy for various
speakers was shown in Table 1 for 2000 pre-processed datapoints
of 1-s each.
We also tested the framework for the image classification task.

For this, we utilized semeion digit recognition dataset52 from the
UCI repository. The input image dimension was scaled to 12 ´ 13
and passed to LRF-ELM network for classification. Table 2 shows
the digit recognition accuracy on semeion dataset.
Additionally, we also tested the system for lower-dimensional

datasets less than 9 features so that we can directly use standard
ELM framework rather than using LRF-ELM technique. The system
was trained offline using quantization aware SGD algorithm22.
For low dimensional sensory feature signals, we utilized an

activity recognition system based on multi-sensor data fusion
(AReM) dataset52 from University of California Irvine repository
with multivariate, sequential, and time-series characteristics. Four
activities, namely walking, standing, lying, and sitting, were used

Table 1. Classification result for the audio dataset in LRF-ELM network.

Dataset Class Number of hidden nodes % Accuracy

Train Test

Floating Quantizeda Floating Quantizeda

Animal (ESC-50) Insects 3750 93 90 90 89

Natural Landscape (ESC-50) Crackling Fire 3750 93 92 92 89

Human Non-Speech (ESC-50) Footstep 3750 86 83 84 81

Interior Domestic Sound (ESC-50) Washing Machine 3750 93 92 90 89

Exterior Urban Noise (ESC-50) Saw chain 3750 95 94 92 91

FSDD Speaker Recognition 5750 86.00 84.50 82.25 80.00

aWeights quantized to 26 memconductance states.

Fig. 4 Gaussian non-linearity and mismatch characteristic curve. a Output current characteristic plot at the output of each N and P-type
Gaussian cell shown in Fig. 2a when two inputs xj1 and xj2 are varied simultaneously from 0 to 1.8 volts and other inputs ðxj3 � xj9Þ are fixed
constants. b Plot of output current at the output of 1D Gaussian cell (Iout1 in Fig. 2c, d) when Vbias is varied from 0 to 1.8 V and all other inputs
in a 9D Gaussian cell is kept constant. c Variation in output current amplitude of 200 hidden neurons exhibiting a log-normal distribution for
fixed input voltages due to process, mismatch and gain.
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from the dataset for classification. We normalized the input
features between the non-linearity voltage range of the Gaussian
kernel obtained for the fixed bias voltage Vbias. This was then
passed to a fully connected pre-trained ELM network. The
classification results were obtained for DPI output array. We also
showed the classification for other real-time datasets such as
Breast Cancer, Ionosphere and Haberman52. Table 3 summarizes
the classification accuracy of the framework on these datasets.
In all the above cases, the number of hidden nodes L, were kept

~10 times53 of the input features K ´ 10ð Þ. Floating accuracy in
Tables 1–3 denote the classification accuracy when full precision
weights between hidden nodes and output were used. Quantized
accuracy shows the accuracy when the weights were mapped to
the nearest available 26 stable memristor conductance states.
CMOS power consumption per computation for a single hidden
node for a supply voltage of 0.95 V was found to be 7.8 µW
(detailed explanation of energy efficiency is presented in
Supplementary Note 4 and Supplementary Note 5).

DISCUSSION
This paper proposes the design of a hybrid edge computing
system utilizing emerging 2D materials along with existing CMOS
technology. The proposed system integrates best of both process;
the area and energy efficiency of 2D materials and the scalability
and power efficiency of the existing CMOS process. We utilized a
beyond conventional near-memory approach where 2D memris-
tor crossbar array is used as the multi-state analog memory, thus
overcoming the problem of area and memory wall in CMOS. The
designed system is generic enough to be used in several
applications such as audio detection, speech, and non-speech
detection, image classification, and other edge computing tasks
where latency, power, and area are severely constrained. We
showed the fabrication of a crossbar memristors array using
multilayer h-BN as dielectric that exhibits analog bipolar RS in
>96% of devices. Analysis related to the operating frequency,

throughput, and power consumption are presented in Supple-
mentary Fig. 4, and their description in Supplementary Note 4 and
Supplementary Note 5, respectively. Furthermore, the isolation
among CMOS Encoder chip and Memristor Decoder chip allows us
to explore other memory technologies, such as Phase Change
Memory and RRAM. Thus, the proposed low-power framework
with good classification results makes our system suitable for
resource-constrained edge devices.

METHODS
Simulation
Post-Layout CMOS circuit analyses were executed on Cisco Hyperflex
HX420c with 72 Intel Xeon processing cores in parallel with 32 GB swap
memory and 240 GB random-access memory. Cadence IC 6.18 with
Spectre 18 was used along with Virtuoso Layout GXL for inferencing each
dataset with a turn-around time of ~2 weeks for each model.

Fabrication of memristors’ crossbar arrays
The fabrication of crossbar arrays of memristor follows three steps from the
bottom electrode, middle dielectric layer, and top electrode. First, the
matrix of Au bottom electrodes is patterned via photolithography (mask
aligner from SUSS MicroTec, model MJB4) and electron beam evaporation
(Kurt J. Lesker, model PVD75) on a 300 nm SiO2/Si substrate. Each pattern
consists of 5 µm wide metal wires connecting large metal pads (~104 μm in
size) for better probe station tip engagement. Second, for the dielectric
layer, ~6 nm thick CVD h-BN sheets transferred (from its growth substrate,
i.e., Cu foil) on the matrix of bottom electrodes via standard wet transfer
method, in which FeCl3 water-based solution is used as the copper
substrate etcher and PMMA is used as the polymer scaffold54. Third, a
matrix of Au top electrodes was patterned and deposited with the same
recipe as the first step, except that the pattern was aligned to form a cross-
point junction with the bottom electrodes. The cross-point regions
between the wires define the active area of each memristor, which are
5 µm × 5 µm. The growth process of the h-BN sheet is described in depth in
reference27.

Device characterization
The structure and surface morphology of the crossbar arrays is analyzed by
scanning electron microscopy (SEM, from Carl Zeiss, model Supra 55). The
electrical information is collected by semiconductor device analyzer (from
Keysight, model B1500) connected with probe station (from Cascade
Microtech company, model M150). We use the waveform generator/fast
measurement unit (WGFMU) connected for pulsed voltage stress applica-
tion and simultaneous current recording. For all electrical measurements,
the stress tip is always applied to the top electrode, while the ground tip is
always applied to the bottom electrode.

Table 3. Classification results for lower-dimensional dataset in a fully connected ELM network.

Dataset/class Number of hidden nodes % Accuracy

Train Test

Floating Quantizeda Floating Quantizeda

AReM

Walking 150 92 92 92 89

Bending 150 91 90 92 89

Lying 150 81 78 82 80

Sitting 150 80 75 75 72

Breast cancer 100 98 93 92 89

Ionosphere 100 95 95 89 87

Haberman 100 85 84 75 70

aWeights quantized to 26 memconductance states.

Table 2. Classification result for image dataset in LRF-ELM network.

Dataset Number of
hidden nodes

% Accuracy

Train Test

Floating Quantizeda Floating Quantizeda

Semeion 360 92.00 90.93 90.66 89.33

aWeights quantized to 26 memconductance states.
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