
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 1

ARYABHAT: A Digital-Like Field Programmable
Analog Computing Array for Edge AI

Pratik Kumar , Graduate Student Member, IEEE, Ankita Nandi , Ayan Saha, Kurupati Sai Pruthvi Teja ,
Ratul Das, Shantanu Chakrabartty , Senior Member, IEEE, and Chetan Singh Thakur , Senior Member, IEEE

Abstract— Recent advances in margin-propagation (MP) based
approximate computing have resulted in analog computing
circuits that exhibit scaling properties similar to that of dig-
ital computing circuits. MP-based circuits allow trading off
energy-efficiency with speed and precision, endow robustness
to temperature variations, and make the design portable across
different process nodes. In this work, We leverage these scaling
properties to design ARYABHAT, a field-programmable analog
machine learning processor that can be synthesized like digital
field-programmable gate arrays (FPGAs). ARYABHAT features a
fully reconfigurable tile-based modular analog architecture with
adjustable throughput and configurable energy requirements,
making it suitable for various machine-learning computations.
The architecture can perform computations at variable accu-
racy and different power-performance specifications and can
simultaneously leverage near-memory computing paradigms to
improve computational throughput. We also present a com-
plete programming and test ecosystem for ARYABHAT called
ARYAFlow and ARYATest. As proof of concept, we showcase
the implementation of machine learning algorithms at different
performance specifications.

Index Terms— Analog machine learning, analog accelerator,
neural array, field programmable, margin propagation.

I. INTRODUCTION

ANALOG computing has emerged as an attractive
paradigm for machine learning applications, promising

exceptional computational density and energy efficiency [1].
However, the inherent approximate nature and dependence on
physical models make the approach vulnerable to transistor
non-idealities. Unlike digital computing, analog computing
lacks attributes like noise margin, which endows noise immu-
nity to the system, and bit truncation and expansion, which

Manuscript received 30 July 2023; revised 11 November 2023 and
4 December 2023; accepted 2 January 2024. This work was supported in part
by the Department of Science and Technology of India under Grant SERB
CRG/2021/005478 and Grant DST/IMP/2018/000550 and in part by the Indian
National Academy of Engineering under Grant INAE SP/INAE-22-2106.
This article was recommended by Associate Editor Y. Tang. (Pratik Kumar
and Ankita Nandi contributed equally to this work.) (Corresponding author:
Chetan Singh Thakur.)

Pratik Kumar, Ankita Nandi, Ayan Saha, Kurupati Sai Pruthvi Teja,
Ratul Das, and Chetan Singh Thakur are with the NeuRonICS Laboratory,
Department of Electronic Systems Engineering, Indian Institute of Science,
Bengaluru 560012, India (e-mail: csthakur@iisc.ac.in).

Shantanu Chakrabartty is with the Department of Electrical and Systems
Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
(e-mail: shantanu@wustl.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2024.3349776.

Digital Object Identifier 10.1109/TCSI.2024.3349776

endows variable computational precision and energy efficiency
to the system. Furthermore, analog designs are not inherently
portable and face challenges when scaling across advanced
process technology nodes.

To address these limitations associated with analog com-
puting, a Margin Propagation (MP) based approximate analog
computing framework was proposed in [2]. This framework
allows analog circuits to demonstrate bias-scalability, a prop-
erty that enables trading off speed with energy efficiency [2].
Recently, a generalized version of the Margin Propaga-
tion principle has been introduced [3], enabling scalable
current-mode analog circuits across process nodes and their
operation at different computational precision. This framework
referred to as shape-based analog computing (S-AC) [3], [4],
aimed to create robust, non-linear computational shapes that
depend only on the generic properties of transistors.

In light of these challenges, this work introduces a
field-programmable analog computing architecture called
ARYABHAT (Analog Reconfigurable technologY And
Bias-scalable Hardware for AI Tasks) which incorporates a
design flow akin to that of a digital field-programmable gate
arrays (FPGA). Additionally, we propose ARYAFlow,
a compiler to map neural network algorithms onto
ARYABHAT, and a corresponding test infrastructure called
ARYATest. The ARYABHAT design has been prototyped
in CMOS 180nm, and the ARYAFlow and ARYATest
frameworks were employed to program and demonstrate
various machine learning and signal processing applications.
Fig. 1 showcases the digital equivalent of the analog properties
introduced in ARYABHAT, along with different compute
styles, establishing a pathway for incorporating digital
design properties into the analog computing environment for
improved scalability and robustness.

Key Contributions of this work include:

• MAC based near-memory crossbar computational tile:
Design of near-memory crossbar computational tile for
analog multiply and accumulate (M-AC) operation, enabling
scalable computations in analog under diverse operational
conditions.

• Digital-like Analog Synthesis Flow: Proposition of a stan-
dard cell-based digital-like analog synthesis flow to rapidly
design analog machine learning systems.

• Re-configurable Interconnect Matrix: Design implemen-
tation of a digitally programmable current-mode analog

1549-8328 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2949-1301
https://orcid.org/0000-0003-4591-7675
https://orcid.org/0009-0004-5685-4360
https://orcid.org/0000-0002-1688-6286
https://orcid.org/0000-0002-1240-6214

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 1. Digital equivalent properties of generalized margin propagation
(GMP) based analog computing system and its design methodology.

interconnect fabric to enable reconfigurability and pro-
grammability across multiple tiles.

• ARYAFlow Mapper: Developing ARYAFlow, a mapper
designed for mapping and optimizing machine learning
algorithms for use on accelerator chipsets, generating bit-
streams for the chip’s programmability.

• ARYATest Framework: Developing ARYATest, an open-
source test framework built with the PyVISA package,
facilitating automated functional verification of machine
learning algorithms on the accelerator chipset.

• Algorithms Implementation: Demonstrating the imple-
mentation of a standard 4-layer neural network, a variant
of SVM classifier, and a parallel FIR filter bank using the
accelerator chipset.
The rest of the sections are organized as follows. Section II

describes the prior work in the field of bias scalable comput-
ing. Section III shows the architecture ofcomputational tile,
processing element, analog interconnect fabric, and activation
sparsity. In Section IV, we show the design mapping, opti-
mization and synthesis methodology for digital-like analog
design. Section V presents the performance evaluation of
the computational core and interconnect matrix. Section VI
presents three case studies implemented on the ARYABHAT
chipset. Section VII concludes the paper with discussions and
final remarks.

II. RELATED WORK

This section provides an overview of related work in the
field of analog accelerators and field-programmable analog
arrays (FPAAs). Simultaneously, it also provides an overview
of the related works in Margin Propagation (MP) computing
principles [2], [3], [4] and presents an understanding that
leverages these findings for a comprehensive system design,
introducing novel modular architectures for build

The underlying principle of field-programmable analog
computing architecture is to be able to integrate analog
computing circuits (operating using current or charge con-
servation [2], continuous-time dynamics [5] or translinear
principles [6]) within an interconnect fabric that is digi-
tally programmable. Previously, this paradigm has led to
field-programmable synaptic arrays [7], trainable classifiers [8]
and field-programmable analog arrays (FPAA) [9]. The

paradigm has recently been used to implement dynamical sys-
tems [10], matrix-vector multipliers, and AI accelerators [11].
However, all these approaches required proper biasing of
the analog computing circuits so as to exploit the physics
of that operational regime (sub-threshold or above-threshold
characteristics). This not only limited the dynamic range of the
system but, also made the design susceptible to analog artifacts
like temperature variations. Furthermore, unlike their digital
counterparts, analog computing circuits are more susceptible
to fan-out/fan-in (loading) artifacts, which makes embedding
analog circuits within a programmable interconnect more
challenging. Different interconnect loads will require different
driving currents and hence, it is difficult to limit the biasing
of transistors within an operational regime. MP-based analog
computing addressed this limitation by using primitives (like
KCL and thresholding) that scaled across different transistor
biasing conditions (weak, moderate and strong inversion). In
[4], a reconfigurable MP-based analog computing architecture
was reported and was demonstrated for small-scale ML archi-
tectures. In [3], a generalized version of MP-based computing
was proposed which was used to extend the framework to a
large repertoire of analog computing modules.

Fig. 2 showcases a top-down design flow based on the
Generalized Margin Propagation (GMP) principles, demon-
strating the process of mapping machine learning algorithms
to their corresponding circuit synthesis.GMP, discussed in
detail in [3], is a multi-spline approximation framework for
approximating non-linear monotonic functions and has been
utilized as a basic framework for S-AC domain. The dia-
gram clearly distinguishes the previous works, which focused
on approximation algorithms and their circuit-level imple-
mentations [2], [3], [4], from the complete mapping flow,
architectural implementation of ARYABHAT, mapper, and test
framework presented in this work. In Fig. 2, Block A illustrates
the initial mapping of a standard machine learning algorithm
into the S-AC domain, represented as a combination of addi-
tion and thresholding operations. These mapped operations,
along with other mathematical functions, are implemented
using S-AC-based analog computation modules. Subsequently,
a custom mapper creates a dataflow graph, performs multiple
optimizations, and generates a functional map of the S-AC-
based multiply-and-accumulate unit and various S-AC-based
analog standard cells. Additionally, the mapper determines
the level of computational accuracy based on the specific
application requirements. Finally, the mapping is executed
on the S-AC circuit shown in Block D. This systematic
approach enables the design of digital-like large-scale analog
ML systems, leveraging the benefits of MP principles and
presenting a pathway for enhanced efficiency and scalability
in the analog computing domain.

III. ARCHITECTURE CORE

Machine learning algorithms are often represented as a
series of transformations organized in a graph structure, where
each node processes and transforms the output of the previ-
ous node. These transformations are parallelized to increase
efficiency by mapping the graph onto specialized hardware
designed to perform the operations in parallel. ARYABHAT

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: ARYABHAT: A DIGITAL-LIKE FIELD PROGRAMMABLE ANALOG COMPUTING ARRAY 3

Fig. 2. Top-down flow from mapping a machine learning algorithm to its
circuit-level implementation. Here, Block A shows the representative mapping
of a generic computational operation used in a standard neural network
to its equivalent S-AC computational map; Block B shows the dataflow
mapping of the computational map to the S-AC multiply-and-accumulate
engine and other S-AC analog standard cells; Block C shows the multi-spline
hardware approximation [3] for variable accuracy computation controlled
thereby deciding the hardware complexity, and Block D shows the circuit
level implementation of S-AC modular block [3]. The mapper performs a
dataflow map, computational map, and other optimization while a generic
test framework interacts with all the blocks from A-D.

implements parallelism using a multi-tile-based design that
can be reconfigured to perform multiple functions in parallel.
The system also includes the ARYAFlow mapper that converts
ML algorithms into a form that can be understood by the
ARYABHAT chip and performs optimization based on user-
defined specifications, an analog interconnect fabric and an
ARYATest framework for automated testing of an analog chip.

A. Computational Tile

Matrix multiplications dominate neural network calcula-
tions. To run the neural network calculations, one needs to
multiply the neuron inputs x by the neuron weights Wi j
where the inputs are a vector, and the neurons are a matrix.
The resultant is the vector created by multiplying these two
together. Here, the matrix multiply comprises much smaller
multiply-accumulate (MAC) operations where multiplication
in such MAC operations is not only resource-intensive but
energy and area-inefficient too.

ARYABHAT addresses the limitations of resource-intensive
and inefficient matrix multiplications by implementing all

operations as additions, subtractions, mirroring, and rectifi-
cation using S-AC-based analog standard cells. These cells
maintain robust functionality across different operational con-
ditions, process nodes, and temperature variations. A key
difference between traditional neural networks (NNs) and S-
AC-based networks implemented in ARYABHAT is the way
in which they handle multiplication and non-linearity in the
form of addition and thresholding operations.

ARYABHAT’s near-memory computational architecture is
based on a reconfigurable, tile-based design that utilizes S-AC
processing elements and memory elements that work in close
proximity to each other, as shown in Fig. 3. The computational
tile consists of an array of N × M processing elements,
as shown in the first inset of Fig. 3. One or more computational
tiles, such as the one shown in Fig. 3, can work in parallel to
perform a variety of computations, including MAC operations
and generic functions like non-linearity, integration, and dif-
ferentiation. The tiles can be programmed to work separately
or in tandem and can be configured to operate in different
operating regimes for optimal performance. The architecture
includes a grid of compute tiles that communicate via a custom
interconnect module and a runtime configuration bus that
allows for efficient runtime reconfiguration of the hardware.
Each S-AC tile consists of arrays of scalable processing
elements: modular, bias scalable, and process scalable. Each
processing element can store 8 bits of binary data converted
to current using an S-AC-log compressive DAC discussed
in detail in [4] and then fed to the analog S-AC module.
Each column in the computational tile shown as the first
inset of Fig. 3 implements the MAC operation between the
input element and the weight. The mathematical formulation
implementing the operation has been explained in detail in
Appendix. The loop nest representation is an alternate way
to view the processing near memory in this architecture.
Algorithm 1 illustrates a processing-in-memory design for
a FC layer with M output channels and where the input
activations are flattened along the input channel, height, and
width dimension. The computation takes place in one cycle
computing all the results in a single cycle in line 12. It can
be noted that line 12 in Algorithm 1 implements the S-AC
mathematical function explained in detail in [3] and [4].

B. Processing Element

Each processing element of ARYABHAT is based on
the MOS implementation of generalized margin propagation
(GMP) function [3]. The second inset in Fig. 3 shows the
basic architecture of the in-memory processing element (PE),
arrays of which are utilized in each computational tile. The
processing element consists of MOS-based S-AC unit and an
S-AC-based near-memory log compressive DAC. It can be
noted that S-AC unit is a current-mode circuit implementing
the GMP principle and has been discussed in [3]. The summa-
rized mathematical formulation implementing its operation has
been explained in detail in Appendix. It can further be noted
that the processing element apart from receiving inputs wi j
and xi also receives the constant offsets O j which is generated
internally simply using the multiple of reference mirrors. The
number of offsets decides the computation accuracy (here

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 3. Block diagram showing S-AC-based near-memory analog machine learning tiles where the zoomed-inset (S-AC Computational Tile) shows an array of
N × M computational tile implementing analog multiply and accumulate (M-AC) unit. Each column has a current sink C , a design parameter, and an output
NMOS transistor. The second zoomed-inset (S-AC Processing Element) shows the circuit implementation of a near-memory processing element consisting of
S-AC units and a near-memory S-AC DAC whose CMOS circuit implementation have been previously reported in [3] and [4].

Algorithm 1 Computational Tile Operation
1: Input: x , w, O
2:
3: x = Array(N) # Input Activations
4: W = Array(M, N) # Weights
5: h = Array(M) # Output
6: O = Array(S) # Spline Offsets
7: f : S-AC proto function.
8:
9: par-for j ← 1 to M :

10: par-for i ← 1 to N :
11: par-for k ← 1 to S :
12: h j + = f (wi, j , xi , Ok) # Refer [3], [4]
13: end-for
14: end-for
15: end-for
16:
17: Output: h ∈ [h1, h2, · · · , hM]

multiplication) [3] and is equal to the number of splines.
The choice of offset depends on the application requirement
and user specification. Appendix of [3] explains the detailed
mathematics of calculating the offset points.

C. Interconnect Fabric

In literature, many systems have been proposed based on
two-dimensional arrays of processing elements interconnected
by a reconfigurable routing fabric, such as those present
FPGAs. [13] discusses a Field-Programmable Analog Array
(FPAA) architecture with a 6 × 6 grid of programmable
Configurable Analog Blocks (CABs), eliminating the need for

fixed analog sub-circuits. Meanwhile, [14] introduces a novel
routing fabric composed of multiplexers and unidirectional
point-to-point connections controlled by configuration bits,
offering enhanced flexibility at a lower silicon cost. Despite
the simple architecture, the drawback is the reconfiguration
time (in milliseconds) and the synthesis time (in minutes to
hours). Furthermore, the designs are standard cell-based above
threshold design, meaning users only have the privilege to
tune once the transistor device physics and hence is mostly
the energy factor is fixed for such interconnect. At the other
end are the recent multi-core processors. In general, no syn-
thesis is involved. Instead, extensions to existing programming
languages are used to describe parallelism explicitly.

Implementing a multi-layer neural network requires many
pipelined and parallel computations in any generic ML
algorithm. The chip design should be re-configured as per
application demands. ARYABHAT interconnect fabric encom-
passes custom high-speed interconnect to define multi-tile
connections. The interconnect architecture can implement pro-
grammability and gating simultaneously in the design. Gating
here refers to powering off the modular computational section
to save power and energy. The simultaneous reconfigurabil-
ity and gating of the ARYABHAT are implemented by a
custom, efficient, and high-speed analog Interconnect fabric.
At the core the interconnect used modified high-precision
switches [12] which reduces channel charge injection, clock
feedthrough errors, and the voltage drop induced by the
leakage currents considerably.

The designed interconnect architecture allows any P number
of input rows to be routed to any Q number of output columns,
as briefed in Fig. 4. It also gives the flexibility to route the
other way from Q input columns back to P output rows. For
P > Q, Q needs to be a factor of P . All the P lines are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: ARYABHAT: A DIGITAL-LIKE FIELD PROGRAMMABLE ANALOG COMPUTING ARRAY 5

Fig. 4. Block diagram showing P × Q current mode analog interconnect
matrix implemented using modified high precision switch [12] where the inset
shows the interconnect fabric implementation of P input nodes and Q output
nodes with all-to-all connectivity.

grouped into P/Q sub-groups for uniformity, each followed
by an analog High Precision Switch to pass on to the output.
For P < Q, Q needs to be a multiple of P , with each Q/P
group of outputs will share one line of P . The circuit chain
remains the same for both cases.

D. Activation Engine

ARYABHAT is designed to configure different types of bias
scalable non-linearity depending on the application and user
requirements. Depending on control signals, switches can be
configured to implement various non-linearity as per the user
applications or bypass the activation module or can block the
activation input to implement sparsity. M such blocks are
integrated at each computational tile and can be configured
through ARYAFlow mapper (described in Section VI). Fig. 5
shows the S-AC implementation of four different activations
namely Hard ReLU, Soft ReLu, Soft Plus, and Normalized
Soft ReLU. The generalized equation for all the computational
module can be written as

Iout = max(h, C) (1)

(1) implements Hard ReLU function for (C → 0, S=1), the
Soft ReLU function for (C → 0, S=3) and the SoftPlus
function for (C → k, S=3). Here, C is the hyper-parameter,
S is the number of splines, and k is some constant value. The
Normalized Soft ReLU function could be expressed as

Iout1 = h1 + M P(h1 − h2) (2)
Iout2 = h2 + M P(h1 − h2) (3)

where h1, h2 and Iout1, Iout2 are the differential representation
of the input h and Iout respectively to the activation unit. Some
examples of other non-linearities using the S-AC unit have
been shown in [3]. The activation engine also implements acti-
vation sparsity in the sense that during runtime the activations
modules can be configured to pass only non-zero values by
dynamically terminating the forward propagation connection
to the next PE or the computational tile. In ARYABHAT
this is achieved by tuning the hyperparameter C of the S-AC
block and programming the register memory present in each
activation module of the computational tile. Implementing
sparsity in the chip allows ARYABHAT to improve energy
efficiency and throughput further.

IV. DESIGN MAPPING, OPTIMIZATION AND SYNTHESIS

This section briefly presents the various optimization and
mapping implemented in ARYABHAT. In addition, we also

present the possible synthesis flow for shape-based analog
design for ML applications.

A. ARYAFlow: A Mapper for ARYABHAT

ARYAFlow, as shown in Fig. 6b, is a custom mapper that
converts machine learning algorithms into a representation that
can be interpreted by the control and logic unit and other
sub-units of the ARYABHAT hardware. It takes the algorithms
from input libraries and user-defined specifications and trans-
lates them into firmware binaries that the reconfigurable chip
can use. The mapper considers the hardware specifications and
limitations and uses an iterative search process to optimize the
execution graph to meet the user specifications. ARYAFlow
has four computational stages: Quantizer, Graph Mapper,
Optimizer, and Runtime Generator. These stages work together
to process the algorithms and generate the necessary binaries
efficiently.
• Quantizer: The quantization flow converts the floating

point numbers into 8-bit fixed points. The quantizer uses a
feed-forward process where the floating points are re-scaled
into integer values, with the word length set per the hard-
ware specs. It can be noted that reducing the precision of
computation would result in higher energy-efficiency (in
terms of pJ/MAC) and reduced area. However, once the
weights are pre-programmed, the system latency remains
invariant and is determined by settling time and slew-rate
of the analog computing circuits. In the current architecture
of ARYABHAT, the inputs and weights generated by the
runtime binaries of ARYAFLOW are 8-bit quantized. The
same can be modified to operate with 6-bit or 4-bit precision.

• Dataflow and Mapping: To leverage the high performance
of a neural network, this stage of the compilation flow aims
to maximize parallelism and data reuse with a low-cost
memory hierarchy. Analog accelerators face implementa-
tion challenges due to the complexity of analog circuits
and continuous-time processing, which need more discrete
processing units and clock boundaries. Unlike digital accel-
erators that rely on dataflow taxonomy methods to reuse
partial sums or input weights, analog accelerators face
limitations due to their dependence on physical properties.
ARYABHAT’s architecture can mimic input and weight sta-
tionary dataflows and potentially support Fully-Connected
and Convolutional Neural Networks. In addition, computa-
tional tiles can be utilized to implement single-layered and
multi-layered fully connected neural networks. Depending
on the data type, the user can switch between the two
dataflows by programming the mapper, which maps the
software-trained engine into its hardware equivalent and
loads the network weights into the chip memory. The map-
per splits the network across multiple tiles to accommodate
higher computational requirements while considering the
tile-interconnection constraints within the design flow.

• Post mapping: Post mapping, the architecture needs to be
optimized. The optimizer stage considers the non-linearities
of the hardware, which arise from circuit mismatches, and
incorporates them into the API. The model is further opti-
mized using S-AC approximations, which include re-training

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 5. Block diagram of S-AC standard cells based different activation units (Hard ReLU, Soft ReLU [3], SoftPlus [3] and Normalized Soft ReLU) along
with control network implemented inside Activation Engine of ARYABHAT chip.

Fig. 6. (a) Block diagram depicting digital-based analog synthesis flow for a mixed-signal analog neural accelerator chip designed using S-AC analog
standard cells; (b) ARYAFlow: A custom mapper architecture depicting different compilation and execution flow during algorithm map to prototyped AI
chip.

to obtain the optimal spline value, reference current mag-
nitudes at desired operating regions, and suitable activation
functions for maximum accuracy.

• Runtime generator: The runtime generator stage gener-
ates patterns for selecting the activation function, scaling
magnitudes, and deploying the necessary interconnect and
routing networks according to the hardware architecture.
These patterns are saved in binary form and are synchro-
nized with the clocks and control lines. The binaries are
then fed into the chip for further computations.

Overall, the mapper generates an optimized bitstream from the
algorithm and the user specification to generate a more com-
pact representation for efficient computation. These bitstreams
are passed on to the ARYATest Framework for subsequent
testing flow.

B. Neural Architecture Map

ARYABHAT is capable of supporting both Fully-Connected
and Convolutional Neural Networks (CNNs) layers. It can
implement single-layered and multi-layered fully connected
neural networks using the available computational tiles. Fig. 7
illustrates the mapping of a fully connected layer, as shown in
Fig. 7a, onto the S-AC computational tile depicted in Fig. 7b.
It can be observed how the parallel Multiply-Accumulate
(MAC) operations (

∑
i W (M)

i xi) of the M th node are executed
along the M th column of the computational tile. Each process-
ing element within a tile store the pre-fetched weights, and

inputs are continuously passed through in an amortized fashion
to maximize reuse. Similar mapped operations are shown for
different nodes as well.

The architecture of ARYABHAT can also be programmed
to replicate different dataflow architectures such as input and
weight stationary dataflows to facilitate efficient mapping and
computation. Fig. 8a to 8d demonstrate how the computational
tile can be configured to support CNN computations in var-
ious dataflow configurations according to specific application
requirements. Fig. 8a illustrates the Weight-stationary Convo-
lutional Neural Network and its equivalent mapping shown in
Fig. 8c. The mapping in S-AC tiles in Fig. 8c demonstrates
that when the weights (kernel map) are fixed through the input
port in the S-AC tile, and different input feature maps are
provided through the weight channels (storing the kernel in
memory DAC), the architecture can operate in weight station-
ary mode. This mode reduces weight-read energy consumption
while enabling weight amortization. Such a configuration
significantly reduces computational complexity and memory
requirements for operations like convolution. Similarly, Fig. 8b
shows the Input-stationary Convolutional Neural Network and
its equivalent mapping shown in Fig. 8d. The mapping in
S-AC tiles in Fig. 8d illustrates that by providing input
feature maps through the input port and weights (kernel map)
through the weight channel, input stationary mode is achieved.
This mode minimizes energy consumption for input per
activation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: ARYABHAT: A DIGITAL-LIKE FIELD PROGRAMMABLE ANALOG COMPUTING ARRAY 7

Fig. 7. (a) Block diagram depicting the Input and the Hidden layer of a
Fully Connected Neural Network; (b) Mapping of the layers across the S-AC
Computational Tiles of ARYABHAT.

In summary, the architecture of ARYABHAT offers
flexibility in dataflow configurations, supporting both
Fully-Connected and Convolutional Neural Networks while
optimizing energy consumption and computational efficiency.
The following provides a detailed description of how both
weight stationary (WS) dataflow, and input stationary (IS)
dataflow, along with various optimizations, are supported and
implemented in the ARYABHAT architecture.

C. Dynamic Tile Optimization

In general, to achieve high performance in a system, the
hardware and software must be co-designed to improve the
system’s performance parameters significantly. Thus it reduces
trade-offs in mapping and implements an architecture specifi-
cally tailored to the target algorithms (such as using GPUs for
MAC operations). Thereby reducing computational complexity
and increasing throughput. ARYABHAT achieves this by map-
ping the algorithm into the logarithmic domain, which results
in smaller hardware and simplified operations. ARYABHAT
architecture can perform dynamic tile optimization as per
application requirements. The cores can be programmed to
work as

• Low power Low-speed cores;
• High power High-speed cores, or
• Optimum power Optimum speed cores.

Furthermore, multiple tiles can be programmed with the above
three and switched off if not needed. This reduced trade-offs
in mapping and the designed architecture for the specified
algorithms. ARYAFlow mapper considers all these parameters
at the tiles and system core levels to perform the required
optimization. Thus, the overall system becomes more power,
energy, and area-efficient.

D. Design Synthesis

To keep pace with the growing algorithmic complexity and
implement machine learning tasks at scale, it is essential to
approach analog design in a digital-like manner. One solution
is breaking down the larger analog system into smaller, robust
modules that can be independently designed and synthesized,
akin to the approach used in digital design through digital
standard cells. This approach enhances scalability, reduces
design complexity, and saves time in the design process.
An example of the standard digital-ASIC design flow along
with the proposed similar analog design flow is shown in
Fig. 6a, which incorporates various design advancements such
as analog standard cells [3], lookup table-based design [15],
and an automated placement and routing framework [16].
The detailed analog design flow starts with the user design
specification and the targeted application. It is assumed that the
targeted PDK in any technology node is first characterized in a
lookup-based table as in [15]. Then, MATLAB can synthesize
the complete computational module or system-level netlist for
the remaining step.
• Shape Map: Fig. 9 depicts the elaborated flow step in

the Shape Mapping block of Fig. 6a. To synthesize the
basic shape h(·) starting from the assumed base function
θ(x) (e.g., exponential, binary, or others), we iterate to
find the desired count of S and their respective tangential
vector points (Q) and tuning vector points (T), depending
on the computational accuracy required by the algorithm.
The process is repeated until the desired basic shape with
the required accuracy is obtained. Once the basic shape
is obtained, we map the desired algorithm to shape-based
functions using MATLAB. Firstly, we generate design codes
for the basic S-AC unit, shown as S-AC1 in Block D
of Fig. 2, using the gm

/
Id design methodology [15] and

pre-computed lookup tables for the desired process technol-
ogy node. A subset of new design codes was then used
to synthesize S-AC-based analog standard cells, utilizing
the previously synthesized S-AC unit and current mirrors.
Finally, the mapper performs the mapping and routing of the
S-AC unit to implement the desired mathematical function.
It can be noted that various operations like, cosh(·), sinh(·),
sigmoid, ReLU, soft-Plus, winner-take-All, N-of-M encoder,
soft argmax, max, four quadrant multiplier, log DAC, log-
based integration, division, addition, subtraction can be
implemented such as shown in [3] and [4].

• Cell Map: Once the basic shape h(·) is synthesized, various
mathematical functions used in ML can be implemented.
For instance, the synthesis of Equation (7) would require
four S-ACS=4 units interconnected in cascade as shown
in [3]. It can be noted that an S-ACS=4 unit consists of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 8. (a) Block diagram depicting the Weight-stationary Convolutional Neural Network; (b) Block diagram depicting the Input-stationary Convolutional
Neural Network ; (c) Mapping the architecture of the Weight-Stationary Convolution Filter across the ARYABHAT Computational Tiles; (d) Mapping the
architecture of the Input-Stationary Convolution Filter across the ARYABHAT Computational Tiles; (e) Results of Weight Stationary Convolution Filter;
(f) Result of the Input-stationary Convolution Filter.

four S-AC cells connected in parallel and each receiving
inputs with some offsets(O1, · · · , O4). The mapper first
connects the S-AC standard cells to implement an S-ACS=4
unit and then connects them to implement the desired
equation. Then constant currents and voltage offsets are
applied to the inputs of the standard cells through current
mirrors. The whole design was then synthesized as a netlist,
which can be used as a black box in the digital synthesis
floor planning step. Pre-computed lookup tables for 180nm
CMOS and 7nm FinFETs were used in conjunction with
gm

/
Id design methodology to generate synthesize shaped

mapped equation using S-AC only standard cells. It can
be noted that the same can also be implemented using a
traditional GUI schematic viewer or Spice netlists.

V. MEASUREMENT AND TEST

We prototyped the ARYABHAT chip in a standard
CMOS 180nm process technology. Fig. 10b shows the die

microphotograph of the chip highlighting 8-Computational
tiles (where a unit computational tile is shown in Fig. 3),
analog interconnect fabric (shown in Fig. 4) and activation
network (shown in Fig. 5). It may be noted that multiple copies
of the computational tile were fabricated for test purposes.
The functionality of the circuit modules has been verified
using the test measurement setup shown in Fig. 10a. The test
chip was mounted on a custom IC test board, and the test
vectors were generated using a PYNQ-Z2 FPGA board which
used a Python-based interface to control the digital inputs and
outputs. High-precision analog test equipment was directly
interfaced with the test chip using the ARYATest framework,
also controlled by the PYNQ-Z2 FPGA board. To accurately
determine the region of operation, the transistors were first
characterized for some fixed circuit parameters (such as the
aspect ratio of the transistor, spline count S, etc.). This section
shows the results of the S-AC computational core and the
interconnect fabric at different operating conditions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: ARYABHAT: A DIGITAL-LIKE FIELD PROGRAMMABLE ANALOG COMPUTING ARRAY 9

Fig. 9. Flow diagram depicting a step-by-step approach for S-AC based shape
mapping and cell mapping blocks shown in Fig. 6a where model equations
(46), (48) and (54) are the base design equations as in [3].

A. ARYATest: An Automated Analog Test Framework

Testing large-scale analog chips dedicated to ML and AI
applications is an incredibly complex task that demands archi-
tectural expertise, expensive test equipment, and significant
manual effort and time. Unlike digital chips, analog chips are
not only sensitive to noise but also have a significantly larger
number of test points compared to equivalent digital architec-
tures. Therefore, it is essential to have a comprehensive test
framework that ensures analog AI chipsets meet their design
specifications and perform reliably on desired applications
with minimal manual intervention and cost.

The ARYATest framework, illustrated in Fig. 10a, is an
automated system developed using an open-source Python
package. It facilitates the seamless connection between
Python-compatible FPGAs, high-precision analog test equip-
ment, and any generic chip. This framework takes the binaries
generated by the ARYAFlow mapper as input and consists of
efficient sub-units that generate both digital and analog signals
for ARYABHAT. A CPU board, compatible with Python
scripts, serves as the primary hardware for interacting with
the hardware units. The framework is designed to be modular
and generic, enabling users to execute various test cases within
the limitations of the available controller and instrumentation.

The operation flow of the ARYATest framework involves
taking input files and processing them using the available
overlay on the board. Key components of this framework
include:
• The ARYATest interface uses the Logictool Overlays, a hard-

ware library available on PYNQ-Z2 to generate hardware
functions like FSMs, Boolean logic functions, and digital
patterns. The bitstream patterns for the Inputs, Weights,
and Control Signals are generated with this overlay. It also
allows the chip-output bitstreams to be ported back into
the FPGA and displayed on the PC. In addition, it utilizes
TCL script and VISA language for smooth connectivity and
increases functionality.

Fig. 10. (a) Flow diagram of ARYATest: An automated analog test
framework; (b) Die micro-photograph of prototyped analog AI chip.

• Additionally, the open-source PyVISA package is employed
to interface the Keithley and Rigol test equipment with the
test chip, offering users flexible control. The framework
allows for instrument control via LAN and USB, and the
configuration setup and operations can be managed through
the Python script with minimal user interference. PyVISA
provides a standardized API for communication with instru-
ments that utilize various protocols such as GPIB, RS-232,
Ethernet, and USB.

B. S-AC Computational Tile Performance

The unique core of ARYABHAT has a scalable design that
allows it to function at different operating regimes, including
weak, moderate, and strong inversion, without any loss in
functionality. This design has been tested at different process
nodes but is beyond the scope of this work. This feature gives
users the ability to adjust the tile for optimal performance,
energy efficiency, or a balance between the two by biasing it
towards strong, weak, or moderate inversion, respectively.

The operational performance of the S-AC tile, shown in
Fig. 3, is summarized in Table I at various operating conditions
for a fixed test condition. We have calculated the performance
of the S-AC tile for some commonly used metrics, including
system efficiency, power efficiency, and computational effi-
ciency at 50% utilization. The table shows that it is most
power efficient in WI while operating frequency is highest in
SI. A near-similar pJ/MAC operation can be achieved in both
SI and WI. Additionally, it can be seen that the S-AC core has
optimal energy performance in the moderate inversion regime,
where there is a balance between power and speed, as well as
good energy efficiency. It should be noted that the majority
of the power consumption in the S-AC core is due to the MP
blocks and the routing and interconnect mechanism, while the
power consumed by the other supporting circuitries is minimal
and can be ignored.

C. Analog Interconnect Performance

An analog interconnect fabric designed for machine learn-
ing (ML) applications should have specific characteristics to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE I
OPERATIONAL PERFORMANCE PARAMETERS OF UNIT S-AC CORE

TABLE II
OPERATIONAL PARAMETERS OF THE ANALOG INTERCONNECT FABRIC

transmit data between ML computational cores efficiently.
These characteristics may include high bandwidth for quickly
transferring large amounts of data, low latency for timely
data transmission, and low power consumption to save energy.
Additionally, the interconnect fabric should be scalable and
flexible to accommodate different ML algorithms and hard-
ware architectures. Analog interconnect fabrics, which operate
on continuous signals, can improve speed, accuracy, and
energy efficiency compared to traditional digital designs.
However, designing and implementing an analog interconnect
fabric for ML can be difficult due to the need for precise
control of analog signals and the potential for noise and
interference.

The operational performance of the interconnect fabric,
shown in Fig. 4, is summarized in Table II. It shows that
when we go from WI to SI region the power consumption
and the operating frequency increase. It is further observed
that when the size of the interconnect matrix increases, there is
relatively no change in the timing parameters, while the power
consumption of the bigger network increases proportionately.

VI. CASE STUDY: NEURAL NETWORK & ALGORITHM
IMPLEMENTATION

This section presents a few of the applications implemented
on the ARYABHAT chip. As a proof-of-concept, we show
the supported implementation of a non-linear classifier uti-
lizing fully connected layer, template SVM machine learning
algorithm (suitable for Edge-AI resource constrained applica-

TABLE III
CASE STUDY RESULTS ON ARYABHAT

tions), [18] and FIR filter bank implementation (this at the
core implements CNN with limited layers) [19] for in-filter
computing whose network diagrams and flow charts are shown
in Fig. 11a, Fig. 11b and Fig. 11c respectively.

A. Application to Non-Linear Classifier

Non-linear classification using a multi-layer perceptron
implementing XOR functionality is shown in Fig. 11a.
It depicts the network structure, which includes an input layer,
two hidden layers, and an output layer. For the input vector
x ∈ R2, the output function for a generic hidden node can be
given as

h = g (f (x)) (4)

where g(·) is a non-linear activation function (here, ReLU),
and f (x) be the decision function given by

f (x) = wT x+ b (5)

where w ∈ R2 is the trained weight vector and b ∈ R
is the corresponding bias. For the sake of simplicity and
understanding the mapping on the ARYABHAT chip, let us
assume that for a one-dimensional input vector, the decision
function f (x) can be written as

f (x) = w · x+b (6)

The mapped version of the above decision function in the
shape-based form can be written as (7)

f (x) = h(2C + w + x)− h(2C + w − x)+ · · ·

· · · h(2C−w − x)− h(2C−w + x)+ b (7)

In (7), standard multiplication is mapped to S-AC multiplica-
tion as described in detail in [3]. This multiplication is then

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: ARYABHAT: A DIGITAL-LIKE FIELD PROGRAMMABLE ANALOG COMPUTING ARRAY 11

Fig. 11. (a) Neural network diagram with 2-hidden layers implementing a generic non-linearity function; (b) Flow chart describing the off-chip training and
on-chip template SVM [18] implementation using S-AC circuits; (c) Flow chart depicting an implementation of FIR parallel filter bank for in-filter computing
where low-pass, band-pass and half-wave rectifications are implemented on-chip [19].

implemented by a column of the computational tile shown
in Fig. 3. A PE also implements the bias without data input
x . Fig. 11a shows the necessary on-chip routing configuration
and tiles enabled to implement the network shown in Fig. 11a.
Table III, Non-Linear Classifier sub-section shows the imple-
mentation parameter, design performance, and classification
accuracy of the mapped network on the ARYABHAT chip.
It can be inferred from Table III that the chip works in
all operating regimes with reasonable accuracy. The power
consumed by the chip and the speed of operation increases
while going from WI to SI as expected.

B. Application to SVM Classification

Given a training set (xi , yi), i = 1, . . . , N , where xi ∈

Rd , yi ∈ Rc, the generic form of the decision function for a
template SVM formulation [18] is given as

f (x) =
∑P

p=1
wp8(mp, x) (8)

where wp =
S∑

s=1
αs8(mp, xs) can be thought of as the

weight vector obtained after training, P is the number of
template vectors, S is the number of support vectors obtained
after training, αs is the trained coefficient and 8(·, ·) is a
non-positive definite function which gives an estimate of the
similarity between the pth template vector mp and the i th

training vector xi . Fig. 11b shows the flowchart summarizing
the design flow for the entire process. For P = 48 and kernel
8 being the Cauchy kernel, the implementation is carried out
in the ARYABHAT chip, whose routing mechanism is shown
in Fig. 11b. Table III (Template SVM Classifier sub-section)
shows the implementation parameter, design performance,
and classification accuracy of the mapped network on the
ARYABHAT chip. It is seen that by using 1 tile, we can get

Fig. 12. (a) Simulated frequency responses of parallel FIR bandpass filters
shown in Fig. 11c; (b) Measured frequency responses of parallel FIR bandpass
filters shown in Fig. 11c; (c) Simulated center frequencies fc1, · · · · · · , fc6 of
FIR bandpass filters for 5−Octaves

(m
6 = 5

)
shown in Fig. 11c; (d) Measured

center frequencies of the similar FIR bandpass filters.

the desired accuracy of the SVM classifier in all regions of
operation. The power consumption and the speed of operation
increase while going from WI to SI as expected.

C. Application to In-Filter Computation

In-filter computing employs a parallel FIR filter bank which
combines feature extraction and nonlinear SVM kernel into
a single function and has been described in detail in [19].
This filter bank employs a range of sampling rates to achieve
the desired filtering effect. The idea behind decreasing the
sampling rate, lower-order filters with a lower cutoff frequency
can be implemented, resulting in cost and energy savings
through less hardware. Fig. 11c shows the implementation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

where the input signal is first filtered through a lowpass filter
to eliminate aliasing. The filter bank is then divided into a
number of octaves, each of which contains six filters. The
center frequencies of the bandpass filters are determined using
the Greenwood function [20] and arranged in decreasing order.
Within the filter bank, each filter performs bandpass filtering
and half-wave rectification (ReLU) on the chip. The resulting
rectified samples are then summed and standardized off the
chip. For an mth bandpass filter shown in Fig. 11c, filtering
equation is given by

B Pm(n) =
∑S

k=0
hm(k)x(n − k) (9)

where x(n) ∈ R1 is the input time series data sampled
at 16kHz, hm∈ RS+1 are precalculated coefficients of the
bandpass filter, S is the order of bandpass filter, for this
implementation S = 20, m ∈ [1, 2, 3, · · · , M], where M is
the total number of bandpass filters in the filter bank, for
this implementation M = 30. Similarly, lowpass filtering is
implemented as

L Pq(n) =
∑T

k=0
gq(k)x(n − k) (10)

where gq∈ RT+1 are the coefficients of low pass filter, T is
the order of low pass filter, for this implementation T = 20,
q ∈ [1, 2, · · · , Q], where Q is the total number of low pass
filters in the filter bank and Q = M

6 −1. The filter coefficients
are precalculated using the inbuilt MATLAB function. We use
a chirp signal with a frequency increasing from 10 Hz to
8 kHz logarithmically to obtain the frequency response. Each
filter’s inputs and filter coefficients are scaled to map the values
from the multiplication table generated from the prototype
chip to the S-AC multiplication equation. After calculating the
output response for every filter in the filter bank, we perform
a low-pass filtering operation using the same procedure as
the previous one. The output of the low-pass filter is then
downsampled by two and given as input to the next filter
bank. The frequency response of all bandpass filters in the
filter bank is shown in Fig. 12a and 12b. It should be noted
that the distortion in the frequency response in Fig. 12b is due
to the S-AC approximation and the quantization noise caused
by logarithmic DAC. To observe the center frequency peaks,
the final plot is post-processed by smoothing the obtained
frequency plot, removing high-frequency noise components
that cause distortion. It can be observed in Fig. 12c and 12d
that we can almost match the measured center frequencies of
bandpass filters to the simulated. Now the half-wave rectifica-
tion operation for H W Rm(n) ∈ R can be implemented as

H W Rm(n) = ReLU (B Pm(n)) (11)

These half-wave rectified samples are summed according
to (12). Since the sampling rate for input is 16 kHz, i.e., N
= 16000, Sm ∈ R. Standardization, commonly used neural
network optimization, is performed as per [21].

Sm =
∑N

n=1
H W Rm(n) (12)

The kernel function φm ∈ R for mth filter is the output of the
standardization is given as

φm = ST D(Sm) (13)

TABLE IV
CLASSIFICATION ACCURACY RESULTS FOR ESC-10 DATA SET

TABLE V
OPERATIONAL PERFORMANCE PARAMETERS OF ARYABHAT

These kernel functions are further passed through the decision
function for classification, which is given as

y = wT 8+ b (14)

where w ∈ R30 is the weight vector and b ∈ R is bias
which are obtained during training of model. Here, we used
one versus all methodology on the ESC-10 data set with
10 classes. Table IV shows the accuracy results of the trained
model. The accuracy results produced by the implemented
classifier in hardware are close to the software model. It can
be noted that in (9), (10), (11) and (14) standard multiplication
is first mapped to S-AC multiplication as described in detail
in [3]. This multiplication is then implemented by a processing
element (PE) in the core column shown in Fig. 3. The
implementation is done so that one octave is implemented on
the chip at a time using 8-cores, utilizing 47.11% of processing
elements. As a result, five iterations are required to implement
the entire filter bank. Fig. 11c shows the necessary on-chip
routing configuration and cores enabled to implement network
shows in Fig. 11c. Table III, In-memory FIR Filter sub-section
shows the implementation parameter, design performance, and
the classification accuracy of the mapped network on the
ARYABHAT chip.

VII. CONCLUSION & FUTURE WORK

In this study, we introduced a reconfigurable multi-tile
analog chipset called ARYABHAT for use in ML and edge

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: ARYABHAT: A DIGITAL-LIKE FIELD PROGRAMMABLE ANALOG COMPUTING ARRAY 13

computing applications. We demonstrated the chipset’s per-
formance under various power and performance specifications
and simultaneously across different applications highlighting
its scalability and reconfigurability. In addition, we provided a
complete system stack, including an algorithm mapping tool
(ARYAFlow) and an analog testing framework (ARYATest)
to complete the computing ecosystem. We also presented
the design flow and synthesis of analog machine-learning
system similar to digital ASIC implementation. In Table V,
we summarize the operational performance parameters of the
overall chip and report some of the widely used metrics
for ML accelerator. It can also be noted that the current
version of ARYABHAT has constraints in terms of memory
availability and reconfigurability. This leads to a restricted
range of CNNs and DNNs that can be implemented. Due to
these limitations, the FC neural network can implement up to
8 hidden layers, each having 156 hidden neurons. Finally, the
output layer can have 256 neurons with all-to-all connectivity.
Additionally, when utilizing the architecture for CNN network,
it is possible to employ a 2 × 2 kernel on a 3 × 3 matrix
and other similar configurations which depend on how the
tiles are programmed, considering the restriction in kernel
size. Nonetheless, if the chip possesses ample resources, its
architecture is versatile enough to support a larger subset of
ML and AI algorithms. Future versions of ARYABHAT will
expand resources, improve interconnect bandwidth, upgrade
the mapper to support more ML algorithms and implement a
cluster configuration [22] for improved scalability of DNNs.

APPENDIX
MULTIPLY-AND-ACCUMULATE PROCESSING UNIT

(i) Computational Tile
Each column in the computational tile (shown as the first
inset of Fig. 3) implements the MAC operation between the
input element and the weight given in GMP formulation and
is given by

N∑
i=1

S∑
k=1

[xi,k + wi j,k − h j]+ = C, ∀ j = 1, .., M (15)

where, for a given jth column xi,k input element of a tile
corresponding to the i th row; wi j,k weight corresponding to
xi,k element;h j resultant shape of the prototype; C tuneable
hyper-parameter of the model, and [.]+ denotes thresholding
operation. The equivalent representation of (15) in S-AC
form can then be given by∑N

i=1

∑S

k=1
f (Vi j,k, VB) = C, ∀ j = 1, .., M (16)

where, for a jth column Vi j,k is an internal parameter, VB is
the solution of the equation, and S is the design parameter.
It can be noted that in (15) and (16), by varying design
parameter S, different approximations in multiplications and
other operations can be implemented.
(ii) Processing Element
The processing element consists of MOS based S-AC unit
and an S-AC-based near-memory log compressive DAC. For

a given i th row and j th column, each PE shown in second
inset of Fig. 3 implements the equation given by

S∑
k=1

[xi,k + wi j,k − h j]+ = C, ∀i = 1, .., N , ∀ j = 1, .., M

(17)

The equivalent representation of (17) in S-AC form can then
be given by

S∑
k=1

f (Vi j,k, VB) = C, ∀i = 1, .., N , ∀ j = 1, .., M (18)

ACKNOWLEDGMENT

The joint Memorandum of Understanding (MoU) between
IISc and WashU is gratefully acknowledged by the authors
for facilitating collaboration between the two institutions. The
Fulbright Scholarship provided to one of the authors by USIEF
and IIE is also acknowledged. Special acknowledgement to
the research interns, Sanchari Das, Balagangadhar Vemula,
Sudhanshu Gulavani, and Satyam Saha, for their valuable
contributions during the development of this work.

REFERENCES

[1] K. Freund. (Sep. 23, 2021). IBM Research Says Analog AI
Will Be 100X More Efficient. Yes, 100X. [Online]. Available:
https://www.forbes.com/sites/karlfreund/2021/09/23/ibm-research-says-
analog-ai-will-be-100x-more-efficient-yes-100x/?sh=268578c8129b

[2] M. Gu and S. Chakrabartty, “Synthesis of bias-scalable CMOS analog
computational circuits using margin propagation,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 59, no. 2, pp. 243–254, Feb. 2012.

[3] P. Kumar, A. Nandi, S. Chakrabartty, and C. S. Thakur, “Process, bias,
and temperature scalable CMOS analog computing circuits for machine
learning,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 1,
pp. 128–141, Jan. 2023.

[4] P. Kumar, A. Nandi, S. Chakrabartty, and C. S. Thakur, “Bias-scalable
near-memory CMOS analog processor for machine learning,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 13, no. 1, pp. 312–322, Mar. 2023.

[5] B. Schell and Y. Tsividis, “A continuous-time ADC/DSP/DAC system
with no clock and with activity-dependent power dissipation,” IEEE J.
Solid-State Circuits, vol. 43, no. 11, pp. 2472–2481, Nov. 2008.

[6] B. A. Minch, “Translinear analog signal processing: A modular approach
to large-scale analog computation with multiple-input translinear ele-
ments,” in Proc. 20th Anniversary Conf. Adv. Res. VLSI, 1999,
pp. 186–199.

[7] P. Hasler, C. Diorio, B. Minch, and C. Mead, “Single transistor learning
synapses,” in Proc. Adv. Neural Inf. Process. Syst., vol. 7, 1994,
pp. 1–10.

[8] S. Chakrabartty and G. Cauwenberghs, “Sub-microwatt analog VLSI
trainable pattern classifier,” IEEE J. Solid-State Circuits, vol. 42, no. 5,
pp. 1169–1179, May 2007.

[9] J. Hasler, “Large-scale field-programmable analog arrays,” Proc. IEEE,
vol. 108, no. 8, pp. 1283–1302, Aug. 2020.

[10] G. E. R. Cowan, R. C. Melville, and Y. P. Tsividis, “A VLSI analog
computer/digital computer accelerator,” IEEE J. Solid-State Circuits,
vol. 41, no. 1, pp. 42–53, Jan. 2006.

[11] MYTHIC: A Groundbreaking Architecture Built for AI. Accessed: Mar. 1,
2023. [Online]. Available: https://www.mythic-ai.com/technology/ and
https://www.mythic-ai.com/

[12] S. Naghavi, N. Sharifi, and A. Abrishamifar, “A novel analog switch for
high-precision switched-capacitor applications,” Int. J. Circuit Theory
Appl., vol. 46, no. 4, pp. 764–778, Apr. 2018.

[13] Z. Chen and I. Savidis, “Reconfigurable array for analog applications,”
in Proc. IEEE 39th Int. Conf. Comput. Design (ICCD), Oct. 2021,
pp. 361–365.

[14] M. Bennebroek and A. Danilin, “Multiplexer-based routing fabric for
reconfigurable logic,” in Proc. Int. Conf. Field Program. Log. Appl.,
Aug. 2007, pp. 463–466.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

[15] P. G. Jespers and B. Murmann, Systematic Design of Analog CMOS
Circuits. Cambridge, U.K.: Cambridge Univ. Press, 2017.

[16] K. Kunal et al., “ALIGN: Open-source analog layout automation from
the ground up,” in Proc. 56th Annu. Design Autom. Conf., 2019, pp. 1–4.

[17] D. M. Binkley, “Tradeoffs and optimization in analog CMOS design,”
in Proc. 14th Int. Conf. Mixed Design Integr. Circuits Syst., Jun. 2007,
pp. 47–60.

[18] P. Kumar et al., “Neuromorphic in-memory computing framework
using memtransistor cross-bar based support vector machines,” in Proc.
IEEE 62nd Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2019,
pp. 311–314.

[19] A. R. Nair, P. K. Nath, S. Chakrabartty, and C. S. Thakur, “Multiplierless
in-filter computing for tinyML platforms,” 2023, arXiv:2304.11816.

[20] D. D. Greenwood, “A cochlear frequency-position function for sev-
eral species—29 years later,” J. Acoust. Soc. Amer., vol. 87, no. 6,
pp. 2592–2605, Jun. 1990.

[21] M. Shanker, M. Y. Hu, and M. S. Hung, “Effect of data standardization
on neural network training,” Omega, vol. 24, no. 4, pp. 385–397,
Aug. 1996.

[22] D. García Moreno, A. A. Del Barrio, G. Botella, and J. Hasler, “A cluster
of FPAAs to recognize images using neural networks,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 68, no. 11, pp. 3391–3395, Nov. 2021.

Pratik Kumar (Graduate Student Member, IEEE)
received the M.Tech. degree from the Indian Institute
of Technology, Dhanbad, in 2018. He is currently
pursuing the Ph.D. degree with the Indian Institute of
Science, Bengaluru, India. He is also associated with
the NeuRonICS Laboratory, Department of Elec-
tronic Systems Engineering, and the Centre for Nano
Science and Engineering, Indian Institute of Science,
Bengaluru. His current research interests include the
intersection of hardware-friendly machine-learning
algorithms, high-performance mixed-mode machine-

learning computational architectures, and multi-state emerging memory
devices.

Ankita Nandi received the B.Tech. degree from
the National Institute of Technology (NIT) Megha-
laya, India, in 2018, and the M.Tech. degree from
the Indian Institute of Technology (IIT) Gandhina-
gar, India, in 2020. She is currently pursuing the
Ph.D. degree with the Department of Electronic Sys-
tems Engineering, Indian Institute of Science (IISc),
Bengaluru, India. She was awarded the President’s
Gold Medal and the Institute Gold Medal for her
outstanding performance during the B.Tech. studies.
She was also a recipient of the Fulbright Nehru

Doctoral Research Fellowship from 2022 to 2023 and the Prime Minister’s
Research Fellowship in 2021.

Ayan Saha received the B.E. degree from Jadavpur
University, Kolkata, India, in 2021, and the M.Tech.
degree from the Department of Electronic Systems
Engineering (DESE), Indian Institute of Science
(IISc), Bengaluru, in 2023. He was associated with
NeuRonICS Laboratory, DESE, IISc.

Kurupati Sai Pruthvi Teja received the B.Tech.
degree from the National Institute of Technology,
Rourkela, in 2021, and the M.Tech. degree from
the Department of Electronic Systems Engineering
(DESE), Indian Institute of Science (IISc), Ben-
galuru, India, in 2023. He was associated with
NeuRonICS Laboratory, DESE, IISc.

Ratul Das received the B.Tech. degree from the
Institute of Engineering and Management, Kolkata
(affiliated to MAKAUT) in 2021 and the M.Tech.
degree from the Department of Electronic Systems
Engineering (DESE), Indian Institute of Science
(IISc), Bengaluru, India, in 2023. He was associated
with NeuRonICS Laboratory, DESE, IISc.

Shantanu Chakrabartty (Senior Member, IEEE)
received the B.Tech. degree from the Indian Insti-
tute of Technology, Delhi, in 1996, and the M.S.
and Ph.D. degrees in electrical engineering from
Johns Hopkins University, Baltimore, MD, USA, in
2002 and 2004, respectively. From 1996 to 1999,
he was at Qualcomm Inc., San Diego, CA, USA.
From 2004 to 2015, he was an Associate Professor
with the Department of Electrical and Computer
Engineering, Michigan State University (MSU), East
Lansing, MI, USA. He is currently a Clifford W.

Murphy Professor and the Vice-Dean of the Research and Graduate Edu-
cation with the McKelvey School of Engineering, Washington University
in St. Louis, St. Louis, MO, USA. He was a Catalyst Foundation Fellow,
from 1999 to 2004. He is a fellow of the American Institute of Medical.
He was a recipient of the National Science Foundation’s CAREER Award,
the University Teacher-Scholar Award from MSU, and the 2012 Technology
of the Year Award from MSU Technologies. He served as an Associate Editor
for IEEE TRANSACTIONS OF BIOMEDICAL CIRCUITS AND SYSTEMS.

Chetan Singh Thakur (Senior Member, IEEE)
received the M.Tech. degree from the Indian Institute
of Technology Bombay, India, in 2007, and the
Ph.D. degree in neuromorphic engineering from the
MARCS Research Institute, Western Sydney Uni-
versity, in 2016. He was a Post-Doctoral Researcher
with Johns Hopkins University, Baltimore, MD,
USA, and a Senior IC Design Engineer at TI
Singapore. In 2017, he joined the Indian Institute
of Science (IISc), Bengaluru, where he is currently
an Associate Professor. His research interests include

the computing principles of the brain and apply them to build intelligent VLSI
systems. He received several awards, including the Pratiksha Trust Young
Investigator Award, the Abdul Kalam Innovation Award from the INAE, and
the Inspire Faculty Award for brain-inspired computing from the DST, India.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 14,2024 at 08:16:51 UTC from IEEE Xplore. Restrictions apply.

