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Abstract—In recent years, a new generation of low-power,
neuromorphic, event-based vision sensors has been gaining pop-
ularity for their very low latency and data sparsity. Though
the conventional frame-based cameras have advanced in a lot of
ways, they suffer from data redundancy and temporal latency.
The bio-inspired artificial retinas eliminate the data redundancy
by capturing only the change in illumination at each pixel and
asynchronously communicating in binary spikes. In this work,
we propose a system to achieve the task of human activity
recognition based on the event-based camera data. We show
that such tasks, which generally need high frame rate sensors
for accurate predictions, can be achieved by adapting existing
computer vision techniques to the spiking domain. We used event
memory surfaces to make the sparse event data compatible with
deep convolutional neural networks (CNNs). We leverage upon
the recent advances in deep convolutional networks based video
analysis and adapt such frameworks onto the neuromorphic
domain. We also provide the community with a new dataset
consisting of five categories of human activities captured in real
world without any simulations. We achieved an accuracy of
94.3% using event memory surfaces on our activity recognition
dataset.

I. INTRODUCTION

Neuromorphic event-based camera systems are bio-inspired
vision sensors that output spikes representing the pixel-level
illumination changes instead of standard intensity frames. A
major drawback of frame-based camera systems is that they
sample the information at fixed intervals, without taking into
account the dynamics of the scene. This might lead to both
acquiring redundant data or missing important data between
the fixed intervals. The information about underlying scene
dynamics, which is useful for tasks like activity recognition,
can be lost when frame-based camera systems are used. The
event-based systems offer significant advantage over standard
cameras in terms of high dynamic range, no motion blur, and
latency in the order of microseconds. Event-based imaging
systems are, therefore, very good at capturing the dynamic
content of a scene. Because of these advantages, there have
been many recent developments in computer vision algorithms
to solve problems of optical flow estimation [1], gesture recog-
nition [2], unsupervised feature extraction and learning [3] [4],
motion analysis [5], and tracking [6] in event domain. Event-
based camera systems are also becoming popular in areas

that need high frame rates. In several applications, vision-
based human activity recognition tasks require high frame
rate video input to ensure minimum motion blur. Also, the
data generated from frame-based camera systems is redundant
when there is no motion or slow motion occurring in the scene.
This makes event-based cameras a better fit for the task, as
they avoid data redundancy by recording only the changes
in illumination rather than the illumination measure of the
scene. Moreover, by precisely timing the changes in each pixel,
event-based cameras inherently encode the motion information
of the scene, and are useful in extracting optical flow and
other motion-based features easily. Event-based data can also
act as a good substitute for computationally expensive optical
flow features, which might aid in realtime activity recognition.
Unlike frame-based cameras, event-driven sensors provide data
in the Address Event Representation (AER) format [7]. This
is significantly different from the way the information is
encoded in RGB frames and hence the existing computer
vision algorithms cannot be directly applied to analyze this
data. The conventional computer vision algorithms have to
be adapted to the event domain data, which is sparse and
asynchronous. In this work, we use memory surfaces of the
event data to adapt deep neural network models to achieve the
task of human activity recognition in neuromorphic data.

II. METHODOLOGY
A. Neuromorphic Sensors

In this work we collected the dataset (described in Section
III.A) with a camera that belongs to a novel class of imaging
devices known as silicon retinas. They are a neuromorphic
approach to visual sensory transduction and seek to replicate
the robustness, efficiency, and low power consumption of bio-
logical vision systems. There are two popular camera systems
that are implemented on this model, namely, Asynchronous
Time-based Image Sensor (ATIS) [8] and Dynamic Vision
Sensor (DVS) [9]. The conventional cameras have a fixed-
length and global exposure time by which all the pixels
would be sampled at a regular time interval, resulting in
copious amounts of redundant data. To combat this, each pixel
of the ATIS camera has an independent and asynchronous
pipeline, by which it responds to the environment only when
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Fig. 1. Plots of the six methods for generating time and index surfaces. Panel
(a) Shows the three time-based kernels over time. Panel (b) shows the value
of the event-based kernel as a function of event index. Figure courtesy: Afshar
et al. [11].
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Fig. 2. The sequence on the left shows a series of events captured at each pixel
along time and the frame on the right shows the time-based event memory
surface calculated from events.

a change occurs in the log intensity scale of illumination of
that corresponding pixel. This independent pixel setup of the
camera allows it to have individual exposure time for each
pixel, hence reprimanding the need for global exposure time
[10]. In addition, the asynchronous nature permits a frame-
rate-independent output with high temporal resolution and
dynamic range, by which it eliminates motion blurs.

B. Event Data Quantization

As mentioned earlier, event-based sensors generate data
that is sparse and asynchronous in the AER format. However,
almost all current computer vision algorithms heavily rely on
densely quantized frames. To adapt these algorithms to the
event domain, the asynchronous event data has to be quantized
into data structures compatible with the current computer
vision techniques. Among such quantization methods, two
such prominent techniques are:

Time Quantization: The easiest way to convert the event
data into a series of two-dimensional (2D) frames is by
sampling all the spikes at each pixel at regular time intervals
and binning all the spikes that occurred between the time
intervals. This way of quantization would produce frames

similar to the normal frames generated by generic camera
systems. But, quantizing the events in this way will sacrifice
the important advantage of having information about the
dynamics of the scene to a finer and accurate temporal
resolution.

Memory Surfaces : The disadvantage of time-based quan-
tization can be overcome by using time/memory surfaces.
Lagorce et al. [12] introduced using layers of time-decaying
event surfaces and feature-based clustering for hierarchical
learning. Afshar et al. [11] proposed a variation of time
surfaces, called Memory surfaces, using three different types
of time-based kernels (Binning, Linear, and Exponential) that
can be used across both time and event index. Memory
surfaces capture the information of the time at which the events
occurred in between the sampling intervals (see Fig. 1). This
eliminates the disadvantage of the time quantization technique.
Event memory surfaces were generated for the dataset col-
lected and used as input data structures to the deep learning
models in our experiment. The estimated memory surface for
one such example event sequence can be seen in Fig. 2.

C. Human Activity Recognition

The recent promising performances achieved by the state-
of-the-art deep learning models in the field of visual activity
analysis motivated us to explore how similar frameworks can
be built for the task of human activity recognition for event
data. The analysis of activity is about understanding the motion
pattern and in both the event-based and frame-based data
activity recognition tasks, the objective is to decode the most
relevant motion embedded in the scene and employ machine
learning to perform the analytics. The current deep learning
models are good at this analysis with frame-based data. In this
work, we want to test the hypothesis that models suitable for
event-based data can evolve from the models used for classical
activity analysis on RGB videos. This motivates us to treat
the problem of event data analysis as a domain adaptation
problem, and try to adapt deep learning for conventional video
analytics to the neuromorphic data domain.

Two-stream architecture [13] is a popular framework where
two independent 2D convolutional neural networks (CNNs)
pre-trained on ImageNet dataset [14] are used for activity
recognition. One network is trained on one RGB frame
per video-clip, and the second is trained on dense optical
flow maps. As an extension of the above model, a long-
term recurrent convolutional network (LRCN) [15] model was
used where the architecture consists of time-distributed 2D
CNN models, followed by the use of time-pooling layers to
capture the temporal information. Several variants of the Two
Stream architecture [16][13] currently hold the state of the art
performance on popular datasets, e.g., UCF-101[17](98%) and
HMDB-51[18](80.2%). Among other architectures, Conv3D
[19] and the time-distributed version of Conv3D with subse-
quent pooling of these features [20] also capture rich temporal
correlation of spatial features.
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Fig. 4. n-HAR Architecture: (a): 40 Input memory surface frames to the model, (b): Inception Layers, (c): 40 Feature representations from 40 input frames,
(d): Flatten and Fully connected with 512 units and (e): Fully connected layer with 512 units and Softmax output.

D. Architecture

We explored several popular architectures such as the 3D
CNN towards the human activity recognition task on the
event data. 3D convolutional layers extract features across
volumes of input frames and learn temporal correlation
between frames in the window, and fully connected layers
with a final softmax classifier were used at the output for
the classification. However, through our experiments we
observed that an Inception V3 model [21], when pre-trained
on Imagenet [14] dataset, acts as the best performing base
network that can further be adapted to build the proposed
Neuromorphic Human Activity Recognition (n-HAR)
framework for activity recognition on event data.

n-HAR Model Architecture : Each input to the model is a
set of 40 uniformly sampled frames from a video. We extract
rich spatial features from each frame in the input by passing
them through a InceptionV3 [21] network that was pre-trained
on the ImageNet [14] dataset. The features are the output of the
deepest average pooling layer in the Inception V3 model. We
flattened these features before feeding them to a two layered
perceptron (fully connected) network, each having 512 nodes.
Only the parameters of the fully connected network were kept
trainable. Dropout of 0.5 on the fully connected layers was

used for regularization and a softmax classifier at the output
was used for classification. Figure 4 shows a schematic of the
n-HAR model architecture.

III. EXPERIMENT AND INFERENCE
A. Dataset

Few simulated datasets [22] already exist in event domain
for action/activity recognition. The major drawback of these
simulated datasets is that they are not close to real-world data
because of the limitations of their setup. These were created
by pointing event-based sensors to a monitor projecting the
subjects of interest and trying to minimize the artifacts caused
by the display frequency. However, this can never replicate
the real-world scenarios as they are limited by the frame rate
intrinsic to the videos projected on the monitor. To avoid this,
we collected a dataset of real-world activities using an ATIS
camera mounted on a tripod. Thirty subjects with diversity in
height and gender were part of the dataset collection. Each
person performed five categories of activities and then event
memory surfaces of each clip were generated and quantized
at a rate of 30 FPS. The dataset is imbalanced, but still has
sufficient number of videos per class; Boxing: 475, Clapping:
435, Jogging: 860, Walking: 791, Waving: 530. n-HAR dataset
has in total of 3091 videos whereas popular datasets like



KTH [23] having similar classes, has only 599 videos. This
dataset will be released to both the neruromorphic and the
vision community to facilitate further research and develop-
ment. Figure 3 shows different samples across the categories
of a subject from the dataset. The full dataset can be ac-
cessed from http://neuronics.dese.iisc.ac.in/research/research-
highlights/n-har/

B. Training

The model was trained using Keras [24] with Tensorflow
[25] as backend. The training and testing have been split with a
ratio of 3:1. Each input to both models consists of 40 frames of
an activity. The Adam optimizer [26] was used to minimize the
cross-entropy loss for multi-class classification. A learning rate
of le-5 with a decay factor of le-6 was used. Early stopping
with a patience of 5 epochs was imposed on the training.

C. Results

Our proposed system achieved an average of 94.3% accu-
racy across all the classes in the testing split. This high value
of accuracy can be partially credited to the use of pre-trained
ImageNet [14] weights in our architecture. No Data Augmen-
tation was done during training or testing as we used static
feature extraction technique before trainable fully connected
layers, hence reducing the number of model parameters. Figure
5 shows the confusion matrix of the predicted labels for our
model. It’s almost diagonal form may be because we have
sufficient number of data points per class (Above 400) for
proper class separation required for classification. Analysis of
the confusion matrix shows that some of jogging data-points
are classified as walking. This can be because some of the
jogging subjects were jogging slower than usual, as this dataset
was captured with subjects moving in a small indoor space.
Some minor confusion is also observed between boxing and
clapping as both these actions involve subjects moving their
hands in an outstretched position in front of them. Similarly,
some overlap is seen between boxing and jogging, as the
subjects were asked to move around the limited space while
boxing. Table I shows the precision, recall, and F1-score of
each class for the model. Approximately 0.9 to 1 precision
and recall scores per class signifies that the class imbalance
in the n-HAR dataset does not affect the performance of the
model.

TABLE 1
PRECISION, RECALL AND F1-SCORE OF EACH CLASS FOR N-HAR MODEL

Class Precision Recall F1-score
Boxing 0.89 0.91 0.9
Clapping 0.9 0.88 0.89
Jogging 0.91 1 0.95
Walking 0.99 0.9 0.95
Waving 1 0.99 0.99

The aim of this experiment was to assert that activity recog-
nition is a very natural computer vision challenge that can,
in principle, be solved in neuromorphic videos as well. The
results indicate that pre-trained weights like ImageNet [14],
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Fig. 5. Confusion Matrix showing how often the labels predicted by n-HAR
model match the actual ground truth labels for different activity categories.

learnt from normal RGB frames, can be used as basic building
blocks that are further adapted in a framework designed to
achieve the task of human activity recognition in event-based
frames generated using event memory surfaces.

IV. CONCLUSION

In this work, we show that existing frame-based activity
recognition techniques can be adapted to event data from
neuromorphic vision sensors. We use event memory surfaces
to allow the sparse and asynchronous data in the event do-
main to become compatible with the deep convolution neural
network architectures. To the best of our knowledge, this
is the first attempt of human activity recognition on a real
event-based dataset, as opposed to synthetic datasets [22] that
use techniques like capturing videos played on monitors to
simulate existing datasets into event datasets. We also provide
areal-world event-based dataset for human activity recognition
comprising of five categories. In our future work, we aim
to explore how more complex activities are represented in
the event domain and to provide video analytics solution that
successfully recognizes such activities. To design deep CNN
architectures potentially utilizing the sparsity property of the
event data to extract feature representations at a much lower
computational complexity would be our long term goal.
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