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Abstract—We address the problem of 3-D reconstruction using
neuromorphic cameras (also known as event-driven cameras),
which are a new class of vision-inspired imaging devices.
Neuromorphic cameras are becoming increasingly popular for
solving image processing and computer vision problems as they
have significantly lower data rates than conventional frame-
based cameras. We develop a neuromorphic-camera-based Fringe
Projection Profilometry (FPP) system. We use the Dynamic
Vision Sensor (DVS) in the DAVIS346 neuromorphic camera
for acquiring measurements. Neuromorphic FPP is faster than a
single-line-scanning method. Also, unlike frame-based FPP, the
efficacy of the proposed method is not limited by the background
while acquiring measurements. The working principle of the DVS
also allows one to efficiently handle shadows thereby preventing
ambiguities during 2-D phase unwrapping.

Index Terms—Event cameras, Neuromorphic cameras, Depth
map, 3-D reconstruction, Fringe projection profilometry, DAVIS,
Dynamic Vision Sensor (DVS).

I. INTRODUCTION

NEUROMORPHIC cameras [1]–[3] are a recent invention
and are being explored for analyzing optical flow, feature

detection, image reconstruction, segmentation, video synthesis,
3-D reconstruction, etc. [4]–[12]. Neuromorphic cameras are
event-driven and have several advantages such as sparse data,
low latency, low power consumption, asynchronous sensing,
and a high dynamic range, which have made them attractive
for solving computer vision problems. Neuromorphic cameras
have been used in both mono and stereo configurations for
3-D reconstruction [9], [13]. In general, 3-D reconstruction
using only event data is a hard problem. Hence, neuromorphic
cameras have been used in conjunction with other sensors.
Rebecq et al. [14] used an Inertial Measurement Unit (IMU)
along with a Dynamic Vision Sensor (DVS) to perform sparse
3-D reconstruction. By back-projecting an event and voting for
the events contained in every voxel, they could detect edges
with a high accuracy. Kim et al. [15] used an IMU together
with a neuromorphic sensor and performed dense real-time
3-D reconstruction, six Degrees-of-Freedom (DoF) motion es-
timation, and intensity image reconstruction. They made use of
three interleaved Extended Kalman Filters (EKFs) to estimate
the depth, 6-DoF motion and image intensity using only event
data. They demonstrated how Simultaneous Localization and
Mapping (SLAM) could be performed more efficiently using
neuromorphic cameras than frame-based ones.
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Some approaches have made use of structured light pro-
jection and a neuromorphic camera. Brandli et al. [16] used a
projector-camera pair to project lines over a terrain and use the
deformation for mapping the terrain. Matsuda et al. [17] pro-
posed Motion Contrast 3-D scanning (MC3D) using structured
light. They converted the line-scanning method into a problem
that could be solved using event data, thereby eliminating
redundant sampling. Leroux et al. [18] also demonstrated
the feasibility of using structured light patterns with event
cameras.

Each pixel of a neuromorphic camera encodes instants when
the intensity changes by a preset threshold and thereby gener-
ates an asynchronous stream of non-uniformly spaced events.
Reconstruction from such time-encoded measurements has
been addressed by Lazar and Tóth considering the bandlimited
signal model [19], and by Gontier and Vetterli for signals
belonging to shift-invariant spaces [20]. The reconstruction
strategies employ alternating projections similar to the one
proposed by Aldroubi and Gröchenig [21]. Recently, multi-
channel time-encoding strategies [22] and extensions of the
reconstruction framework to handle nonbandlimited signals
[23], [24] have also been developed.

A. Contributions of This Paper

We develop a Fringe Projection Profilometry (FPP) [25]
system using a neuromorphic vision sensor for image capture.
The term fringe in the standard optics literature essentially
refers to a 2-D sinusoid. Conventional FPP systems employing
frame-based cameras use a static fringe pattern, which is not
suitable in the present setting since a neuromorphic vision
sensor would not record any events for static stimuli. Hence,
we use a moving fringe pattern that propagates laterally over
the object being scanned. This is equivalent to performing
several line-scans, all at once, with the advantage that the
scan duration is shorter than a standard line-scanning method.
A neuromorphic sensor is also effective at handling shadows
because there aren’t any temporal events corresponding to the
shadows. One could therefore argue that shadows are regions
in a scene that do not trigger any events. Thus, detecting
shadows and eliminating their adverse influence on depth
estimation is much easier in neuromorphic FPP than frame-
based FPP systems.

This paper is organized as follows. We briefly review
the functioning of neuromorphic cameras (Section II) before
proceeding with the principle and description of the proposed
neuromorphic FPP (Section III). In Section IV, we describe the
experimental setup and demonstrate examples of depth scans
obtained using the proposed method.
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Fig. 1. (Color online) Encoding of ON and OFF events in a DAVIS346 image
sensor in response to a moving fringe pattern. The simultaneous activity at
two pixels is shown in (b) and (c). The sinusoid (black) corresponds to the
fringe that the image sensor is exposed to and the log-intensity (blue) is the
one sensed by the DVS.

II. THE PRINCIPLE BEHIND NEUROMORPHIC CAMERAS

Neuromorphic cameras [12] are inspired by the magno-
cellular pathways in human vision [26], which specialize
in detecting high-rate transient events. They are fast and
asynchronous, i.e., they are triggered by events rather than
an external clock. Mahowald [27] developed the silicon retina
and invented the Address Event Representation (AER). Sub-
sequently, Boahen [28] and Culurciello et al. [29] developed
the address event arbitrated image sensor used in modern
neuromorphic cameras. Lichtsteiner et al. [1], [30] developed
a preliminary neuromorphic sensor called the Dynamic Vision
Sensor (DVS), which is used by the ATIS [3] and DAVIS
[2] cameras. The ATIS has two visual sensors: DVS, which
captures events asynchronously and an APS (Active Pixel Sen-
sor), which gives asynchronous gray-scale outputs at regions
in the image sensor where the events occur. The two sensors
in the ATIS operate in a coupled fashion. The DAVIS, has
an IMU and two visual sensors — DVS and APS, which
operate independently. While the DVS captures events, the
APS captures frames at a uniform rate. In our experiments,
we employed the DAVIS camera. A DVS generates an event
whenever the following condition is satisfied:

log

(
Iti(x, y)

Iti−1
(x, y)

)
ON

≷
OFF

C, (1)

where C is a threshold that is constant for the duration of
operation, Iti(x, y) is the intensity at pixel location (x, y)
corresponding to an event occurring at time instant ti. As
indicated in (1), events are associated with a polarity: an
“ON event” occurs when the difference in log-intensities is
greater than the threshold and an “OFF event” occurs if it
is below the threshold. When neither of the inequalities in
(1) is satisfied, no event is generated. The DVS can also
accommodate different thresholds for the ON and OFF events.
Events can also occur simultaneously at multiple locations.
The time stamp, spatial coordinates and polarities of the
events are consolidated and represented in the AER format:
eji =

(
ti, x

j
i , y

j
i , p

j
i

)
, where the time-stamp is ti, the spatial
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Fig. 2. The neuromorphic fringe projection profilometry setup.

coordinates corresponding to multiple locations (indexed by
j) are (xji , y

j
i ), and pji denotes the polarity of the jth event

associated with time-stamp ti. The events coming out of
a single pixel (x, y) over time constitute an event-stream
s(x, y, t), which at time instant ti gives the polarity of the
event pi if an event exists at that instant, and zero otherwise.
An event-stream is illustrated in Fig. 1.

III. FRINGE PROJECTION PROFILOMETRY

A. Phase Estimation

The projector-camera arrangement for fringe projection
profilometry is shown in Figure 2. The projector emits a
propagating fringe/sinusoidal pattern given by f(x, y, t) =
A cos(ωc y+ω0 t). The pattern is horizontally oriented and has
a vertical spatial frequency of ωc, and a temporal frequency of
ω0. The corresponding encoding of the ON and OFF events in
a DAVIS346 image sensor is illustrated in Fig. 1. The event
streams from all pixels are periodic because of the periodicity
of the incident fringe pattern. Assuming noise-free operation,
consider two event streams s(xref, yref, t) and s(x, y, t) from
pixels at locations (xref, yref) and (x, y), respectively. The pixel
(xref, yref) corresponds to a point in the background, which is
taken as the reference. The event streams are periodic (with
period 2π

ω0
) and time-shifted versions of one another. In order

to determine the depth map, one would need the unwrapped
phase, which has to be estimated from the event streams. To
begin with, we compute the lag at which the cross-correlation
between the event streams is maximum:

Tmax(x, y) = arg max
τ∈[0, 2πω0

)
〈s(xref, yref, t), s(x, y, t+ τ)〉t, (2)

where 〈·〉t denotes temporal cross-correlation. Since the event
streams are 2π

ω0
-periodic, the cross-correlation computation is

limited to one period only. The above equation gives the time-
lag relative to the fixed reference location (xref, yref). The
corresponding phase is given by

φ(x, y) = Tmax(x, y)ω0. (3)

Since Tmax(x, y) ∈ [0, 2πω0
), the periodicity of the event streams

gives only the wrapped phase, i.e., φ(x, y) ∈ [0, 2π]. The
steps are summarized in Algorithm 1 of the supplementary
document. Matsuda et al. [17] showed that the pixel disparity
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that one computes in a frame-based camera for measuring
depth is encoded in the time difference between the events with
and without the object in an event camera. In the proposed
method, the depth is encoded in the phase of the periodic
fringe pattern.

B. Phase Inpainting in Shadows

Light emitted by the projector that is incident on the object
casts shadows on the reference plane. Shadows do not activate
pixels on the neuromorphic sensor. Hence, the phase estimated
in (3) would be indeterminate in regions corresponding to the
shadows, which causes errors in unwrapping the phase, and
consequently errors in estimating the object profile. Detecting
shadows is relatively harder with frame-based cameras since
both shadows and dark regions of the fringe pattern have
similar grayscale intensities. With a neuromorphic camera, the
problem is much easier to deal with. Over the course of the
experiment, all pixels except those that correspond to shadows
record events. Hence, shadows can be detected by identifying
regions of no activity. We inpaint the phase in the shadows
by taking the corresponding values from a reference phase
map obtained in a calibration phase, with the fringe projected
only on the reference plane, without the object in place. This
process completes the phase map computation. The procedure
is summarized in Algorithm 2 of the supplementary document.

C. Phase Unwrapping and Depth Calculation

The phase φ(x, y) is unwrapped by using the algorithm
proposed in [31], which follows a non-continuous path based
on a reliability score. This procedure produces consistent
results even in the presence of discontinuities or noise. Let
the unwrapped phase maps corresponding to the object and
the background (used as the reference) be denoted as φu(x, y)
and φ̄u(x, y), respectively. The depth map Z(x, y) relative to
the reference plane (cf. Fig. 2) can be calculated using the
triangulation principle [32] as follows:

Z(x, y) =

(
φu(x, y)− φ̄u(x, y)

ωc b

)
`, (4)

where b is the separation between the centers of the camera
and the projector and ` is the distance between the center of
the camera and the reference plane.

IV. EXPERIMENTAL RESULTS

A. Generation of a Moving Fringe Pattern

We used OpenCV to generate a static fringe pattern contain-
ing 10 cycles in one frame. The vertical frequency of the fringe
is limited by the resolution of the camera. The DAVIS346
camera used in our experiments has a resolution of 346× 260
pixels. We generated a video of a moving fringe pattern from
the static one by rolling it over in a circular fashion with
one-row-shift downward per frame. The corresponding vertical
frequency is given as ω0 =

vscan ωc
h

, where h is the number
of rows in the pattern and vscan is the scanning speed in rows
per second. The video was generated at 20 frames/second,
and one-row-shift downward, which corresponds to a scanning
speed vscan = 20 rows/sec.

(a) (b)

(c) (d)

Fig. 3. Illustrating the effect of shadow-inpainting: (a) Wrapped phase without
shadow inpainting; (b) the corresponding unwrapped phase; (c) Inpainted
wrapped phase; and (d) the corresponding unwrapped phase.

B. Experimental Setup
The experimental setup (cf. Fig. 2) consists of a DAVIS346

camera and a Texas Instruments Digital Light Projector (DLP)
LightCrafter 4500 projector module arranged in a stereo setup
separated by a baseline distance b. Light projected on the
DLP’s micromirror array gets reflected into a lens to generate
an image on the screen. The reference plane is at a distance
` from the camera. To begin with, the moving fringe pattern
was projected onto the reference plane without the object. This
would allow us to compute the reference phase that is needed
for phase estimation and shadow inpainting. The unwrapped
reference phase is denoted by φ̄u(x, y). We then placed an
object in front of the reference plane and projected the moving
fringe pattern by operating the DLP LightCrafter module in the
video mode. The DAVIS346 camera can output three types of
simultaneous measurements: (i) asynchronous event data; (ii)
grayscale or color images; and (iii) IMU data at predefined
rates. We recorded only the ON events for reconstructing the
phase although one could also use the OFF events for the
purpose.

C. Data Acquisition from DAVIS346
There exist several software frameworks to acquire data

from the DAVIS camera, some well-known ones being jAER
[33] and libcaer [34] libraries, which are publicly available.
We used the rpg_dvs_ros package [1], [2], [35], which
is based on libcaer. The driver of rpg_dvs_ros is
equipped with a graphical user interface to enable setting
appropriate biases for the experiment. Since rpg_dvs_ros
is integrated into the Robot Operating System (ROS), packages
for camera calibration are readily available. Both the DVS
and the APS use the same lens system and image sensor,
which allows one to use the camera calibration packages [36]
designed for frame-based cameras to calibrate the DVS as
well.
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Fig. 4. Examples of scans obtained using the proposed FPP system: (a) and (d) show the depth maps obtained from the triangulation process outlined in
Section III-C; (b) and (e) show the corresponding 3-D point clouds; and (c) and (f) show the corresponding meshes.

D. Results

We used the figurine of a swan as the object. The wrapped
phase-map obtained and its unwrapped counterpart are shown
in Figs. 3(a) and 3(b), respectively. Since there is a shadow,
the phase-unwrapping algorithm gives an erroneous estimate.
The shadow inpainted following the approach described in
Sec. III-B is shown in Fig. 3(c). The resulting unwrapped
phase shown in Fig. 3(d) is more accurate. In practice, the
event data has noise, but we found that the phase-unwrapping
algorithm was quite robust. The depth-maps were obtained
following the triangulation procedure explained in Sec. III-C.
Similarly, a depth-map was obtained for the right hand of the
first author of this paper. The depth-maps were post-filtered
using a 5×5 median filter to suppress outliers. The final depth-
maps are shown in Figs. 4(a) and 4(d). The background was
removed by a thresholding operation based on the histogram
of the estimated depth values. The resulting point clouds
are shown in Figs. 4(b) and 4(e). The point cloud obtained
was Poisson-disk sampled [37], and the ball-pivoting surface
reconstruction algorithm [38] in MeshLab [39] was used to
generate the 3-D meshes shown in Figs. 4(c) and 4(f). This
experiment demonstrates that using only the event data suffices
to perform reliable 3-D scanning. Our Python code to obtain
the point cloud from the event streams is available at [40].

V. CONCLUSIONS

We have developed a new technique to perform fringe
projection profilometry using a neuromorphic sensor. Our
approach relies only on the event stream output by the sensor
to reconstruct the surface profile of an object. The proposed
technique is faster than a line-scanning method since it is
equivalent to performing several simultaneous line-scans. The
factor of improvement in the time taken to scan the object
would only be limited by the spatial frequency of the pattern.
However, there is a limit on the number of events that the DVS
can output per second, which is determined by the hardware.
Operating beyond the limit would lead to some events being
dropped. Working with event-stream data also has the added
advantage that it is robust to handling shadows, which prevents
ambiguities during phase unwrapping. We have demonstrated
a proof of concept by scanning objects and reconstructing
the corresponding surface profiles. The results show that only
the event data suffices to perform reliable 3-D scanning. The
resolution of the 3-D reconstruction is limited by the resolution
of the neuromorphic sensor array, which is currently much
lower than that of frame-based cameras. However, with rapid
advances taking place in neuromorphic sensor development,
the resolution is poised to increase in the years to come, which
holds great promise for superior-quality reconstruction.
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