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Abstract—Wireless Human Activity Recognition (HAR) has
emerged as a vital technology with wide-ranging applications,
including healthcare, aged care, and child monitoring. Radar-
based HAR systems, grounded in electromagnetic principles,
offer resilience to lighting variations and uphold user privacy
by efficiently processing sparse point cloud data. These systems
demonstrate robust performance even in obstructed environ-
ments. Nonetheless, existing radar-based HAR methods face a
limitation in relying on fixed time windows for data classification.
This approach may not be the most adaptable, especially when
monitoring individuals of various ages, from children to the
elderly, who perform activities at different speeds. This paper
introduces “’tinyRadar,” a novel system that capitalizes on the
capabilities of the Texas Instruments IWR6843 radar for sensing
and the Raspberry Pi 4 for executing Long Short-Term Memory
(LSTM) inference. tinyRadar is trained on activities of varying
durations, enabling it to cater to different human activity
speeds. Remarkably, tinyRadar achieves 93% real-time inference
accuracy in recognizing eight distinct activity classes, classifying
each activity frame within 10 ms, with a compact model size of
311 KB.

Index Terms—human activity recognition, IWR6843 radar,
Raspberry Pi 4, long short-term memory, edge computing

I. INTRODUCTION

There is a growing demand for a real-time surveillance
system that enables continuous monitoring of human activities.
This necessity arises from the desire to enhance the safety and
well-being of vulnerable populations, including the elderly and
individuals with physical challenges who reside independently
in their homes [[1]], [2]]. Additionally, such a system serves as a
valuable tool for detecting any unauthorized human presence
within restricted areas. Vision-based systems offer the highest
accuracy but raise privacy concerns [3|]. Additionally, these
systems involve substantial computational intricacies and are
susceptible to issues like partial obstruction [4f]. In contrast,
wearable device-based systems provide the benefit of privacy
preservation. However, their suitability for long-term activity
recognition applications is challenged by inherent limitations.
These include the risk of device loss, maintenance demands,
limited battery life, and the potential for wearer discomfort
151, 6.

In contrast to various other sensor technologies, radar-
based systems harness electromagnetic principles unaffected
by factors such as lighting conditions and other fluctuations
[7]. The unique ability of high-frequency radar waves to
penetrate materials like curtains, paper, fog, and smoke en-
sures their resilience in obstructed environments, making them

particularly robust [8]]. These radar systems also prioritize user
privacy by efficiently processing sparse point cloud data, all
while maintaining high computational efficiency [9], [|10]. Re-
cent technological advancements in the semiconductor sector
have enabled the miniaturization of mmWave radar hardware,
resulting in smaller and more compact solutions [[11]. Coupled
with substantial enhancements in machine learning algorithms,
these systems have become highly compatible with resource-
constrained hardware, making mmWave radar an appealing
option for implementing HAR systems.

Many studies within the realm of mmWave radar-based
HAR systems have primarily focused on the extraction of
features related to range, velocity, and angular information.
For instance, research using Deep Convolutional Neural Net-
works (DCNNs) has employed 2D features like micro-doppler
spectrograms [9] or 3D point cloud data [12]-[14] for HAR
classification. It’s worth noting that in CNN-based approaches,
the observation window is typically fixed, and this fixed
window must accommodate a wide range of activity speeds.
As a result, it may require a longer observation window
to capture slow-paced activities, such as when an elderly
individual is going to bed, in contrast to activities occurring
over shorter time intervals, like a fall event, which neces-
sitates a shorter observation window. Researchers have also
investigated SlowFast CNN networks to handle activities of
varying speeds, where a single frame is processed by two CNN
networks, one for a longer window and another for a shorter
window. While this approach improves accuracy, it comes
with increased computational complexity and memory usage
[15]. Alternatively, some studies have investigated using CNNs
for spatial decoding, followed by Temporal Convolutional
Networks (TCN) or LSTM for temporal decoding to handle
activities of different speeds. This approach processes Range-
Angle and Range-Velocity spectrograms with CNNs and uses
LSTM to decode frame-to-frame temporal relations [[16]], [[17].
However, this model also tends to be memory-intensive.

In contrast to CNNs, LSTM networks excel in capturing
temporal dependencies among events, making them well-
suited for understanding the time-dependent aspects of hu-
man activities. Prior studies have employed LSTM or CNN-
LSTM techniques for HAR, which utilize time sequences, such
as micro-doppler spectrograms, often overlooking either the
angle or velocity information. Also, they can be resource-
intensive and incompatible for edge computing [[18]], [19].
Additionally, LSTM-based classification on point cloud data
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Fig. 1. Block diagram of tinyRadar based HAR system (a) tinyRadar mounted on a wall with human standing at rest. (b) tinyRadar comprising of IWR6843
radar board connected via a USB cable to Raspberry Pi 4 module. (c) Block diagram indicating the RF front-end of the radar board, followed by on-board
signal processing for feature generation. The LSTM-based inference is performed on Raspberry Pi 4 by transferring data over the UART interface.

is also conducted, but with fixed time windows [13]].

In this study, we propose “tinyRadar”, a novel system that
combines the IWR6843 [20] radar sensor with the Raspberry
Pi 4 [21]] to facilitate the process of multi-target HAR through
the implementation of LSTM networks. The radar board per-
ceives the surrounding environment and supplies velocity and
acceleration data for each target across z, y, and z axes, encap-
sulated within a 6-dimensional feature fed to the LSTM-based
inference network. Our inference implementation achieves an
accuracy of 93% on eight different activity classes using a
model of size 311 KB implemented on the Raspberry Pi 4
module. Furthermore, the radar system offers precise range
data for all identified targets along the z, y, and z axes,
facilitating accurate localization in tandem with the activity
classification process.

The paper is structured as follows: Section II details
mmWave radar-based feature generation. Section III offers
insights into the collected dataset. Section IV outlines the clas-
sification model. Section V presents the results, and Section
VI offers the paper’s conclusion.

II. RADAR BASED FEATURE GENERATION

Figure [I] provides an overview of the tinyRadar system’s
operation. It illustrates the generation of Frequency-Modulated
Continuous Wave (FMCW) signals, or chirps, via a synthe-
sizer, followed by their transmission through three transmit
antennas. The TWR6843 radar board comprises several key
components, including the radar front-end, dedicated accel-
erators to perform Fast Fourier Transform (FFT), such as
the Hardware Accelerator (HWA), a Digital Signal Processor

(DSP C67x), and the Cortex®-R4F microcontroller unit. The
radar system operates in Time Division Multiplexing Multi-
ple Input Multiple Output (TDM-MIMO) mode, where each
transmit antenna transmits sequentially, while all four receive
antennas simultaneously capture signals, effectively creating a
total of 12 antenna elements. These received signals are mixed
with transmit replicas to produce Intermediate Frequency (IF)
signals. The IF signals consist of summed sinusoidal signals
whose frequency and phase contain valuable information about
the target’s range and velocity. Each IF signal is digitized using
an onboard Analog-to-Digital Converter (ADC) and stored as
a radar cube matrix. The initial processing phase involves
applying FFT to the samples of each IF signal, determining
the range of targets, known as Range-FFT, and this operation
is executed within the HWA of the radar board, as described
in [22].

Following this, Capon beamforming is utilized to create
Range-Azimuth heatmaps. Subsequent processing includes a
two-pass Constant False Alarm Rate-Cell Averaging (CFAR-
CASO) operation conducted along the range and angle axes.
This step localizes the detected targets. Capon Beamforming
is performed once again for each point detected in the Range-
Azimuth heatmap for elevation estimation, and the strongest
signal is selected as the detected elevation angle. Doppler
estimation is accomplished by applying FFT across the range
bins to determine the velocity of the targets, considering each
detected range, azimuth, and elevation point. All the opera-
tions, from Capon beamforming to point cloud generation, are
implemented on the DSP C67x.

The resulting point cloud is clustered using an onboard



Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm, and each cluster is tracked using
Kalman filtering. The resulting point cloud information, con-
sisting of range, azimuth, elevation, and velocity data, is
transformed into nine detection points corresponding to each
target by the Cortex®-R4F MCU. These nine features en-
compass range along the x-axis (r;), range along the y-axis
(ry), range along the z-axis (r.), velocity along the x-axis
(vz), velocity along the y-axis (vy), velocity along the z-axis
(v.), acceleration along the x-axis (a,), acceleration along
the y-axis (a,), and acceleration along the z-axis (a). These
nine features are transmitted to the Raspberry Pi 4 module
via Universal Asynchronous Receiver Transmitter (UART).
The subsequent classification involves LSTM on six features,
capturing velocity and acceleration, while localization utilizes
range information.

III. DATASET DESCRIPTION

tinyRadar is positioned at a height of approximately 2.5
meters, tilted at an angle of 15 degrees for data collection.
It has an azimuth Field of View (FOV) of +60 degrees and
an elevation FOV of £20 degrees. The radar is configured to
detect objects within a range of around 7 m, with a range
resolution of about 7.5 cm, based on the chirp configuration
specified in TABLE

TABLE I

CHIRP PARAMETERS
Parameter Value
Starting frequency 60.75 GHz
Maximum range 7.28 m
Range resolution 7.58 cm
Maximum velocity 4.62 m/s
Velocity resolution 9.62 cm/s
Periodicity 55 ms
Ramp slope 54.71 MHz/us
Sampling frequency 2.95 Msps
Number of samples per chirp | 96
Number of chirps 96
Idle time 30 ps
ADC start time 25 ps

The dataset used for this study encompasses eight dis-
tinct activities: Falling, Getting up from bed, Going to bed,
Jumping, Sitting down, Standing up, Walking, and Rest.
These activities were chosen for their representation of com-
mon daily movements essential to routines. The inclusion of
falling is crucial, considering the heightened vulnerability of
the elderly to such incidents. Data collection involved two
participants, each performing these activities at their own pace.
Ten minutes of data were recorded for each participant in each
class, resulting in a total of 2.35 hours of total data. During
data collection, participants executed the activities at various
distances from the radar, from different angles, and at different
speeds.

Following data collection, the gathered data was transferred
from the radar board to a local PC for subsequent offline
processing, which included training and analysis. Among the
nine available features, namely r,, r,, 7, were used for spatial
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Fig. 2. Activity types and their feature maps: Illustration of activity performed
by the user (left) and corresponding feature maps, each comprising of vz, vy,
Uz, Gz, Gy, and a.. The activities are as follows: (a) Falling (b) Getting up
from bed (c) Going to bed (d) Jumping (e) Sitting down (f) Standing up (g)
Walking (h) Rest.

localization, and v, vy, V., Gz, Gy, and a, were used for
activity classification. After data cleaning procedures, 769 data
samples were generated with activity length varying from 20
frames ( 20 x 55 ms = 1.1 s) to 96 frames ( 96 x 55 ms = 5.3
S).

IV. LSTM-BASED CLASSIFICATION ENGINE

As can be seen from Figure [3] the classification engine
consists of a single-layer Bidirectional LSTM (Bi-LSTM) with
a total of 96 hidden units. The utilization of bidirectional
processing allows the model to capture dependencies in both
forward and backward directions of the input sequence, en-
hancing its understanding of the temporal aspects of the data.
Following the Bi-LSTM layer, there is a fully connected layer
that includes eight output neurons for making predictions.

In the variable-length training process of the network, a
series of six consecutive frames is employed as input, with
each frame consisting of six features. This input setup is
structured as a tensor with dimensions of [1, 6, 6] at each
time instant. For each training data sample, the model’s
loss is calculated using cross-entropy loss, measuring the
dissimilarity between predicted class probabilities and the
actual class. This loss is accumulated over each frame for the
corresponding activity class. Subsequently, the Backpropaga-
tion Through Time (BPTT) algorithm is applied to compute
gradients against the accumulated loss and propagate them
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backwards through the network. The total data samples were
divided into 80:20 training and testing splits, and the model
was trained using PyTorch [23] in a stateful manner, wherein
the hidden state and cell state from the previous time instant
were passed on to the current time instant. Adam optimizer
is utilized, with a learning rate of 0.01, to iteratively adjust
the model’s weights and minimize the loss for 50 epochs.
During real-time inference, Raspberry Pi 4 reads UART data
from the radar board and passes the six features into the
trained PyTorch model for prediction. As seen from Figure
[] the predicted activity is triggered when the confidence in
the activity gradually increases and exceeds 95%.
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confidence, gradually triggering a prediction when confidence surpasses a set
threshold.

V. RESULTS

The signal processing chain responsible for generating point
cloud data is executed on the IWR6843 board. It takes approx-
imately 36 ms to process each frame, with a CPU utilization
of 72% on the IWR6843 board, as described in [22]. On the
Raspberry Pi 4, the velocity and acceleration parameters are
stored in a buffer of length six and then relayed to the inference
engine for classification. The network exhibits the capability
to classify each input data point in ~ 10 ms, resulting in
low-latency inference with a CPU utilization of 20% on the
Raspberry Pi 4. A representation of the classifier’s output for
a test pattern can be observed in Figure [5] where the predicted
output tracks the true label with confidence of >95%.
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Fig. 5. LSTM-based classifier output for a test pattern. True class, and
predicted class for each time instant are shown in green, and blue respectively.

The points on the x-axis represent the start and end time of each activity in
the test pattern.

During multiple people activity classification, the LSTM-
based inference engine achieved a real-time classification
accuracy of 93% on average. Each participant was localized
with the recognized activity indicated beside it in the GUI for
visualization, as seen from Figure @
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Fig. 6. 2D visualization of the target locations within a room w.r.t the radar.
Simultaneously, on the right side, the detected activity identified by the LSTM-
based inference engine is displayed.

VI. CONCLUSIONS

Our proposed system, tinyRadar, integrates radar data from
the IWR6843 sensor with the processing capabilities of the
Raspberry Pi 4, incorporating LSTM networks for HAR. This
innovative design allows for efficient recognition of human
activities, achieving an impressive real-time classification ac-
curacy of 93% across eight different activity classes for mul-
tiple people. The system also provides accurate localization
information for detected targets, further enhancing its utility.
As a versatile system, tinyRadar opens up new possibilities
for continuous, unobtrusive monitoring of human activities,
contributing to the well-being and security of individuals in
a variety of settings. In the future, our plan is to expand the
dataset and transfer the LSTM inference engine onto the radar
board, enabling end-to-end computing on a single platform.
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