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Neuromorphic Time-Multiplexed Reservoir
Computing with On-the-fly Weight Generation for
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Abstract—The human brain has evolved to perform complex
and computationally expensive cognitive tasks, such as audio-
visual perception and object detection, with ease. For instance, the
brain can recognize speech in different dialects and perform other
cognitive tasks such as attention, memory, and motor control with
just 20 W of power consumption. Taking inspiration from neural
systems, we propose a low-power neuromorphic hardware archi-
tecture to perform classification on temporal data at the edge.
The proposed architecture uses a neuromorphic cochlea model
for feature extraction and reservoir computing (RC) framework
as a classifier. In the proposed hardware architecture, the RC
framework is modified for on-the-fly generation of reservoir con-
nectivity, along with binary feed-forward and reservoir weights.
Also, a large reservoir is split into multiple small reservoirs for
efficient use of hardware resources. These modifications reduce
the computational and memory resources required, thereby
resulting in a lower power budget. The proposed classifier is
validated for speech and human activity recognition tasks. We
have prototyped our hardware architecture using Intel’s cyclone-
10 low power series field-programmable gate array (FPGA),
consuming only 4,790 logic elements (LEs) and 34.9 kB memory,
making it a perfect candidate for edge computing applications.
Moreover, we have implemented a complete system for speech
recognition with the feature extraction block (cochlea model) and
the proposed classifier, utilizing 15,532 LEs and 38.4 kB memory.
By using the proposed idea of multiple small reservoirs along with
on-the-fly generation of reservoir binary weights, our architecture
can reduce the power consumption and memory requirement by
order of magnitude as compared to existing FPGA models for
speech recognition tasks with similar complexity.

Index Terms—Edge computing, accelerator architectures, re-
current neural networks, speech recognition, human activity
recognition.

I. INTRODUCTION

RECENT advances in the field of neuroscience, and
close collaborations with disciplines such as computer

science, electronics engineering, and mathematics, have led to
a new neurobiologically inspired computing paradigm known
as neuromorphic computing. Neuro-biological systems are
remarkable in computation and processing. The basic com-
putational elements of these systems are neurons, which are
slow and stochastic. Yet neuro-biological systems outperform
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today’s most powerful computers in real-world tasks such as
vision, audition, and motor control [1], [2]. The low-power
characteristics of neuro-biological inspired systems can be
used to develop next-generation edge devices with ultra-low
power capabilities. Edge computing focuses on data processing
at source, leading to lower bandwidth requirement, better
data integrity, and lower latency for real-time operations.
However, performing complex computation at source is limited
by power, performance, and area (PPA) constraints [3]. The
proposed neuromorphic system offers a better PPA design to
perform computation on a temporal data stream in real-time
with low resources (logic elements, multipliers, and memory).

The proposed design uses reservoir computing (RC), a type
of recurrent neural network (RNN), to perform classification
on temporal data [4], [5]. There are existing works on dig-
ital hardware implementation of RNNs validated for speech
recognition tasks, using gated recurrent units [6], [7], long
short-term memory (LSTM) [8], [9] and RC [10]. These RNN
systems consume a significant amount of power and memory
for speech recognition tasks. In addition to RNNs, there
are existing works on the hardware implementation of feed-
forward neural networks (FNNs) (using binarized and non-
binarized weights) to perform speech recognition tasks [11]–
[13]. In comparison to existing hardware implementations of
RNNs and FNNs [6]–[15], in the proposed work the reservoir
connectivity along with feed-forward and reservoir weights
are generated on-the-fly. Thus, minimizing the memory re-
quirement and memory read operations. Lower memory read
operations improves latency as well as reduces the power
consumption [16]. In [16], it is demonstrated that single
DRAM access and single SRAM access consumes around
thousands times and tens times, respectively more power
compared to an 8-bit multiplication operation on 45 nm CMOS
node. In addition to speech recognition, the proposed classifier
is validated for human activity recognition tasks.

The proposed design uses a novel approach of splitting a
large reservoir into multiple smaller reservoirs with on-the-fly
generation of reservoir connectivity along with binary feed-
forward and reservoir weights. In hardware design, one small
configurable reservoir block is time-multiplexed for different
reservoir weights and recurrent connections to implement mul-
tiple small reservoirs. Furthermore, similar to neural networks
with binary weights [12], [13], the feed-forward and reservoir
weights are binary, which eliminates the use of multiplication
operations required to determine reservoir states. These meth-
ods reduce the logical resource utilization in terms of logic
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Fig. 1. Simplified diagram of conventional echo-state network (ESN) archi-
tecture.

elements and multipliers. In addition, the sparse reservoir con-
nectivity along with binary feed-forward and reservoir weights
are generated using Linear Feedback Shift Register (LFSR)
[17] technique, which leads to lower memory utilization and
memory read operations, thereby further improving the design
latency and power consumption. Such design methods result
in less power and area consumption.

II. BACKGROUND AND RELATED WORK

A. Reservoir Computing

Recurrent pathways are exhibited in all biological systems
and RNN is a good way to model dynamical systems. How-
ever, the training of standard RNNs becomes difficult due to
long training time, gradient vanishing, and exploding. This
led to the emergence of RC as an alternative [18]. Echo-
State Network (ESN) is one of the types of RC [19]. The
architecture of a conventional ESN is shown in Fig. 1. In
an ESN, the input layer is connected to the reservoir with
random and fixed feed-forward weights, wff and similarly,
the reservoir nodes are sparsely connected to each other using
fixed random weights, wrr. The output layer is derived using
readout weights, wout from the reservoir and optionally from
the input layer. The only trainable weights in the ESN are
readout weights, wout. This makes the architecture simple for
temporal data classification applications such as speech and
human activity recognition [20], [21].

αj(t) =

NI∑
i=1

ui(t) ∗ wij
ff +

NRR∑
k=1

αk(t− 1) ∗ wkj
rr (1)

βj(t) = f(αj(t)) (2)

ym(t) =

NRR∑
j=1

βj(t) ∗ wjm
out (3)

Equations (1), (2), and (3) govern the implementation of the
ESN shown in Fig. 1. Notations used in the above equations
are elaborated below:

αj(t): Input of jth reservoir node at time instant t
ui(t): Input of ith input node at time instant t
wij

ff : Random and fixed feed-forward weight connection
between ith input node to jth reservoir node

wkj
rr : Random and fixed recurrent reservoir weight connec-

tion between kth reservoir node to jth reservoir node
NI : Number of input layer nodes
NRR: Number of reservoir nodes
βj(t): Output of jth reservoir node
f(.): Activation function (AF) of a reservoir node
ym(t): mth output node time instant t
wjm

out: Trainable readout weight connection between jth

reservoir node to mth output layer node
Due to sparse connectivity between reservoir elements, there

are null values present in the recurrent weight connections
matrix, wkj

rr , where k, j ε [1, NRR]. Linear regression is per-
formed to train readout weights using the output of reservoir
nodes, input nodes, and true labels. Moreover, there is an
existing approach [22], which proposes a systemic reservoir
connectivity instead of random reservoir connectivity, but with
this approach number of recurrent reservoir (RR) connections
are limited between 1 and 2.

J(W ) =
1

2

NS∑
n=1

(XT
nW − yn)2 (4)

ŷl = argmax

(
NW∑
w=1

(XT
wW )

)
(5)

Square error loss function, J(W) as in (4) is minimized to
determine readout weights. In the proposed work, the loss
function is optimized for all reservoir states corresponding to
each time-window for each training sample. In (4), NS is the
number of training samples, Xn is the matrix composed of
the output of reservoir nodes for all time-windows of the nth

training sample, yn is the true label for the nth training sample,
and W corresponds to the readout weights. During inference,
classification is performed based on all weighted reservoir
states corresponding to each time-window of a sample as in
(5). In (5), for each sample, ŷl is the predicted label, NW is
the number of time-windows and Xw is reservoir node output
vector corresponding to the wth time-window.

The proposed work is analyzed using three metrics to
determine the quality of the reservoir. These are kernel rank
(KR), generalization rank (GR), and memory capacity (MC).
KR estimates reservoir ability to distinguish between two dis-
tinct input patterns, whereas, GR estimates reservoir ability to
generalize similar input patterns [23], [24]. Large KR indicates
that different input patterns are mapped to distinct reservoir
states and small GR indicates that similar input patterns are
mapped to similar reservoir states. So, it is desirable to have
large KR and small GR. Memory capacity estimates the ability
of the reservoir to recalls the history of input data [24], [25].
Memory capacity is quantified by number of delayed versions,
d of i.i.d. input stream, u(t); that can be reproduced at output,
y(t).

MC =

∞∑
d=1

MCd =

∞∑
d=1

(
cov2(u(t− d)yd(t))
var(u(t))var(yd(t))

(6)

In (6), MC is determined as function of co-variance of
actual delayed input signal, u(t− d) and reproduced delayed
input signal, yd(t) for large number of delays.
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Fig. 2. Feature extraction stage: The response of the basilar membrane (BM)
in the CARFAC cochlea model for a chirp signal, with frequency varying
from 0 to 4 kHz.

B. Feature Extraction

Feature extraction aims at obtaining useful information
from the input data to be used by the classifier. In the
case of a temporal data stream, there are different existing
approaches to perform feature extraction based on the type of
input data and frequency components present [26]–[28]. For
the proposed classifier, neuromorphic cochlea model [29] is
used to extract features from auditory data and time-domain
statistical features are computed from accelerometer temporal
data stream.

1) Cochlea (CARFAC) model: The neuromorphic cochlea
model, cascaded asymmetric resonators fast-acting compres-
sion (CARFAC), is based on the human auditory system.
CARFAC models the various stages of early and mid-auditory
processing aspects of the human hearing system, including
basilar membrane (BM), outer hair cells (OHCs), and inner
hair cells (IHCs). Sound waves received at the outer ear travels
through the middle ear to reach the cochlea. The cochlea
serves as a frontend of the auditory processing system. The
tonotopic arrangement of preferred frequency along the BM is
preserved and different spatial locations of the BM vibrate in
response to sound frequencies present in the input audio. This
functionality of the BM is modeled using the CAR section
of the CARFAC model. Further, the mechanical vibrations of
the BM are transduced into electrical spiking responses by
the IHC. The FPGA implementation of the CARFAC [30],
[31] can be used as a feature extraction stage for real-time
auditory tasks such as speech recognition, sound segregation,
sound localization, and pitch perception [32], [33]. The output
of the BM is half-wave rectified, followed by a low pass filter
(loosely modeling the IHC) [34]. This extracts the energy
corresponding to each resonator present in the BM for each
time-window. The output of all resonators, corresponding to
a time-window, are input to the proposed recurrent classifier.
The flow of extracting features using the CAR model is shown
in Fig. 2.

Fig. 3. Representation of split-reservoir based ESN architecture, where a
large reservoir is split into multiple small reservoirs.

2) Time-domain statistical features: For human activity
recognition task, various time-domain features such as mean,
median, skewness, interquartile range, standard deviation, root
mean square, mean absolute deviation, maximum, and mini-
mum are used [35], [36]. From the raw accelerometer data,
body and gravity acceleration are determined for all three spa-
tial axes. Then, time-domain features are calculated for body
and gravity accelerations along different spatial axes. These
time-domain features are calculated for each of overlapping
windows of accelerometer data.

III. HARDWARE IMPLEMENTATION

The proposed design is implemented on Intel’s Cyclone 10
low-power series FPGA. To match the resource constraints of
edge devices, the proposed design focuses on reducing the
memory footprint and logical resources (logical elements and
multipliers).

A. Split-reservoir Based ESN

The standard ESN is modified by splitting a big reservoir
into multiple small reservoirs to minimize resource utilization,
as shown in Fig. 3. For example, one reservoir of 3200 nodes
is split into 100 reservoirs of 32 nodes. In this approach one
small configurable reservoir is implemented. This small reser-
voir can be restructured multiple times with different charac-
teristics such as reservoir connectivity along with feed-forward
and reservoir weights. Generally, the sampling frequency of
sensors ranges from tens of Hz to a few kHz, but the proposed
system in FPGA is running at a much higher frequency (tens
of MHz to hundreds of MHz), making it possible to reuse the
same reservoir using the time-multiplexing technique.

In the proposed design, sparse reservoir connectivity along
with random and fixed feed-forward and reservoir are gen-
erated dynamically using the LFSR technique [17]. Such
implementation reduces the memory requirement and memory
read operations significantly by storing only the initial seed
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(a) (b)

Fig. 4. Block diagram of hardware implementation of the proposed system using split-reservoir based ESN. (a) Block diagram of the top level module of
the proposed system. (b) Block diagram of dynamic configurable reservoir module for N reservoir nodes with M output nodes.

value of LFSR for each reservoir, rather than storing feed-
forward and reservoir weights along with sparse recurrent
connectivity. Further, in the proposed design, feed-forward and
recurrent reservoir weights are binary (+1 or -1). Hence, only
adders and subtractors are required instead of multipliers to
determine the reservoir states. Therefore, such implementation
is optimal in terms of power, performance, and area, due to
reduced computational and memory requirements.

B. FPGA Implementation

FPGA implementation of the proposed system is shown in
Fig. 4. The proposed system on FPGA continuously analyzes
sensor data for onset activity detection. The sensor data is then
sampled and processed by the feature extraction block for a
fixed time interval. The extracted features are dispensed to the
proposed split-reservoir based ESN classifier.

1) Top Level Module: The top level module consists of
the feature extraction module and the reservoir module, as
shown in Fig. 4(a). Signals expected from the sensor module
are raw sensor data of m + 1 bits, data in, sensor data
sampling clock, data clk, and onset activity detection signal,
trigger. For every onset of activity detection, a pulse is
generated at trigger input signal, initiating the sampling of
raw sensor data for a fixed time interval. Sampled sensor data
are simultaneously processed by the feature extraction module.
The extracted features are used as temporal input for the
proposed classifier. The classifier design reconfigures the same
reservoir module multiple times with different characteristics
to process the same extracted features. Hence, the extracted
features are required to be stored in the RAM block.

After the extracted features are stored in the RAM block,
the internal signal restart is triggered. This signal resets
the reservoir module for newly sampled data. At the start of
each reservoir, the internal signal reservoir is triggered to re-
initialize the reservoir characteristics. Then, the internal signal

window is triggered to indicate the reservoir module regarding
the presence of extracted feature data points of a time-window
in the next clock cycles. Each extracted feature data point
belonging to the same time-window is pushed serially into the
reservoir. Once all feature data points of a time-window are
pushed in the reservoir, a certain number of delay clock cycles
are given to the reservoir to perform recurrent operations.
The number of delay clock cycles depends on the number of
sparse recurrent reservoir (RR) connections. Once all the time-
windows are processed by the reservoir module, the reservoir
signal is triggered to change the characteristics of the reservoir
module. Then, the same extracted features are again processed
by the updated reservoir module.

2) Reservoir Module: The block diagram of a dynamically
configurable reservoir module with N reservoir nodes is shown
in Fig. 4(b). Read-only memory (ROM) blocks are used to
store readout weights, biases, and initial seed value of LFSR
corresponding to each reservoir. The size of ROM depends on
the number of split reservoirs and the number of nodes per
reservoir. The LFSR block is used to generate binary feed-
forward weights and recurrent reservoir interconnections along
with their binary weights. Each bit of the LFSR corresponds
to a random binary weight assigned to each reservoir node.
For a reservoir with N nodes, Ceil(log2|N |) bits are required
to address any reservoir node for RR connections. Therefore,
from the LFSR, Ceil(log2|N |) bits with a stride of 1 bit
are assigned to each node as the address for RR connection.
Hence, the required size of the LFSR is N+Ceil(log2|N |)−1
bits for an N node reservoir.

A flowchart depicting the working of the reservoir module
is represented in Fig. 5. Once the internal signal restart is
triggered, the reservoir module resets the accumulator registers
of all output nodes, out acc to zero. Then, the internal signal
reservoir is triggered, which resets the accumulator and the
output of all reservoir nodes to zero. After that, the internal
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Fig. 5. Flow chart of hardware implementation of split-reservoir based ESN.

signal window is triggered to load the LFSR with the initial
seed value of the corresponding reservoir from the ROM block.
The internal signal window also indicates that a stream of
valid feature data points of a time-window is available in the
next clock cycles. In each clock cycle, a valid feature data
point and feed-forward binary weights are passed as inputs
to all reservoir nodes. Each reservoir node is associated with
a different LFSR bit operating as the binary feed-forward
weight. Based on the binary weight, the feature data point
is added or subtracted in the accumulator for each reservoir
node. With every clock cycle, the feature data point and binary
feed-forward weight are updated for all reservoir nodes.

Once all feature data points belonging to the same window
are processed, recurrent feedback from reservoir nodes begins
to process. In this process, with every clock, previous output
values of the reservoir nodes as RR connections along with
binary reservoir weights are passed as input to each reservoir
node. The reservoir node address for RR connections and
binary reservoir weights are generated using the same LFSR.
This process is similar to the feed-forward connection for each
reservoir node. After processing RR connections, accumulator
values of all reservoir nodes are processed with a non-linear
activation function (AF). A piecewise linear approximation of
tanh is used as a non-linear AF with the slope in powers of

1
2 . This AF can be implemented using left shift operations.
After processing with AF, the internal signal node update is
triggered, which updates the output registers of each reservoir
node. The reservoir module will wait for the next time-
window data. The processing of input feature data points
for each reservoir node is performed simultaneously with the
multiplication of readout weights with the output of reservoir
nodes corresponding to the previous time-window. The multi-
pliers are reused by using the time-multiplex technique. The
number of multipliers depends on the number of clock cycles
between two consecutive node update signals and the number
of multiplication operations with readout weights. The result
of the multiplication with readout weights is updated in the
accumulator registers of the output nodes. Once all reservoirs
are processed one after another for all time-windows, bias
corresponding to each output node is added to their respective
accumulator registers. After this, out valid signal is triggered,
indicating that the predicted class is available as label signal.
Data bus label is corresponding to the maximum value of the
output accumulator register.

IV. EXPERIMENTS AND RESULTS

The proposed design of the classifier along with the feature
extraction block based on the CARFAC model was imple-
mented as fixed-point implementation on Cyclone-10 low
power series FPGA, 10CL055YF484C6G. Along with the
hardware model, a software model mimicking the fixed-point
hardware implementation was developed. This software model
was used for validating performance with different datasets.
The proposed design was validated on speech and human
activity recognition datasets. For the speech recognition task,
the TIDIGITS dataset [37] was used. This dataset contains a
total of 11 classes inclusive of spoken digits from zero to nine
and pronunciation of ‘oh’. Only isolated spoken digits from
the dataset were considered. Hence, to validate the proposed
classifier, 2464 audio samples from 112 speakers were used for
training, and 2486 audio samples from 113 speakers were used
for testing. The audio samples were downsampled to 8 kHz,
as voice frequency is generally within the 300-3400 Hz range.
Datasets used for human activity recognition (HAR) use wrist-
worn accelerometer [38] and waist-mounted smartphone [39]
with a sampling frequency of 32 Hz and 50 Hz, respectively.
Fig. 6, Fig. 7, and Fig. 8 describe the performance of the
proposed design for the mentioned datasets.

A. Experiment Setup and Software Simulation
The proposed system was validated with a configurable

reservoir having 32 (or 16) reservoir nodes with the number of
sparse recurrent reservoir (RR) connections varying from 2 to
8 (6.25% to 25% sparsity for 32 reservoir nodes). The output
of the feature extraction block was scaled down to 6 bits sign-
magnitude form. The AF used was a fixed-point piecewise
linear approximation of tanh with the slope of 1

2 as described
in (7).

f(x) =


−31, x < −63
[x/2], −63 ≤ x ≥ 63

31, x > 63

(7)
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(a) (b)

Fig. 6. Simulation results for speech recognition. (a) Word Error Rate (WER) during training and validation on TIDIGITS dataset by varying the number
of reservoirs, where each reservoir contains 32 nodes with 2 recurrent reservoir (RR) connections (6.25% sparsity). (b) Performance comparison for (i) WER
on TIDIGITS dataset, (ii) Logic elements used by the proposed split-reservoir based ESN classifier, and (iii) Classification time (in milliseconds) for 750 ms
audio by FPGA 10CL055YF484C6G for different number nodes per reservoirs and with different number of RR connections.

TABLE I
QUALITY METRICS ANALYSIS FOR DIFFERENT CONFIGURATIONS OF 3200 NODES RESERVOIR WITH 2 RECURRENT RESERVOIR CONNECTIONS

Single 3200 nodes reservoir 100 Reservoirs of 32 nodes 200 Reservoirs of 16 nodes
Numerical Representation Floating-Point Fixed-Point Fixed-Point Fixed-Point

Feed-forward and Reservoir
Weights Precision

Floating Binary Binary Binary

Randomness Generation Software Software Software LFSR LFSR
Kernel Rank 3193 3191 3178 3064 2997

Generalization Rank 1353 1765 1791 1825 1858
Memory Capacity 25 18 17 15 14

WER on TIGITS dataset 4.3% 4.6% 4.8% 5.3% 6.6%

In (7), f(x) represents the non-linear AF on x and [.]
represents the greatest integer part of a fraction. For speech
recognition, after onset detection, the next 6000 samples (750
milliseconds (ms) for 8 kHz sampling rate) were processed.
Here, the cochlea model was used as a feature extraction
block [25], where the functioning of the basilar membrane
(BM) was mimicked using 32 resonators with frequencies
varying in logarithmic scale from 100 Hz to 2 kHz. The
BM output was half-wave rectified and then averaged over
a time-window of 256 samples (32 ms for 8 kHz sampling
rate), with an overlapping window of 128 samples (16 ms for
8 kHz sampling rate). Furthermore, fixed-point approximated
logarithmic companding was applied to the extracted features
before scaling down to 6 bits. Such a companding effect
prevents saturation of extracted features after scaling down
to 6 bits sign-magnitude representation.

Word error rate (WER) is a general metric used to measure
performance for speech recognition. In the proposed system
isolated spoken digits were used, so WER was the number
of misclassified words out of the total number of words. For
validation, WER was determined using 5-fold cross-validation
on the training data. From Fig. 6(a) it can be observed that
when the number of the reservoir is increased from 100
to 200 the WER on validation data (as well training data)
has increased by around 0.5%. But with an increase in the
number of 32-nodes reservoirs from 100 to 200, the number
of overall reservoir nodes will also double. Thus, the readout
weights memory size, the number of memory read operations,
and latency time will double in return for just 0.5% WER
improvement. Therefore, based on the WER of validation,

an optimum number of 32 node reservoirs required for the
TIDIGITS dataset is 100 (total 3200 reservoir nodes), so
the number of 16 node reservoirs can be 200 to have the
same number of overall reservoir nodes. And, also have the
same number of multiply-accumulate operations for each time-
window of sampled audio.

In Fig. 6(b), WER is determined on the test data and it is
evident that learning capability can be tuned by varying the
sparse RR connections or number of nodes per reservoir. In
the implemented design, resource utilization is independent
of the number of sparse connections within the reservoir.
Also, the number of clock cycles required to process recurrent
connections does not vary significantly for different sparse RR
connections. Thus, the time taken by the FPGA to classify 750
ms audio does not vary significantly with the different number
of sparse RR connections. From Fig. 6(b) it can be observed
that if the number of nodes per reservoir is reduced from 32
to 16, resource utilization reduces to almost half but WER
increases by 1.3% on the TIDIGITS dataset. However, for a
reservoir with 16 nodes, the same reservoir module is time-
multiplexed twice compared to reservoir with 32 nodes. Thus,
latency is increased twice when the number of nodes is 16.

The quality metrics for the proposed design are analyzed
in terms of kernel rank (KR), generalization rank (GR), and
memory capacity (MC). KR is determined as a rank of a matrix
containing reservoir node output vectors for each time-window
of audio samples. GR is determined as the rank of a matrix
containing reservoir node output vectors for different noise
values on the same input vector. For MC, an input stream
of random numbers from a uniform distribution is generated.
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Since for the proposed design, input data width is 6 bits, the
input stream is quantized into 6-bit sign-magnitude form for
fixed-point reservoirs. Table I provides comparative analysis in
terms of quality metrics and WER among conventional 3200
nodes floating-point reservoir, 3200 nodes fixed-point reservoir
with binary weights, and different variations of the proposed
split reservoir based ESN (having overall 3200 reservoir
nodes). For a more legitimate comparison, each network has
2 RR connections. The quality metrics and WER for a single
3200 node reservoir (floating-point or fixed-point) may vary
with diiferent the number of sparse RR connections.

From Table I it is observed that compared to single 3200
nodes floating-point reservoir, quality metrics deteriorated for
a single 3200 nodes fixed-point reservoir with binary weights,
thus it leads to an increase in WER by 0.3%. Furthermore,
Table I provides comparative analysis for 100 reservoirs of
32 nodes each, when reservoir connectivity along with binary
feed-forward and reservoir weights are generated using LFSR
(on-the-fly) compared to software method. In this comparison

(a)

(b)

Fig. 7. Confusion matrix for HAR on: (a) wrist-worn accelerometer dataset
[38] using 30 reservoirs of 16 nodes, (b) waist-mounted smartphone dataset
[39] using 30 reservoirs of 16 nodes.

(a) (b)

Fig. 8. Accuracy comparison with existing works for HAR on: a) wrist-worn
accelerometer dataset [38] using 30 reservoirs of 16 nodes, b) waist-mounted
smartphone dataset [39] using 30 reservoirs of 16 nodes.

the quality metrics thus WER deteriorates by 0.5% for the
former. From Table I, it can be further noticed that quality
metrics thus WER, have further deteriorated for 200 reservoirs
of 16 nodes compared to 100 reservoirs of 32 nodes. Overall,
by comparing conventional 3200 nodes floating-point reservoir
with 200 reservoirs of 16 nodes there is a tradeoff of 2.3%
WER with a fixed-point design having binary feed-forward and
reservoir weights along with reservoir connectivity generated
on-the-fly utilizing just 4790 logic elements (LEs) in the
FPGA.

Human activity recognition (HAR) was performed on two
datasets, with data collected using wrist-worn accelerometer
[38] and waist-mounted smartphone [39]. For both datasets,
the feature extraction block first segregates accelerometer data
into body and gravity acceleration for all three spatial axes. For
the wrist-worn accelerometer dataset, time-domain statistical
features for a time-window of 32 samples with 24 overlapped
samples from the previous window were calculated. The time
statistical features calculated were mean, root mean square,
median, standard deviation, interquartile range, skewness, and
mean absolute deviation.

For the waist-mounted smartphone dataset, time-domain
statistical features for a time-window of 128 samples with 64
overlapped samples from the previous window were provided
in the dataset. Among the provided features in the dataset,
mean, standard deviation, mean absolute deviation, maximum,
minimum, and interquartile range were used. Confusion ma-
trices for HAR using wrist-worn accelerometer dataset and
waist-mounted smartphone dataset are represented in Fig.
7. Performance comparison of the proposed classifier for
mentioned datasets with existing works [39], [39]–[44] is
represented in Fig. 8. The proposed model was validated
against existing software methods such as random forest (RF),
long short-term memory (LSTM), sequential extreme learning
machine (ELM), convolutional neural networks (CNNs), sup-
port vector machines (SVM), and deep RNNs. As shown in
Fig. 8, the proposed work using fixed-point hardware friendly
architecture gives comparable performance with the existing
works using floating-point software implementation [39]–[44].

B. Hardware Implementation Results for Speech Recognition

The system level FPGA implementation includes a 16 node
split-reservoir based ESN classifier and a cochlea model based
feature extraction block [30]. In Table II, the proposed design
is compared with existing FPGA based works [6], [7], [10]
in terms of resource utilization, power consumption, latency,
and WER for speech recognition. Resource utilization was
analyzed in terms of logic elements, registers, and multiplier
blocks. Power consumption was analyzed for classifier and
feature extraction block and did not include the power con-
sumed by peripheral devices such as sensors. The proposed
speech recognition system using cochlea and split-reservoir
based ESN approach uses 15,532 LEs, 9,733 registers, and 14
units of multiplier blocks. From the total resource utilization,
the reservoir module utilizes 4,790 LEs, 1,218 registers, and 4
units of multiplier blocks. The feature extraction block using
the cochlea model utilizes 9,038 LEs, 7,585 registers, and
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TABLE II
HARDWARE RESOURCE UTILIZATION, POWER CONSUMPTION, LATENCY AND CLASSIFICATION ASSESSMENT

Proposed System for Speech Recognition System
Delta RNN based Speech
Recognition System [6]

Edge Delta
RNN based

Speech
Recognition
System [7]

RC based
Speech

Recognition
[10]

Split-reservoir
based ESN

(16 nodes, 200
reservoirs)

Split-reservoir based ESN with
feature extraction (Cochlea model)

(16 nodes, 200 reservoirs)

Microphone Low Latency (LL)
Setup

Implementation
Platform

Cyclone 10 Low Power Series
(10CL055YF484C6G)

Xilinx Zynq-
7000 FPGA
(XC7Z020)

Xilinx Zynq-7100 FPGA
Xilinx Zynq-
7000S FPGA
(XC7Z007S)

Xilinx
Artix-7

(XC7A100T)
FPGA Clock

Frequency
40 MHz 40 MHz 40 MHz

1 MHz (for
Delta RNN)

100 MHz (for
Delta RNN)

125 MHz -

Logic Elements
(LEs) / Lookup
Tables (LuTs)

4,790
4-Input LEs

(9%†)

15,532
4-Input LEs

(28%†)

7,179 6-Input
LuTs

(13.5%†)
- -

10,464 6-Input
LuTs?

23% of
FPGA’s
area for
for RC
based

classifier? ψ

Registers /
Flip-Flops

1,218 Registers
9,733

Registers
9,625 Flip-

Flops
- -

11,665 Flip-
Flops?

#Parameters 0.035 M 0.036 M - - 5.4 M

Net Memory
Required

12-bit Readout
Weights, 52.1 kB,

10-bit Readout
Weights, 43.4 kB,

8-bit Readout
Weights, 34.9 kB

12-bit Readout Weights, 55.6 kB,
10-bit Readout Weights, 46.9 kB,
8-bit Readout Weights, 38.4 kB

- - -

Embedded
Multiplier

Blocks

4 units
(18 x 18§

multiplier)

14 units
(18 x 18§

multiplier)

16 units
(18 x25

multiplier)
- -

9 units
(18 x25

multiplier)?

Power
Consumption

-
0.138 W
(FPGA)

0.155 W
(FPGA)

1.65 W
(FPGA+ARM)

4.45 W
(FPGA+ARM)

1.827 W
(FPGA+ARM)

-

Latency 0.525 ms per time window
7.47 ms per
timeframe

7.1 ms per
timeframe

0.536 ms per
timeframe

-

Spoken Digit
Classification

-
12-bit Readout Weights, WER= 6.6%,
10-bit Readout Weights, WER= 6.8%,
8-bit Readout Weights, WER= 8.1%

WER = 4.42% WER = 4.42% WER = 1.3% WER = 3.8%

† The percentage value indicates the resources consumed in comparison to the total resources available on FPGA 10CL055YF484C6G.
§ For 8-bit readout weights 9x9 multiplier blocks are used for classifier in Cyclone 10 Low Power series FPGA.

? This resource utilization metric is only for classifier and does not include feature extraction block.
ψ In [10], FPGA resource utilization is mentioned in terms of percentage of used FPGA’s area for RC based classifier.

10 units of multiplier blocks. The remaining resources are
utilized to process BM output into time-windows, as discussed
in previous sections.

As discussed in Table II, memory utilized to store LFSR
seed values of 200 reservoirs, bias values of output nodes,
along with 12-bit, 10-bit, and 8-bit readout weights are 52.1
kB, 43.4 kB and 34.9 kB. Compared to 12-bit readout weights
memory requirement for 8-bit readout weights is reduced to
two-third, but at the expense of 1.5% WER. In the proposed
system design, two RAM blocks, each of size 1.5 kB are
used as ping-pong buffers to store the extracted features from
sampled time interval data. For better comparison with existing
FPGA implementation [6] and [7], the proposed design is
also implemented on the Xilinx Zynq platform that embeds
ARM processor with FPGA. On the Xilinx Zynq platform
logic elements (LEs)/ lookup tables (LuTs) have been reduced
from 15,534 to 7,769 compared to Cyclone 10 low power
series. This is because the Xilinx Zynq platform has bigger
LuTs (6-input) compared to LEs (4-input) on Cyclone 10
low power series. The on-chip power consumption on Xilinx

Zynq platform for proposed design is 0.155 W, compared to
existing works in FPGA which is 1.65 W [6] and 1.827 W
[7]. As reservoir connectivity along with weights is generated
on-the-fly, the number of parameters of the proposed design
to be stored is less than 150 times. This reduces the memory
requirement for the proposed design such that on-chip FPGA
memory is sufficient and no external memories (DRAM)
are required unlike [6], [7]. This results in lower power
consumption [16] and latency, as shown in Table II.

The proposed work achieves lower latency (per time-
window) compared to the existing works [6], [7], [10], with
less than half of the FPGA clock speed, as shown in Table
I. Here, classification is performed after generating all time-
windows corresponding to the sampled 750 ms audio. The
proposed design of 200 reservoirs with 16 nodes each takes
0.525 ms to process each time-window and 23.6 ms to process
all 45 time-windows corresponding to the sampled 750 ms
audio (Fig. 6(b)). Depending on applications, the proposed
speech recognition system can be modified to process each
time-window individually instead of processing all the time-
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windows of sampled audio collectively. If each time-window
is processed individually, then 6 bits reservoir states for all
reservoir nodes need to be stored in the RAM block, which
can increase the memory requirement by 3 kB. In the proposed
design, low power, low memory, and better latency were
achieved at the cost of approximately 2-5% higher WER,
compared to existing works [6], [7], [10]. Lower WER in the
proposed work can be achieved with increase in nodes per
reservoir. This will lead to an increase in hardware resources,
but the design would still consume less power and memory
compared to existing works.

V. CONCLUSION

This work demonstrates a low power and low latency
approach to perform real-time temporal classification tasks
such as speech and human activity recognition for edge
devices. In the proposed split-reservoir based ESN, memory
requirement and memory read operations are minimized as
reservoir connectivity along with feed-forward and reservoir
weights are generated on-the-fly using the LFSR technique.
The lower memory read operations reduce the latency and
power consumption. Also, feed-forward and reservoir weights
are binary, which eases computation, and lowers the logic
resource requirement as well. Multiple small reservoirs in the
proposed split-reservoir based ESN are implemented using a
single configurable reservoir module, which further reduces
logic resources in terms of LEs, registers, and multiplier
blocks. This proposed hardware implementation lowers logical
and memory resource requirement thus consumes less power
and has a small area. This qualifies the system for integration
with sensors to perform edge computation. Both the feature
extraction block and the classifier are implemented on a
single FPGA platform unlike two different platforms such as
processor and FPGA. This reduces the overhead of handshak-
ing signals between multiple platforms, thus improving the
latency. Moreover, training of RC framework is less compu-
tational expensive compared to frameworks such as FNNs,
LSTMs, or GRUs as in case of RC framework only output
layer (readout weights) is trained. Since only the output layer
(readout weights) is trained, the proposed design can be ex-
tended to perform multiplier-less (hardware friendly) on-chip
learning using sign-based online update learning (SOUL) [45].
The on-chip training for typical deep learning architecture
(mainly uses backpropagation algorithms), is computationally
demanding and cannot be considered for resource-constrained
devices. Binary Neural Networks (BNNs) uses binary weights
for inference, but during training they need full precision. This
will make BNNs not appropriate for applications where on-
chip training is required.

The proposed classifier can be optimized based on user
applications. Moreover, an increase in the number of nodes
per reservoir will reduce the number of reservoirs (keeping the
overall number of reservoir nodes constant), thus, latency can
be improved at the expense of logical resources. In this work,
logical resources are shared among small reservoirs by the
time-multiplexed technique. Furthermore, the logical resources
can be reduced at the expense of latency by sharing logical

resources among reservoir nodes too (in each small reservoir).
The proposed system can be used to implement always-on
smart wake-up modules to perform the wake-up operation only
when voice command or certain human activity is detected.
Owning to its learning capability, the same classifier architec-
ture can be integrated with different types of sensors such as
microphones and accelerometers to perform recognition tasks
at the sensor level. This will lead to a reduced design cycle
cost, as the same intellectual property can be integrated with
different sensors. Applications of this work can be extended
to learn other dynamical systems for edge applications such
as brain-control interface using electroencephalogram (EEG)
temporal data, medical diagnosis [46], [47], and drone flight
stabilization using accelerometer and gyroscope temporal data.
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