
ADVANCED REV I EW

Neuromorphic vision: Sensors to event-based algorithms Q2

Q1A.
Q3

Lakshmi1,2 | Anirban Chakraborty3 | Chetan S. Thakur2

1Centre for Artificial Intelligence and Robotics,
Defence Research and Development Organization,
Bangalore, India
2Department of Electronic Systems Engineering,
Indian Institute of Science, Bangalore, India
3Department of Computational and Data Sciences,
Indian Institute of Science, Bangalore, India Q4

Correspondence
Chetan Singh Thakur, Department of Electronic
Systems Engineering, Indian Institute of Science,
Bangalore 560012, India.
Email: csthakur@iisc.ac.in

Regardless of the marvels brought by the conventional frame-based cameras, they
have significant drawbacks due to their redundancy in data and temporal latency.
This causes problem in applications where low-latency transmission and high-
speed processing are mandatory. Proceeding on this line of thought, the neurobio-
logical principles of the biological retina have been adapted to accomplish data
sparsity and high dynamic range at the pixel level. These bio-inspired neuro-
morphic vision sensors alleviate the more serious bottleneck of data redundancy by
responding to changes in illumination rather than to illumination itself. This paper
reviews in brief one such representative of neuromorphic sensors, the activity-
driven event-based vision sensor, which mimics human eyes. Spatio-temporal
encoding of event data permits incorporation of time correlation in addition to spa-
tial correlation in vision processing, which enables more robustness. Henceforth,
the conventional vision algorithms have to be reformulated to adapt to this new
generation vision sensor data. It involves design of algorithms for sparse, asynchro-
nous, and accurately timed information. Theories and new researches have begun
emerging recently in the domain of event-based vision. The necessity to compile
the vision research carried out in this sensor domain has turned out to be consider-
ably more essential. Towards this, this paper reviews the state-of-the-art event-
based vision algorithms by categorizing them into three major vision applications,
object detection/recognition, object tracking, localization and mapping.

This article is categorized under:
Technologies > Machine Learning Q5

1 | INTRODUCTION

In this era of rapid innovations and technological marvels, much effort is being put into developing visual sensors that aim to
impersonate the working principles of the human retina. These efforts are motivated by and driven towards the ultimate objec-
tive of catering for applications such as high-speed robotics and parsing/analyzing high dynamic range scenes. There are situa-
tions where the conventional video cameras fall short. The colossal amount of data from a conventional camera overwhelms
the processing of embedded systems and henceforth unavoidably turns into a bottleneck. This necessitates that some funda-
mental level of preprocessing has to be done at the acquisition level, as opposed to loading processing systems with redundant
data. In any case, developing sensors for this novel modality requires information-processing technologies built from the
domain of neuromorphic engineering. One such research effort prompted the development of neuromorphic vision sensors,
also known as event-based vision sensors, which have shown incredible accomplishment in furnishing solutions to the issues
encountered in conventional cameras. These sensors have led to a revolutionary way of recording information by asynchro-
nously registering only changes in illumination with microsecond accuracy.

These sensors find utility extensively in high-speed vision-based applications, which are indispensable in various fields
such as micro-robotics. The frame-based vision algorithms would not be effective in analyzing these event data-streams. As

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Received: 6 September 2018 Revised: 23 January 2019 Accepted: 24 January 2019

DOI: 10.1002/widm.1310

WIREs Data Mining Knowl Discov. 2019;e1310. wires.wiley.com/dmkd © 2019 Wiley Periodicals, Inc. 1 of 34
https://doi.org/10.1002/widm.1310

Journal Code Article ID Dispatch: 15-FEB-19 CE: D, Subramani
WIDM 1310 No. of Pages: 34 ME:

user
Typewritten Text

user
Typewritten Text

user
Textbox

user
Textbox

user
Textbox

http://wires.wiley.com/dmkd
https://doi.org/10.1002/widm.1310

they expect synchronous data, these would not enable us to leverage upon the aforementioned benefits obtainable from neuro-
morphic vision sensor data. Consequently, a shift in the paradigm of algorithms from conventional frame-based to event-based
sensors is essential. The development of event-based vision algorithms is yet to reach the scale of development of their frame-
based counterparts as well as the level of accuracy these algorithms have been able to achieve in the conventional video data
domain. The main reason is the very limited commercial availability of these sensors and that these are accessible only as pro-
totypes or proof-of-concept. Nevertheless, quite a number of interesting computer vision algorithms are recently being devel-
oped for these type of sensors, which are optimally designed to exploit the higher temporal resolution and data sparsity of
these sensors.

With the development of present-day technologies, these sensors are starting to show up in the commercial field. This also
necessitates a structured and detailed study of important vision algorithms already conceived or needed to be developed for
analyzing the event data streams. However, there is hardly any such survey in the event domain unlike the plethora of similar
works existing for its frame-based counterparts. Hence, we present a survey of vision algorithms available for event data.
Despite the fact that our focus is to review event-based vision algorithms, we have additionally intended to provide a concise
overview of silicon retinae, with more emphasis on a specific type of silicon retina known as the temporal difference silicon
retina. Furthermore, we also briefly review the event datasets available in the public domain to evaluate the aforementioned
event-based vision algorithms.

The structure of the paper is as follows. The paper introduces silicon retina and temporal difference silicon retina in a nut-
shell, followed by the details of the state-of-the-art of three important event-based vision applications, viz., object detection
and recognition, object tracking as well as localization and mapping. As a closing remark, the paper gives a gist of open-
source event datasets along with the available codes1 and implementations of event-based vision sensor algorithms.

2 | SILICON RETINA

Information processing of neurobiological systems is very exceptionally one-of-a-kind in relation to present-day image-
capturing devices. Biological vision systems dependably beat human-invented vision sensors. Conventional image sensors are
operated by a synchronous clock signal, which has resulted in an enormous amount of monotonous and redundant data accu-
mulation. This aspect has motivated the research in neuromorphic engineering to emulate vision sensors that mimic human
eyes, which has led to the development of silicon retinae. Silicon retinae are event-based, unlike conventional sensors, which
are frame-based. This makes it more similar to the biological model of the human eye, which is driven by events occurring in
the real world. The first electronic model of the retina came into existence in the early 70's (Fukushima, Yamaguchi,
Yasuda, & Nagata, 1970; Mahowald, 1994), following which numerous forms of silicon retinae widely known as event-based
vision sensors came into existence, including the spatial contrast retina that encodes relative light intensity change with respect
to the background (Barbaro, Burgi, Mortara, Nussbaum, & Heitger, 2002; Bardallo, Gotarredona, & Barranco, 2009; Ruedi
et al., 2009), gradient-based sensors that encode static edges, temporal intensity retina (Mallik, Clapp, Choi, Cauwenberghs, &
Cummings, 2005), and temporal difference retina (Kramer, 2002; Lichtsteiner, Posch, & Delbruck, 2006). This study reviews
the rationale of temporal difference silicon retinae, which are commonly known as activity-driven event-based vision sensors.

Temporal difference silicon retina generates events in response to changes in illumination in the scene in temporal space.
The following section discusses, in brief, the details of their architecture, types, history, advantages, companies involved, and
software available.

2.1 | Event generation mechanism

In a conventional sensor, an image consists of pixels Ix,y(t), whose value is sampled at fixed time intervals Δt. This results in a
representation that is incompatible with compact representation. In temporal difference silicon retina, the pixels with signifi-

cant luminance changes across time, I
0
x, y tð Þ, are retained. An event at spatial location (x, y) and time t can be represented as

et =
sign I

0
x, y tð Þ

n o
if j I 0x, y tð Þ j > △

0 if j I 0x, y tð Þ j < △

8<: , ð1Þ

where △ is the threshold. These events are spatio-temporal in nature.

2 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

2.2 | Event transmission mechanism

As temporal difference silicon retina is spike based, it utilizes a spike-based interfacing procedure known as address event rep-
resentation (AER: Figure F11) to transmit asynchronous information over a narrow channel (Gotarredona, Andreou, & Barranco,
1999). In AER, each neuron is assigned a unique address by its encoder/arbiter. When an event is generated, the address of
the neuron and relevant information are sent to the destination over the bus. The decoder in the receiver interprets the received
information and assigns the received information to the particular destination. When the number of event-generating neurons
surpasses the transmission capacity of the bus, multiplexing is employed.

2.3 | Event processing mechanism

This section describes the way in which spatio-temporal data of silicon retina could be interpreted. The temporal nature of
these events is generally modeled with weights that are binary or an exponential decay function. Events modeled with binary
weights can be represented with an activity buffer using built-in data structure support, first-in-first-out (FIFO). If a pixel's
event exists for a longer duration than a predefined threshold 5 t, it is discarded. As this threshold impacts the bandwidth
required for transmission, it must be picked with utmost care in view of the application requirement. In the case of decay func-

tion model, the event that occurred at time ti is made to lose its weight exp
t − ti
τ

� �
exponentially with time t, the decay being

characterized by a time constant τ. The event is retained only if its weighted value surpasses a predefined threshold ϵ.

2.4 | Brief survey of temporal difference silicon retina

This section puts forth a brief survey of research and development of temporal difference silicon retina.
In 2002, Jorg Kramer developed an array of 48 × 48 pixels, temporal difference silicon retina (Kramer, 2002). Events

were generated in this device when the intensity of the pixels exceeded a predefined threshold. Therefore, this device was
unable to capture slowly moving objects. Lichtsteiner, Posch, and Delbruck (2008) presented a dynamic vision sensor
128 (DVS128) with the design of photodiodes that were superior to that of Kramer's. In 2010, Bardallo et al. (2009) intro-
duced a vision sensor with a very low latency of 3.6 μs, which empowered it to capture objects rotating at a speed of 10,000
revolutions per second. In spite of the fact that it exhibits a reduction in the pixel area, the manufacturing technology might
make this sensor to occupy more area than that of DVS128. In 2010, asynchronous time-based image sensor (ATIS) was pro-
posed by Posch, Matolin, and Wohlgenannt (2011), which combined two sensors for each pixel. This enabled it to transmit
new intensity values only after a change has happened, thereby making real-time data compression possible.

Increase in the practical application of DVS has driven many companies to get involved in research and development of
the sensor. Variants of DVS such as DVS128 (Lichtsteiner et al., 2008), eDVS, mini-eDVS, DAVIS240 (240 × 180)
(Brandli, Berner, Yang, Liu, & Delbruck, 2014a, 2014b), DAVIS346 (346 × 260) and color-DAVIS (Li et al., 2015) have
been developed by iniVation Inc. Samsung Inc. developed DVS (Son, Suh, et al., 2017) with lesser pixel size, low power,
good event quality, and low data rate. The data to be sent can be programmed. The sensor sends events when the programmed
feature appears strongly in the field of view. The Australian Institute of Technology (AIT) has developed a dual line sensor,
which is an optical CMOS dynamic vision sensor with two lines of 256 pixels each. It displays extreme high time resolution
and data reduction as compared to conventional line sensors. In addition to this, it has also come up with an ATIS sensor as
proposed by Posch et al. (2011). The other companies that develop event-based vision sensors are Hillhouse technology Inc.,
Insightness Inc., and Prophesee Inc. Some event-based vision sensors that are not commercially available, but whose proto-
types have been developed are LWIR DVS (Posch, Matolin, Wohlgenannt, Maier, & Litzenberger, 2009), Smart DVS (Posch,
Hoffstaetter, & Schoen, 2010), Sensitive DVS (Bardallo, Gotarredona, & Barranco, 2011; Gotarredona & Barranco,
2013) etc.

N1

N2

Device 1 Device 2

Digital bus

A
rb

ite
r/

E
n
c
o
d
e
r

D
e
c
o
d
e
r

N3

N1

N2

N3

FIGURE 1 Inter device communication using AER. Figure courtesy (Gotarredona, Andreou, & Linarese, 1999)

LAKSHMI ET AL. 3 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

2.5 | Architecture

DVS128 and ATIS are the two most prominent temporal difference silicon retinae that revolutionized the field. Hence, the
architecture of these two sensors is discussed in more detail in subsequent sections.

2.5.1 | DVS128 architecture

DVS has 128 × 128 array of independent pixels. Each pixel responds independently and asynchronously to logarithmic
change in light intensity with an ON spike to indicate the increase in intensity and an OFF spike to demonstrate the decrease
in intensity. DVS communicates using AER circuits, with unique addresses for ON and OFF spikes. A simplified diagram of
a single pixel of DVS is shown in Figure F22. The first stage comprises a logarithmic photo-detector, which emits a voltage pro-
portional to the logarithm of the photo-current sensed by the circuit. This logarithmic response aids DVS to accomplish a good
dynamic range. The photoreceptor is followed by a differencing amplifier that amplifies the change in the output of the first
stage (Vp). The output of the differencing amplifier, Vdiff, is fed to two comparators, which possess ON and OFF thresholds
and generate an ON or OFF event, respectively, based on the sign of Vdiff.

DVS has evolved into several versions such as in Brandli et al. (2014a, 2014b), wherein authors developed a Dynamic
and Active Pixel Vision Sensor (DAVIS), which utilizes Active Pixel Sensor (APS) capability to enable overall intensity read-
out and Delbruck and Berner (2010), Bardallo et al. (2011), Yang, Liu, & Delbruck, (2015), where research has been carried
out to increase the contrast sensitivity.

2.5.2 | ATIS architecture

Temporal contrast vision sensor has progressed to the latest sensor known as Asynchronous Time-based Image Sensor (ATIS)
(Posch et al., 2011), which encodes the absolute change in illumination rather than +1/ −1 when activated by event occur-
rence. ATIS has a Quarter Video Graphics Array (QVGA) resolution of 304 × 240 asynchronous sensors. Each sensor com-
prises an illuminance change detector circuit and a conditional exposure measurement circuit. Figure F33 demonstrates the
functional diagram of a single pixel. In response to illumination change of certain predefined threshold, the change detector
circuit triggers the exposure measurement device. Pixel-specific change detector operation yields temporal redundancy sup-
pression. The exposure measurement device encodes the change in illumination into the inter-spike timing of pulses. When
triggered, the exposure measurement circuit begins to integrate its photo-current, emitting a spike when it reaches a lower

Photoreceptor
Differencing

circuit Comparators

Reset

OFF

ON

I

-A -A

C
1

V
p

C
2

kT
In(I/I

0
)+Kq .ΔIn(I)

V
diff

 = -A kT
q

FIGURE 2 Architecture of a pixel of DVS. Figure courtesy (Lichtsteiner et al., 2008)

PD1

ATIS Pixel

Change detector

Magno (Y)

Exposure measurement (Y)

Parvo (X)

Log pixel illuminance

Change events (ON/OFF)
Trigger

PWM grayscale events

Gray level ~ 1/t

t

PD2

FIGURE 3 Single pixel architecture of ATIS. Figure courtesy (Posch et al., 2011)

4 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

threshold, trailed by the emission of a second spike once it reaches the upper threshold. Thus, the inter-spike time ends up
being proportional to the pixel intensity.

The type of information encoding employed in the ATIS refrains from imposing the same integration time for the entire
pixel array. This results in prominent benefit in terms of attaining high dynamic range. The ATIS can achieve an intra-scene
dynamic range of 143 dB as the integration time could be varied from 350 ns to 4.5 s. Generally, the temporal resolution is
traded off for a good dynamic range. However, the ATIS implements techniques used in standard voltage-mode imagers to
sustain higher dynamic range without compromising on temporal resolution. The ATIS communicates using AER protocol,
and the frames could be generated as and when needed by buffering the events that occurred over a given period of time.

2.6 | Advantages

Traditional vision cameras come with certain setbacks such as limited frame rate, limited dynamic range, and redundant data.
Neuromorphic vision sensors (Figure F44 shows the output of an conventional camera and an event camera) try to address the
above-mentioned disadvantages as given in the forthcoming sections.

2.6.1 | Frame rate

A frame camera continuously outputs frames even if there is no visible change in the field of view. An event camera, on the
other hand, reports only the changes in the scene asynchronously. A frame-based camera recapitulates over all pixels every
time, which increases its latency to changes in input. In an event-based camera, pixels respond to scene intensity changes indi-
vidually, which leads to a very low latency often as low as 15 μs. Hence, the effective frame rate of an event camera is of the
order of several kiloHertz.

2.6.2 | Dynamic range

Dynamic range indicates the property of camera that measures its ability to acquire images in low and bright light scenarios.
Frame-based cameras typically achieve a dynamic range of 60 dB, whereas the DVS and ATIS have a dynamic range of
120 and 143 dB, respectively, as each pixel of an event-based camera is independent. Hence, event-based cameras find use
extensively in scenes with extreme intensity contrast.

2.6.3 | Bandwidth

Frame-based cameras transmit information of all pixels irrespective of their information content. Event-based cameras achieve
data rate compression at pixel level as they are triggered asynchronously in response to a local scene intensity changes.

2.6.4 | Power consumption

Power consumption tends to be a critical issue in portable digital devices especially in applications such as robotics. Despite
the fact that event- and frame-based cameras require power in the range of mW, event-based processing consumes zero power
in static scenes. This makes it superior to a frame-based camera as far as power consumption is concerned.

2.7 | Software

Various drivers/application softwares are available for the DVS, few of which are jAER, caer, and libcaer. This
section provides a brief overview of these frameworks.

jAER (Dynamic Vision Software, 2017) stands for Java Address-Event Representation, which is an open-source frame-
work with programs to view real-time or recorded event data and to develop real-time event-based algorithms. It has a built-in
user interface known as jAERViewer, which allows users to plug-in any AER device through a USB interface and

FIGURE 4 Left: image from conventional camera, right: event image from event-based vision camera. Figure courtesy (Dynamic Vision Object Recog and
Action Recog and Tracking Simulated Dataset, 2016)

LAKSHMI ET AL. 5 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

subsequently view or log the event data. In addition to these basic operations, it also supports computer vision operations such
as tracking and low-level feature extraction. jAER is compatible with Windows, Linux, and MacOS.

In contrast to jAER, caer (Dynamic Vision Software, 2018a) is a software framework written in C/C++, mainly targeted
at embedded systems. This makes it ideal for research applications. It does not require a GUI, unlike jAER. It has a wide range
of advantages such as small memory footprint, limited usage of CPU, no dependency on the graphical user interface, remote
configurability and network accessibility. It is also compatible with Linux, Windows and MacOS operating systems.

Libcaer (Dynamic Vision Software, 2018b) is a small framework developed by the company iniVation in C to provide
capabilities to access, configure, send and receive data from sensors such as DVS, DAVIS. It consists of minimum API for
defining event formats and device control. It supports Linux and MacOS. A ROS package named as the ROS DVS package
(Dynamic Vision Software, 2018c) has been developed on libcaer, which provides C++ drivers for DVS and DAVIS, APIs to
read recorded data and APIs for intrinsic and stereo calibration.

Yet Another Robotics Program (YARP) (Dynamic Vision Software, 2018d) provides libraries to handle the DVS sensor
along with few computer vision functionalities such as filters to remove salt and pepper noise, optical flow estimation, cluster
tracking, corner detection, circle detection, particle filter, etc. Details of the applications developed on YARP can be found in
Dynamic Vision Software (2018d).

3 | EVENT-BASED VISION ALGORITHMS

The event-based sensor algorithms have pulled in a great deal of attention in computer vision. For drone-like applications,
power efficiency is a noteworthy prerequisite, which forms a characteristic preferred standpoint of event-based vision sensors.
As these sensors encode illumination changes asynchronously, they exhibit a higher temporal resolution and higher sparsity of
data. This makes them a natural choice for video analysis algorithms, which require examination of fast-moving scenes with
low latency. The sparsity of the data recorded also paves way for algorithms that can provide real-time performance.

As the event cameras were not accessible economically until recently, video analysis algorithms are limited for these sen-
sors. As the data structure is significantly different from that of conventional cameras, this call for a new set of algorithms to
unlock their full potential. In this section, our aim is to provide a minimal survey of state-of-the-art object detection/recogni-
tion, tracking and localization and mapping algorithms for event data.

3.1 | Object detection/recognition

Object detection/recognition finds its application in drones, autonomous driving, and so on. It has encountered a high boost
with the colossal development of deep learning algorithms. Incredible success has been accomplished in object recognition in
frame-based cameras. However, object recognition in event-based cameras still remains an open area of research. As noninfor-
mative background data is not recorded in event-based sensors, the images (Figure F55) of nonstationary objects extracted from
the event data represent salient regions, thus enhancing the accuracy of object recognition. The accompanying section brings
out recent works on event-based object recognition. The methods discussed in this paper do not implement any techniques that
compensate the background or camera motion, though there are few works available to compensate for ego-motion. The dif-
ferent methods that have matured over these years for event data object detection can be broadly categorized as follows

1. Feature based: Most of the prior works concentrate on detecting event based features followed by classification.

FIGURE 5 Moving object recorded by an ATIS camera

6 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

2. Artificial Neural Network based: Artificial Neural Network (ANN) based approaches have not been explored much for
the event based data until recently as a result of the following two note-worthy reasons: (i) the output of the event based
camera is different from that of the conventional camera and consequently cannot be fed directly into the successive frame
based networks and (ii) lack of labeled training data. Recently datasets have started to appear for event cameras, few of
which are N-MNIST, N-Caltech101, MNIST-DVS, CIFAR10-DVS, N-CARS dataset. Few of the datasets were obtained
by recording the corresponding RGB dataset images using an event camera (the details of the dataset are discussed at the
end of the paper). This led to the progress of research in this direction as well. The ANN for object recognition on event
data falls in any one of the methodology: (i) Frame based Convolutional Neural Network (CNN) applied to event data
with little or without any modification, (ii) CNN adapted to Spiking Neural Network (SNN), (iii) Spiking Neural Network
(SNN) without back-propagation and (iv) SNN with back-propagation

3. Time Surface based: SNN is the best architecture that suits the asynchronous event data. The significant disadvantage that
comes with SNN is their inability to be trained due to nondifferentiability. In order to mitigate this demerit of SNN,
researchers have come up very recently with time surface based features for object recognition.

3.1.1 | Conventional feature based object detection/recognition

Engineering the most suitable features for object recognition has been a well-established area of research for data obtained
using the conventional frame-based camera. Following the same footsteps, object recognition on event data can be achieved
by feature detection, followed by classification. There are a handful of feature detection algorithms for event data. The most
widely adopted features are corner features, edges and lines. This section describes the works that detect corners from event
data, where the corners detected were not further explored for the application of object recognition. However, features could
be extracted around detected corners and fed into a classifier for further classification.

Event-based corner detection was introduced in Clady, Ieng, and Benosman (2015), where optical flow orientation in the
local neighborhood has been utilized to detect corners. However, the performance of the corner detector relies upon the accu-
racy in the estimation of optical flow. As flow estimation is a costly operation, the speed of corner detector is constrained by
the speed of optical flow estimation.

The work that followed was Vasco, Glover, and Bartolozzi (2016), where frame based Harris corner detector (Harris &
Stephens, 1988) has been adapted to event data. As DVS data does not provide intensity measurements, a local binarized sur-
face (L pixels wide) was generated around the given event. The pixel position was either populated as a 1 or 0 depending on
whether an event has occurred at that particular location in a fixed temporal window. As followed in conventional Harris cor-
ner detector, a symmetric matrix was constructed with the gradients computed on the binary surface. The probable presence of
edges was indicated by the occurrence of two high eigenvalues of the estimated symmetric matrix. Despite the fact that this
methodology exhibited good performance, it is not computationally efficient as it involves gradient computation.

The computational complexity of the previous methods was overcome in Mueggler, Bartolozzi, and Scaramuzza (2017),
where a corner detection method inspired by conventional FAST corner detector (Rosten & Drummond, 2006) has been pro-
posed. The method operated on Surface of Active Events (SAE) (Benosman, Clercq, Lagorce, Ieng, & Bartolozzi, 2014). Tra-
ditional FAST detector declares a pixel as a corner if a predetermined number of contiguous pixels around the pixel under
consideration are darker or brighter than the latter. As SAE represents time stamps and not intensity values, the distribution of
time stamp in a circular set of locations was considered for corner detection. If the set with newest time stamp was distributed
as contiguous circular arc within a predefined angular range, the pixel under consideration was classified as a corner. This
strategy is computationally more efficient than traditional Harris detector for a small trade-off in accuracy.

Inspired by the event-based FAST corner detector, (Alzugaray & Chli, 2018) proposed a corner detector algorithm which
was 4× times faster than FAST corner detector and 50× faster than event-based Harris detector. It extended the native event
FAST corner detector by employing an efficient iterative algorithm that tremendously reduced the number of operations
required for corner detection.

The accompanying table provides an investigation of various algorithms described earlier and furnishes the best perfor-
mance of the variants of each algorithm reported in their respective paper (Table T11).

3.1.2 | Neural network for object detection/recognition

The noteworthy advantages of event sensor are high temporal resolution and reduced data redundancy. The best suited neural
network architecture for this kind of data is SNN, which is a biological counterpart of the artificial neural network. SNN is
made up of spiking nodes and they are interconnected with edges called synapses. In this type of network, the neuron does not
fire at every time instant, instead, it gets triggered only when its membrane potential reaches a specific threshold. When a neu-
ron gets triggered, it sends a spike signal to its connected neuron which either increases or decreases the membrane potential

LAKSHMI ET AL. 7 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Rectangle

user
Textbox

of the specific neuron. This encodes timing information in the working of the network, which makes it more suitable for asyn-
chronous event data.

The major disadvantages of SNN are that (i) it cannot be easily adapted to detect bounding boxes and subsequently not
suitable for object detection (however, it can be tuned for object classification) and (ii) SNN is not differentiable since spike
signals are not differentiable and hence end to end training is certainly not a trivial task. Hence the history of the neural net-
work for event data can be categorized into three different eras:

1. A naive approach: Integrate the events into quantized frame like data and use frame based CNN, which has well estab-
lished training procedures. Training of CNN on event data is still an open research problem due to nonavailability of suffi-
cient event data. However, there are few researches that endeavor to train on event data, but scalability is a major issue in
this methodology.

2. An intermediate solution: Train CNN on frame based data and map these trained parameters into an equivalent SNN
framework. In this methodology the complete statistics of the spiking inputs are not presented to the network during train-
ing time.

3. The best approach: A very recent development has come up with supervised learning techniques to train SNN directly
using spike signals. However, this is a very complex task.

The following sections give details on the state-of-the-art ANN methods for event data object recognition.

Frame based CNN and its variants for event data

The present literature on Convolution nets focuses on the frame-based data. Frame-based CNN is a well-matured field. Hence,
many researchers found it appropriate to apply the existing CNN architectures as used in classical vision on event data for
object recognition. This work can be broadly classified into two types, (i) methods that utilize frame based CNN as such for
event data and (ii) methods which have tried to rewire CNN architecture to take advantage of the event data structure.

Ghosh, Mishra, Orchard, and Thakor (2014) extended the conventional frame based CNN for the event based data. A
spatio-temporal region of interest (ROI) was detected around objects. A temporal ROI was defined either as a fixed size win-
dow or a dynamic sized window that contained a fixed number of events. Spatial ROI was defined by location and size of the

TABLE 1 Analyses of corner detection algorithms which could be used for object recognition

Methods Merits De-merits Dataset
Event based or
frame based Accuracy

Clady et al.
(2015)

Reduces noise by avoiding
events such as a corner event
and predicted corner event
occurring within a given
period of time

The accuracy depends on
velocity estimation. At low
speeds, the velocity
estimation is not accurate
and hence feature detection
is error-prone

Not publicly
available dataset
(indoor and
outdoor natural
scenes). Indoor
scenes had single
contrasted object

Event based
algorithm

Four different measures are
used to quantify the error,
(Spatial distance: 20% pixels
<0.6 pixels, Velocity
direction, velocity
magnitude, Abs difference of
vector)

Vasco et al.
(2016)

Accuracy of feature detection
does not depend on the speed
of the object. False positives
due to noise are mitigated as
eigenvalues of the gradient
matrix will be less for noise

Fixed number of events
representation considered.
This leads to different
representation under
cluttered and noncluttered
scenes and hence if the
threshold is not properly
chosen, it might lead to
overcrowding of corner
detection around strong
corners. Low response for
corners with wider angle

Not publicly
available dataset

Frame-based Harris
corner detector
extended to
events

Average spatial distance error:
<3 pixels

Mueggler et al.
(2017)

It exhibits the advantages of
conventional FAST corner
detector. Effect of noise is
reduced by avoiding gradient
computation and by
scrutinizing two different
circles of pixels around the
pixel under consideration

Multiple corner detection
around the same corner.
Fails to detect few corners
depending on the motion of
the camera

Mueggler et al.
(2017)

Conventional frame
based FAST
detector
extended to
event data

Low texture: Number of
matches is 88.9%, high
texture: Number of matches
is 96.8%

Alzugaray and
Chli (2018)

Lesser computational time Attracts more noisy corners.
False corners removed with
heuristics

Mueggler et al.
(2017)

Algorithm derived
from
frame-based data

True positive rate: appr 10%,
false positive rate: appr 10%

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

8 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

object, which was estimated using the method described in Delbruck and Lichtsteiner (2007). A static image has been created
for each identified spatio-temporal ROI and further classified using CNN implemented with Neuflow architecture (Farabet
et al., 2010). The CNN was trained in MATLAB with event data.

Liu et al. (2016) proposed a technique for object recognition which involved ROI generation followed by the frame based
CNN classification (Figure F66). ROI generation followed an event based tracker (Delbruck, 2008), which as and when a new
event arrived, assigned the same to an existing cluster or created a new cluster based on spatio-temporal coherence of the
events. As the background is cluttered due to the motion of the camera, the tracker has been used to generate ROI. It was fol-
lowed by classification using conventional CNN available at.2 The design of CNN was such that it has two convolution layers
and two sub-sampling layers. The network has been fine-tuned with 373 positive samples (the objects to be recognized) and
1,500 negative samples (objects other than the desired objects) captured from DAVIS camera. CNN classification was fol-
lowed by a particle filter based tracking in order to remove the false positives generated by CNN.

The method proposed by Cannici, Ciccone, Romanoni, and Matteucci (2018) has a slighter advantage over the other
methods that use conventional frame based CNN for object recognition because the authors of this paper have tried to take
advantage of the sparse nature of event data before feeding it into the frame-based CNN. Sparse events generated by event
camera were integrated into a leaky surface before it was fed into the frame based CNN architecture. The leaky surface genera-
tion was an inspiration from the functioning of SNN. Whenever an event occurs, the corresponding pixel of the surface was
incremented, thus maintaining time resolution in the generated surface. The architecture proposed was named as You Only
Look Events (YOLE). In YOLE, the network architecture was an adaptation of LeNet (Lecun, Bottou, Bengio, & Haffner,
1998) and the training procedure on event data followed the trails of the popular YOLO framework (Redmon, Divvala, Gir-
shick, & Farhadi, 2016).

The networks used in the methods discussed so far have made no attempt to take advantage of the merits of event data
such as sparsity, time resolution etc., whereas the forthcoming methods have attempted to modify parts of CNN to accommo-
date the unique nature of event data.

Li et al. (2017) proposed a three-component modified frame based CNN, which consisted of a feature extraction module, a
temporal pooling module and a detection module. The feature extraction part of CNN has been modified to adapt to the sparse
nature of event data. As most part of the event data comprises high frequency and mid-frequency components, fewer kernels
have been suggested to target these dominating frequencies present in the event data. As the event data is sparse, the initial
layers were proposed to have a greater stride, thus not wasting the computational resource on noisy part of the data. The tem-
poral pooling module is the main contribution of this paper. Event camera produces more events during faster motions than
during slower motions. Hence, the proposed temporal pooling module accumulated data over a set of past frames depending
on the motion content. It aggregated information from past frames over a period of variable time, that is, for more time for
rapid motion and lesser time for slow motion. This results in motion invariant feature. The features extracted from these two
modules have been trained in a manner similar to that of frame-based Faster RCNN detection framework. The reported perfor-
mance score varies from 61.3 to 76% depending on the variant of the proposed method.

Cannici et al. (2018) proposed an architecture named as event-based Fully Convolutional Networks (eFCN). The YOLE
architecture proposed by the same authors was not tailored to match event data, whereas eFCN has a convolution and pooling
layer adapted to the sparse nature of event data. The event-based convolution layer maintained the previous state. As and when

FIGURE 6 Framework of ROI generation followed by conventional CNN for object recognition. Top plot shows the overall architecture. Bottom plot shows
the details of the CNN layers

LAKSHMI ET AL. 9 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

an event approaches, eConv layer determined the part of the feature map that required an update and computed feature maps
of the corresponding positions alone. As far as the architecture and training are concerned, the authors have followed the same
strategy as that of YOLE (Table T22).

Convolutional neural network adaptation to SNN

In the recent past, spiking neural networks have become very famous due to their inherent nature in accelerating the computa-
tion and mimicking biologically similar neural network models. SNN is event-based, where the neurons update only as and
when new information is available. In contrast to activation function in traditional artificial neural networks, the nodes in SNN
receive inputs as binary numbers and integrate the input and fire an output only when the state of the neuron reaches a prede-
fined threshold. This makes training of SNN a cumbersome task. The research field of training SNN is a recently developing
area, whereas a number of works have shown that SNN can be obtained successfully via conversion from a conventional
CNN. Hence, most of the SNN based object recognition tasks consist of a conventional CNN, fully trained with backpropaga-
tion and converted to simple spiking neurons during the testing phase.

The earlier work started with (Perez-Carrasco, Zhao, Serrano, & Chen, 2013), where frames were generated from DVS
events during a fixed time interval, a frame-based conventional CNN was trained with this data and the parameters were
mapped from the frame driven CNN to event data. The network was a six-layer feedforward ConvNet, with four convolution
layers and two sub-sampling layers. The network was trained with DVS images and these trained weights were mapped to the
event-driven version. The methodology followed to map these frame driven weights into the event-driven weights was the
scaling of the former based on the three main factors of a typical spiking neuron, (i) characteristic time during which a given
neuron receives a collection of events, (ii) refractory time which is the minimum time between two consecutive spikes that
could be received, (iii) the threshold which forces the neuron to reset to its resting state. The method has been demonstrated
on human silhouette orientation recognition and poker card symbol recognition. The major setback of this method is that it
requires tuning of the network parameters for better accuracy.

Stromatias, Soto, SerranoGotarredona, and LinaresBarranco (2017) put forward an object recognition framework
(Figure F77) composed of a frame-based feature extraction module and a spiking classifier made up of the event-driven neuron.
This event-driven neuron was constructed as per the algorithm mentioned in Perez-Carrasco, Zhao, Serrano, and Chen (2013).
The feature extraction module was composed of a one layer ConvNet, followed by a sub-sampling layer and a flatten module
which rearranged the output of pooling layer into an one-dimensional vector. The flatten module was followed by the spiking
classifier. The training of the architecture was applicable only to spiking classifier as the weights of other layers were fixed.
ConvNet layer had 18 different orientation Gabor filters as its predefined weights. The flatten module had been trained using
the unsupervised technique provided in Connor, Neil, Liu, Delbruck, and Pfeiffer (2016). The training of the spiking classifier
was carried out in three steps, (i) For a set of events, a normalized histogram was constructed by counting the number of
events at the output of the flatten module, (ii) a fully connected nonspiking classifier was trained using this normalized histo-
gram, (iii) the scaled version of this learned classifier weight was transferred to spiking classifier.

It was followed by Cao, Chen, and Khosla (2014) who established a close link between the transfer function of a spiking
neuron and activation of ReLU of conventional CNN. The usage of ReLU overcame the major issue involved in the represen-
tation of negative values and biases in spiking networks. ReLU was approximated by Integrate and Fire (IF) neuron with no

TABLE 2 Analyses of frame-based CNN and its variants of object detection algorithms

Methods Merits De-merits Dataset Accuracy

Ghosh et al.
(2014)

The object detection does not depend on the speed of
the object as the temporal ROI created accumulates
a fixed number of events

Full potential of event-based data not
used. Trained on frame based data

Not publicly available dataset
and Simard et al. (2003)

99.10%

Liu et al.
(2016)

Computation cost highly reduced by running CNN
only on ROI generated by event data

Depends on frame data for object
recognition

Robot predator and prey dataset 93%

Cannici et al.
(2018)

SNN inspired frame integration procedure Use of frame-based object detection
network. Reduced performance
reported with noise and lesser
training data

N-Caltech-101, shifted
N-MNIST, shifted
MNIST-DVS, BlackBoard
MNIST, POKER-DVS

94.9%

Li et al.
(2017)

Motion invariant feature by adaptive temporal pooling
of features from successive images. Reduced
computational complexity by adopting large stride
in initial layers to suit sparse nature of event data

The information carried by
time-stamp of DVS events not
utilized for object detection

Not publicly available dataset
created from DVS

76.03%

Cannici et al.
(2018)

Feature maps are tuned to utilize the advantage of
event data, which makes it faster

On the process of redesigning the
network to align with the nature of
event data, the overall performance
decreased

Shifted MNIST-DVS,
BlackBoard MNIST

94.0%

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

10 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

user
Textbox

refractory period. The output of ReLU and the number of spikes produced by IF neuron in a given period of time were consid-
ered to be proportional. Their method exhibits good performance in computer vision tasks that utilize average pooling layers.
In spite of all these efforts, it was suffering from conversion loss, which was significantly improved in (Diehl et al., 2015),
where the authors have used weight normalization to improve the performance. The two types of weight normalization that
have been used are model-based normalization and data-driven normalization. The model-based normalization rescaled
weights based on the maximum possible activation that could occur in a layer. In data based normalization, the training set
was passed over the network after training and the weights were normalized based on the maximum possible activation that
occurred within the training set. The improvement in performance via weight normalization was demonstrated by investigating
the proposed method on MNIST dataset character recognition. The proposed conversion was giving less than 1% reduction in
accuracy on small models, whereas on larger models, the conversion accuracy reduced drastically. This could not be used to
convert any famous feature extraction architectures which involve layers such as max-pooling, softmax and batch
normalization.

Neil, Pfeiffer, and Liu (2016) have extended the data normalization technique proposed above to reduce the computational
complexity of the converted SNN. In order to decrease the response time, the number of spikes within a network has to be
decreased. Especially in fully connected networks, the response time drastically reduces with the reduction in the number of
spikes as each and every spike will lead to the trigger of multiple neurons down the network. In order to decrease the number
of spikes, the paper followed sparse coding, a modified L2 cost on activation and dropout. Sparsity was achieved through a
regularization term which penalizes deviation from the target firing rate. As SNN firing rate is directly proportional to the acti-
vation of ANN ReLU, the proposed L2 cost aims at penalizing high activations. High dropout may lead to loss of accuracy.
Hence, the network was trained for initial few epochs without dropout. The probability of the dropout was slowly increased. It
has been demonstrated that rate based ANN performance could be achieved using SNN with far lesser latency (Table T33).

SNN with predefined feature extractors

Training SNN is a cumbersome task. When the previous section explained stat-of-the-art of the algorithms that trained a con-
ventional CNN and adapted the parameters to SNN, this section describes the recent works on SNN (Folowosele, Vogel-
stein, & EtienneCummings, 2011; Orchard, 2015) that suggest the use of predefined network weights such as Gabor filter
weights.

HMAX model (Folowosele et al., 2011) is a hierarchical feed-forward model with alternating two main operations,
Gaussian-like operations in S layer and nonlinear MAX operation in C layers. The proposed network has four layers, S1, C1,
S2, and C2. The cells of S1 were designed to respond to four different orientations, 0, 45, 90, and 135�. It was followed by
MAX computation by C1 cells, which was proportional to the MAX value of a group of S1 cells which were tuned to same
orientation, but different receptive fields. This is similar to Winner-Take-All (WTA) layer, but the major difference being that
MAX operation reveals only the amplitude of maximum value, not its identity. The cells of S2 layer were responsible for pool-
ing operation, whose weights were determined by unsupervised learning. It was composed of two types of cells, 2 × 1 and
1 × 2. 2 × 1 cells were formed by pooling C1 cells which are present one on top of the other, whereas 1 × 2 cells pooled the
C1 cells that were present adjacent to each other. It was followed by a C2 MAX operation layer. The HMAX model ended
with a classification layer, which consisted of two cells, rectangle and triangle cell. The main setback of HMAX algorithm is
that it does not operate in real time.

Orchard (2015) have proposed an extended hierarchical Spiking Neural Network (SNN) architecture for object recogni-
tion, called as HFirst (Figure F88), which could classify not just two classes (as in the previous paper), but nine different classes.
The HFirst used spike timing to encode the strength of neuron activation, leading to a MAX operation based on temporal
Winner-Take-All (WTA). The HFirst architecture had four layers named Simple 1 (S1), Simple 2 (S2), Complex 1 (C1), and
Complex 2 (C2). The S1 layer consisted of 12 Gabor even filters (7 × 7 each) at 12 different orientations. It encoded the ori-
entation information of edges at every pixel. Filter kernels are as given in Equation 2

FIGURE 7 Framework of frame-based feature extraction module followed by spiking classifier for object recognition

LAKSHMI ET AL. 11 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

user
Textbox

Fθ = exp−
x2
0
+ ν2y2

0
2σ2 cos

2π
λ
x0

� �
, ð2Þ

where,

u0 = u cos θ + v sin θ, ð3Þ
v0 = − u sin θ + v cos θ,

where, x and y are horizontal and vertical pixel locations, θ varies from 0 to 165� in increments of 15�. λ and σ are variable
parameters in the generation of synaptic weights. C1 layer had 12 neurons, each fed from all 12 S1 neurons. C1 neurons per-
formed temporal MAX operation as discussed below. Each neuron of S2 layer was connected to all C1 neurons. The receptive
fields of these neurons were learnt during the training phase. A separate S2 neuron was assigned for each class to be recog-
nized. The highest synaptic weights were assigned to locations where the orientation of the character to be recognized matches
with the orientation of the C1 neurons. The C2 layer was optional. The use of the C2 layer was to pool the responses from S2

TABLE 3 Analyses of object recognition algorithm that adapt CNN to SNN

Methods Merits De-merits Dataset

Object detection
or
recognition only Accuracy

Perez-Carrasco
et al. (2013)

Generic method to convert frame
driven neuron to event-driven
neuron. Hence it can be applied
to any ConvNet

Performance of the network
highly depends on the
proper tuning of a set of
parameters such as
refractory time

Not publicly
available dataset

Recognition Orientation detection
(97.6%) and poker
card symbol
recognition (95.2%)

Stromatias
et al. (2017)

The training method followed
makes the implementation of the
network easier. It gives good
performance for both real and
synthetic data. Work
demonstrates a valid SNN
classifier

Performance is highly
dependant on leakage rate
of the neuron.

Datasets derived
from MNIST,
N-MNIST and
MNIST-DVS

Recognition 97.25%

Cao et al.,
(2014)

High energy efficiency when
implemented in ultra-low power
spike based neuromorphic
hardware. Scalability as any
CNN can be converted to
tailored CNN and then to SNN

The computation of integrate
and fire neuron is computed
in double precision, which
limits practical
implementation of
neuromorphic circuits

Tower dataset14

and CIFAR-10
dataset
Krizhevsky
(2009)

Object detection 100% for few classes

Neil et al.
(2016)

Computational complexity is
greatly reduced by weight
normalization and a novel drop
out learning schedule while
maintaining good accuracy

Weight normalization
decreases the accuracy of
SAE networks. In some
cases, high drop-out
followed in this paper lead
to reduced accuracy

MNIST Recognition 98%

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

S1

C1

S2

C2

Max pooling layer

Pooling layer for classification

S2 Layer with number of
neurons equal to number of

objects to be classified

FIGURE 8 HFIRST architecture. S1 layer gives Gabor filter response, C1 layer is a MAX pooling layer. A separate S2 neuron for each class

12 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

neurons for classification. The probability of each class was estimated as p ið Þ = niP
i

ni
, where ni is the number of spikes emitted

by the S2 layer with respect to each class i.
The neuron model used in the HFirst architecture was Integrate-and-Fire (IF) neuron, as developed by Izhikevich (2004).

The membrane voltage V mi at time i of mth neuron was updated only when it received an input spike after a predefined refrac-
tory interval. If the membrane voltage exceeded a predefined threshold, then the corresponding neuron emitted a spike that
was fed to the next layer. The nonlinearity involved in the HFirst architecture was the MAX operation in C1 and C2 layers.
The MAX operation was implemented as that of finding the neuron which responded early in the temporal domain. The neu-
ron whose input spike pattern matched that of the weights will be activated heavily and tend to exceed the spiking threshold
earlier. This mechanism was utilized to implement the MAX operation (Table T44).

SNN with back propagation for event data

Delbruck and Pfeiffer (2016) introduced a SNN architecture made up of Leaky Integrate and Fire (LIF) neuron and Winner-
takes-all (WTA) circuits. The states of LIF neuron were updated asynchronously. The performance of the SNN architecture
has been improved with the introduction of WTA, wherein as soon as a neuron produced an output, it would inhibit other neu-
rons from spiking. The details of the transfer function of spiking neurons to allow backpropagation can be found in the paper.
The generalization capability of SNN was improved with weight regularization and threshold regularization. The performance
of previous versions of SNN has been improved to match that of conventional CNN.

3.1.3 | Time surface based object recognition

The best alternative to SNN is a form of representation of events built on a structure named as time surface. The most recent
state-of-the-art works that tackle the problem of object recognition using time surfaces are Haessig and Benosman (2018),
(Lagorce, Orchard, Galluppi, Shi, and Benosman (2017), and Sironi, Brambilla, Bourdis, Lagorce, and Benosman (2018a,
2018b). These methods generated time surface based feature for further classification. The time-surface Si of an event ei repre-
sents the temporal characteristics of all the events around any event ei. It provides a spatio-temporal context around an event.
The time-surface Si of dimension 2R × 2R (Equation 4) is obtained by applying an exponential decay (Figure F99) to the time of
the last activity of the events in the neighborhood of the current event ei at xi, yi.

Si u, vð Þ = exp− ti − tu, v
τ , ð4Þ

where, u 2 [xi − R, xi + R], v 2 [yi − R, yi + R], tu,v is the time stamp of the most recent event that occurred at u,v and
ti is the time stamp of the event at i and τ is the time constant of the exponential decay.

Haessig and Benosman (2018) learnt a basis function with the event time surfaces. The linear coefficients of the projection
of the time surface of the incoming event on this set of learnt time surface basis formed the feature for further classification.

Projection Basis: In order to obtain a low dimensional feature for object recognition, the time surfaces were projected onto
a set of basis function ϕ, which were estimated by formulating an optimization problem that minimized the error given in
Equation (5). The error involved a sum of a reconstruction error term (first term of Equation (5)) and a coefficient sparseness
term (second term of Equation (5)).

E =
X
x, y

S x, yð Þ−
XN
j = 1

ajϕj x, yð Þ
" #2

+ λ
XN
j = 1

j aj
σ
j : ð5Þ

TABLE 4 Analyses of object recognition algorithms which propose SNN with predefined feature extractors

Methods Merits De-merits Dataset Accuracy

Folowosele
et al.
(2011)

The model proposed is similar to visual cortex
neural computation responsible for object
recognition

It was demonstrated for binary classification. It
does not operate in real time. It focuses only
on “immediate object recognition”
methodology of the human eye.

Images of basic shapes 84.6%

Orchard
(2015)

Uses timing information from event data.
Processes video data continuously. Can
recognize multiple objects simultaneously.
No computation is performed when there is
not much activity in the scene

Training assumes a static view of objects.
Hence the objects are tracked before feeding
it into the network for training. This causes a
drop in accuracy even with few milliseconds
of timing jitter which may occur in real time
scenarios

Poker data
Perez-Carrasco et al.
(2013), character
(not publicly
available) dataset

Appr 97.5% for
poker card
and appr.
84.9% for
characters

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

LAKSHMI ET AL. 13 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

user
Textbox

E represents the error, λ is the regularization constant, σ is a scaling constant and aj is the projection constant onto the jth

basis.
The previous work was further enhanced by Lagorce et al. (2017) with a hierarchical representation of time surfaces. The

architecture of object recognition involved generation of time surfaces, creation of time surface prototype, followed by a hier-
archical representation of events based on these time surface prototypes. This hierarchical representation was fed to a classifier
for object recognition. The time surface generation is as explained above. The time surface prototypes that were constructed
on top of time surfaces are elementary representations of the time surfaces that occur in natural scenes. The time surface proto-
types were generated by incremental clustering (Ballard & Jehee, 2012) of the time surfaces. Three different layers of time sur-
face prototypes were generated. The time surface prototypes of different layers mainly differed in the space-time integration
constants, which were approximately 50 ms for layer 1, 250 ms for layer 2 and 1.25 s for layer 3. The time surface prototype
with a varying time constant is the heart of the proposed Hierarchy of Time Surface (HOTS) feature. When a new event
arrived, a hierarchical representation of the same was created by comparing the time surface of the current event with time sur-
face prototypes. Activations were produced in a layer when the time surface of current event matched the cluster center of the
time surface prototype. The output of the previous layer formed the input to the succeeding layers. The activation of the final
layer was considered to be the feature vector for object recognition. The major drawback of this algorithm is increased compu-
tational time which is the result of higher integration time in time surface generation and clustering process.

The computation time has been significantly reduced by Sironi et al. (2018a, 2018b) by proposing an effective feature
known as the Histogram of Averaged Time Surfaces (HATS, Figure F1010), which did not involve time consuming clustering

process. In order to build feature representation, events eif gIi = 1 with ei = (xi, ti, pi) were converted into local memory time-
surfaces, which were in turn represented as HATS, where xi = (xi, yi) are the coordinates of the pixels, ti is the time stamp of
the event and pi is the polarity of the event. The pixel grid was divided into C cells of k × k size each. For each event ei, the
local memory time-surface τei was generated. A histogram hc was generated for each cell considering τei of the events corre-
sponding to that cell. The generation of τei and hc are described briefly as follows:

Local Memory Time-Surface Generation: The Local Memory Time-Surface is an enhanced version of time-surfaces proposed
in Lagorce et al. (2017). The Local Memory Time-Surface, τei , is a representative pattern of an event in spatial and temporal
space, which was formulated as a spatio-temporal description on and around an event ei, considering the history of the event
in a temporal window of size 5t. Memory time surfaces were generally created by considering only the last event received in
the neighborhood of the pixel under consideration, whereas local memory time surface took an average of the events received
in the temporal time window 5t. Hence, it reduces the effect of noise and increases the robustness of the representation.

HATS Generation: Histogram generation followed the trail of conventional Histogram of Gradient (HOG) feature
(Dalal & Triggs, 2005). For each cell C, the adjacent pixels were grouped and the corresponding histogram was formed by
summing the Local Memory Time-Surfaces of each group of pixels of that particular cell. This HATS feature was used for fur-
ther classification of objects (Table T55).

3.2 | Object tracking from event data

The two types of tracking are feature tracking and object tracking. Feature tracking finds its application in areas such as
motion estimation, 3D reconstruction. Over the decade, object tracking has advanced as an important application in domains
such as robotics. The objects of intrigue, for the most part, include pedestrian, vehicles and so forth. Object tracking has turned
out to be widespread applications in surveillance and traffic monitoring. In this paper, we have limited our survey and discus-
sion to object tracking.

10

Time-based binning

τ
e
 = 3000 μs

Time-based linear decay

Time-based exp decay

Time (ms)

15 2050
0

0.2

0.4

0.6

0.8

1
(a)

FIGURE 9 Various temporal weights that could be applied to events to generate memory surfaces. Figure courtesy (Afshar, Cohen, Hamilton, Tapson, &
van Schaik 2016)

14 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

user
Textbox

For a system to track moving objects, it requires robust detection of the object of interest. An object of interest is formu-
lated either as user input or as a preprocessing step of tracking, where objects are detected automatically. Challenging situa-
tions are scenarios where high-speed tracking is a mandate for real-time control of systems. In such scenarios, the event-based
tracking algorithm discovers its utility increasingly than frame-based algorithms, in spite of the well-developed literature of
the latter. In the recent past, an extensive literature has become available on event-based tracking. This segment gives an out-
line of the different tracking algorithms developed on event-based vision sensors. As a moving camera creates a lot of
unwanted clutters, the method followed for object tracking under static and moving camera would differ a lot. Hence, the
tracking techniques have been discussed as two different modules, one for tracking objects under static background and
another under dynamic background.

3.2.1 | Tracking under static background

Tracking under static camera does not require background modeling as an event camera will pick only dynamic moving
objects, unlike a conventional camera. Figure F1111 shows a sequence of images captured from a static event camera. The
methods discussed in this paper include event-driven approaches whose trackers were updated as per the characteristics of

Divide pixel
grid into c

cells

Each cell
C has K

events

Exponential average across
time

Local memory
time surface

generation for
each event

Histogram created for each
cell from the memory

surface of the events
belonging to that cell

Average of
histograms of the

cells

Spatial location

around the event

C

FIGURE 10 Top plot: HATS generation architecture, bottom plot: An example simulated local memory time surface. The pixel plane is divided into C cells.
Local memory time surface is generated for each event in each cell. Histogram of each cell is generated by considering the events in the memory surface of
that particular cell

TABLE 5 Analyses of time surface based algorithms for object recognition

Methods Merits De-merits Dataset Accuracy

Lagorce et al.
(2017)

Time surfaces use spatial and time
information of the event data,
hence resulting in spatio-temporal
features and giving good
performance for dynamic objects.
Hierarchical feature extraction
allows information extraction from
bigger spatial and time receptive
fields to smaller spatial and time
receptive fields

The features extracted heavily
depend on speed and direction of
movement of the objects.
Parameter tuning is required to
obtain better results. The receptive
field of time is larger in the last
layers of the hierarchical model as
compared to that of the brain.

Card dataset SerranoGotarredona
and Linares-Barranco (2015),
letters and digits dataset Orchard
et al. (2015), Face recognition
dataset (Not publicly available)

100% for cards
dataset, 100%
for letters and
digits dataset
and 79% for
faces dataset

Sironi et al.
(2018a, 2018b)

Local memory time surfaces are
robust to noise and small variations
in the event data, as they are
formed by utilizing the information
carried by past events as well. The
proposed algorithm can be easily
parallelized

As it creates a histogram of time
surfaces, it loses spatial
information. Exponential weights
are used for memory surface, it
could be replaced by learnt
weights to improve performance
as indicated in the paper.
Performance could be improved
for low latency as well.

Cars dataset15 90.2%

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

LAKSHMI ET AL. 15 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

each and every new event. As per our analysis, the methods described below apply well established conventional vision algo-
rithms to event data and does not utilize the full potential of the event data.

The earlier works of tracking mostly started with application specific requirements, such as pencil and pole balancing
applications published in Conradt, Berner, Cook, and Delbruck (2009), Conradt et al. (2009) and robotic goalie (Delbruck &
Lang, 2013). The pole balancing application involves balancing of a pencil mounted on an actuated table with two dynamic
vision sensors mounted at right angles to each other. Each and every event generated by the movement of the pencil has been
utilized to track the pencil in 3D position. The tracking algorithm proceeded in two stages: (i) The first stage was the recogni-
tion of the line corresponding to the pencil location with respect to the sensor plane, as and when a new event arrives. The esti-
mated line was represented in Hough space. In Hough space, the lines are described as y = mx + b, where x = (x, y) are the
x and y coordinates of the event generated and m and b are the slope and intercept of the pencil and (ii) The second phase was
to estimate the 3D position of the pencil from the estimated line. As the position of the sensors was fixed and known, the 3D
position of the pencil was estimated by triangulating the pencil position as obtained from the two views.

Soccer goalie robot application involved tracking of the ball and tracking of the arm. An event-driven cluster tracker
(Litzenberger et al., 2006) inspired by the conventional mean shift approach has been used for ball and arm tracking. The
tracking algorithm proposed in this work was the result of influence experienced from that of conventional cameras. The algo-
rithm proposed depicts an extension of the mean shift algorithm to event data. The events were continuously clustered and
tracked as and when they occur. When a new event occurs at x, it was assigned to a cluster whose center xc was within seek
distance of that cluster, Rk

c, from x, that is, R = j xc − x j < Rk
c. The cluster parameters of that particular cluster such as cluster

center (xc), cluster size (Rc) and cluster seek distance Rk
c

� �
were updated as follows:

bxc = xcα + x 1− αð Þ, ð6Þ
bRc = max Rmin ,Rcα + R 1−αð Þð Þ, ð7Þ

cRk
c = min Rmax ,RcRmultð Þ, ð8Þ

where, 0 < α < 1, Rmin, 1 < Rmult < 3 are parameters of the algorithm. The max condition in Rc ensures that the cluster size
does not exceed a set threshold. As the seek distance Rk

c for each cluster was estimated as a higher multiple of the cluster size,
it allows the cluster to grow in size consistent to the size of the target. Though the clusters can change in size over time, they
were restricted to be of circular shape.

The other work which has attempted event-based object tracking based on clusters was published in Schraml and Belba-
chir (2010). This algorithm differs from the previous paper in the way the events were assigned to clusters. The cluster assign-
ment was depending on the 3D Manhattan distance between the incoming event and the clusters, estimated in space and time.
This sort of cluster assignment reduces the noise effect as compared to the naive 2D Euclidian distance based assignment. The
3D position of the events was estimated with stereo dynamic vision sensor. The state-of-the-art FPGA implementation of
event-based tracker with clusters can be found in LinaresBarranco, GomezRodriguez, Villanueva, Longinotti, and Del-
bruck (2015).

These cluster based techniques were suitable for embedded vision systems because of their low memory usage. However,
these are application specific as the size of the clusters is tuned for that particular application. As these distance-based cluster-
ing results in hard boundaries, they are not well suited for multiple objects with occlusion. This has led to the development of
tracking algorithms based on Gaussian mixture model (GMM) clustering techniques in works such as Piatkowska, Belbachir,
Schraml, and Gelautz (2012), Lagorce, Meyer, Ieng, Filliat, and Benosman (2015).

Piatkowska et al. (2012) characterized the trajectories as k Gaussian clusters in space-time. As and when a new event
occurred at time t, the probability of the event was estimated for the k clusters and further assigned to the cluster with mini-
mum distance. After a time step of Δt, the parameters (μi, Δt, σi, Δt, wi, Δt) (mean, variance and weight) of each cluster i over
Δt were estimated using standard Expectation Maximization update equation of GMM and the current model at time t + Δt
was updated as follows:

FIGURE 11 Image sequence captured from a static camera. As the background is clean, tracking becomes an easier task

16 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

wi, t + Δt = αwi,Δt + 1−αð Þwi, t: ð9Þ
μi, t + Δt = αμi,Δt + 1− αð Þμi, t: ð10Þ

σ2i, t + Δt = ασ2i,Δt + 1− αð Þ σ2i, t + μ2i, t
� �

− μ2i, t + Δt: ð11Þ

In this algorithm, the events were modeled by Gaussian clusters. This has been later extended by Lagorce et al. (2015),
where the spatial distribution of events has been used to model bi-variate Gaussian. This was also an inspiration from the
mean shift algorithm. The moving objects result in specific patterns in spatial distribution based on the specific object charac-
teristics. This has been utilized to model each moving object as bi-variate spatial Gaussian cluster. The mean of the cluster rep-
resents the position of the object, whereas the covariance matrix is an indication of its size and orientation. As and when an
event occurred, the probability of each cluster producing the particular event was estimated and the event was assigned to the
cluster that had maximum probability. The parameters of the clusters converged iteratively with each incoming event and were
updated as integration of past parameters with the current event information. The main advantage of this method is that in
addition to tracking, it also furnishes information regarding the orientation and size of the objects tracked.

The method mentioned above was well suited for objects with simple shapes like ellipse, whereas real-world objects will
be made up of several ellipses with an interconnecting geometric relation. The 3D to 2D projection of objects during image
formation renders this geometric relation also to be varying. In order to take account of this, (Valeiras et al., 2015) proposed
multiple Gaussian blob tracker for each and every object. Each object was modeled with multiple Gaussian blob tracker
(Figure F1212), for example, face was modeled with 26 trackers, one for each eye, eyebrows, nose, outline of the face, etc. These
trackers were connected by springs, which were characterized by the maximum allowable change in length and stiffness con-
stant. When there is deformation in the shape of the object during movement, the springs connecting them will either be elon-
gated or contracted from its equilibrium position, which results in elastic energy. This elastic energy was utilized to determine
whether a set of trackers belong to a particular object.

The works discussed so far may not perform better under object occlusions. The break through in tracking under occlusion
happened with CamunasMesa, SerranoGotarredona, Ieng, Benosman, and LinaresBarranco (2018). The proposed algorithm
combined object tracking method with 3D object reconstruction to improve the performance of the tracking algorithm under
occlusion. The integration of 3D reconstruction with object tracking was such that each algorithm was benefitted by the feed-
back from the other. When an occlusion occurs, it results in confusion in cluster assignment. In that scenario, the algorithm

FIGURE 12 Gaussian blob tracker of face. Each part of the face such as eye, nose, mouth (Gaussian blobs of outline of the face is not shown here for
clarity) is individually modeled as Gaussian cluster/blobs and a spring connectivity is maintained between them

LAKSHMI ET AL. 17 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

assumed the current event to be belonging to all clusters with equal probability and verified the assumption based on the out-
put from 3D reconstruction module. Though cluster tracking (Litzenberger et al., 2006) and 3D reconstruction
(CamunasMesa, SerranoGotarredona, Ieng, Benosman, & Linares-Barranco, 2014) methods used in this paper were reported
earlier in literature, the novelty of the proposed method lies in interlinking the output of 3D reconstruction and object
tracking.

The cluster-based tracking algorithms are not suitable for the situations where there is a lot of clutter due to multiple mov-
ing objects. Cluster-based techniques will not be able to reject events that belong to clutter. Most of the tracking methods
under cluttered scenarios employ probabilistic filter based approaches or filtering combined with Hough transform, etc.

Hough transform based circular objects (with the same radii) detection has been proposed in Ni, Pacoret, Benosman, Leng,
and Regnier (2012). Though Hough transform depends on the specific shape of the object, the sequential implementation of
the same makes it more preferable for event data. However, as Hough transform is sensitive to noise (Illingworth & Kittler,
1987), it is not an ideal candidate for the cluttered environment. Hence, Glover and Bartolozzi (2016) proposed a method
called directed Hough transform. Instead of projecting all the points to Hough space, the authors have projected only the
points which lie in the estimated direction of the circle center. This reduces the contribution from the event that belongs to the
noncircular clutters. The direction of the center was estimated as the direction of the edge at that particular event. As edges are
readily available from event data, direction estimation was a trivial task. This method reduced the effect of noise as against the
techniques where Hough transform is used in its native form.

One another way that has been proposed in Barranco, Fermuller, and Ros (2018) to solve the problem of clutter is to com-
bine mean shift clustering with particle filter tracking. This method does not assume the number of clusters or shape of the
clusters. This makes it more preferable than other clustering based techniques, which require the number of clusters to be
known a priori and assumes the shape of the clusters to be of a particular type. By augmenting clustering with particle filter
tracking, this method overcomes the inability of the cluster based techniques to perform under clutter (Table T66).

3.2.2 | Tracking under dynamic background

Tracking in robotics involves object tracking along with ego-motion compensation. This is more challenging than static event
camera, where the property of the event camera to produce no events under static background has been taken advantage to
track moving objects. In moving event camera, background results in a lot of clutter (Figure F1313). As distinguishing the signal
generated by moving target from that of the ego-motion of the camera becomes difficult in scenarios where the camera is mov-
ing, there are only a couple of works which attempt to tackle object tracking in moving event camera. The earlier work started
with Ni, Ieng, Posch, Regnier, and Benosman (2015), but the method was tested on simulated scenarios alone.

In order to develop a solution for real scenario object tracking with moving event camera, Liu et al. (2016) combined
frame and event data. The possible ROI were detected using event-based cluster tracker. Due to the clutter of the background,
the event based tracker may result in unwanted ROIs that belong to the background as well. In order to remove spurious ROIs,
a frame-based CNN object classification was run on each ROI. The architecture of CNN comprised of two convolution layers
and two sub-sampling layers. The filtered ROI of CNN was fed to particle filter based object tracker. CNN based classification
was able to remove the spurious background clutters. However, the method relies on the frame based data as well, which
depletes it from the advantages of using event camera alone.

In order to utilize the advantages of event data over conventional frame based data, tracking algorithm that depends on
event data alone is mandatory. In Glover and Bartolozzi (2017), particle filter based approach was proposed to track objects in
moving event camera. In a cluttered condition, a single event may not have sufficient information to update the particles.
Hence, the events were accumulated for a time window under the assumption that the accumulated event will cancel the noise
of background clutter. However, the time window should be lesser than the speed of the target. The time period of integration
was different for each particle. However, the weight updates were done for all particles at same intervals of time as the parti-
cles have to be normalized before further processing. Though the tracking of objects seems to reject clutter, the time window
greatly influences the performance of the tracker.

Another set of algorithms visualize the problem of object tracking in cluttered environments as ego-motion estimation fol-
lowed by compensation to segment moving objects from the dynamic background. Especially in robotics, the moving platform
is equipped with proprioceptive sensors such as Inertial Measurement Unit (IMU), which is used to estimate the ego-motion.
However, the imprecise measurements of these sensors might lead to noisy motion compensation. This led to the development
of algorithms which utilized event data itself to estimate the ego-motion, followed by moving object tracking (Vasco et al.,
2017). The pipeline included feature detection, tracking and velocity estimation. In the off-line phase, a model was developed
to represent the relation between the velocities of the vehicle and visual motion. During run time, the estimated visual motion
was compared with the learnt model. If there is a significant difference in the estimated and computed motion, then it was con-
sidered to be generated by moving objects.

18 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

user
Textbox

The previous work needs an offline generation of a model for a given scene and hence it leads to the disadvantage of sepa-
rate processes for 3D motion estimation and segmentation. This was followed by the work of Mitrokhin, Fermuller, Paramesh-
wara, and Aloimonos (2018), where the ego-motion estimation and tracking were together considered as a single problem.
This was the first work to tackle both the problems simultaneously. This was developed by being inspired from 3D point cloud

TABLE 6 Analyses of tracking algorithms under static background

Methods Merits De-merits Dataset Performance

Conradt et al.
(2009) and
Conradt et al.
(2009)

Compact storage of estimate of the
line (corresponding to pencil) in
Hough space. The algorithm is
suitable for hardware
implementation

Not robust to noise Demonstrated for pencil
balancing application

Not reported in paper

Delbruck and
Lang (2013)
and
Litzenberger
et al. (2006)

As the algorithm is mean shift
based, a-priori knowledge of
number of clusters is not
required. Suitable for low power
and low memory systems (only a
few parameters to be saved for
each cluster)

The weights in the update
equations have to be selected
carefully to get good
performance

Not publicly available
dataset

Not reported in the paper

Schraml and
Belbachir
(2010)

Highly robust as it combines the
advantages of density-based and
distance based clustering
algorithms. Suitable for
embedded system
implementation as the
computational complexity
depends only on the number of
events and the number of
clusters

Not suitable for multiple objects Synthetic images and
not publicly
available dataset

Not reported in paper

Piatkowska et al.
(2012)

Does not restrict the object shape to
circle and problem of occlusion
addressed. Enables multiple
object tracking

Fails to detect objects which enter
at the same time and are close to
each other. Complex as
compared to simple cluster
based techniques

Not publicly available
dataset

Recall of 0.9872 and precision of
0.7872

Lagorce et al.
(2015)

Provides information regarding size
and orientation of the objects
tracked. Different kernels such as
Gabor kernels are tested and
provides a generalized kernel
approach

Well suited for elliptical objects
only. Involves computation of
eigenvalues

Not publicly available
dataset

Position accuracy: appr. 2.61
pixels, angle accuracy: appr.
1.59�

Valeiras et al.
(2015)

As each object is modeled as
multiple Gaussian blobs, it is
well suited to track objects of
any shape

Tracking is sensitive to the rotation
in the image plane

Simulated shapes and
face dataset (not
publicly available)

Best mean error reported is 2.74%

CamunasMesa
et al. (2018)

Information from object tracking
and stereo matching fused to
improve the performance. Works
well for two objects whose
trajectories cross each other
multiple times. Not complex as it
does not involve classification.

Depth estimation increases the
computational complexity

Not publicly available
dataset with pens,
boxes, rotating
straws and
real-world scenario
with two walking
people

Success rate of 95.83%

Ni et al. (2012) Provides an algorithm for
microparticle tracking. Provides
sub-pixel precision

Suitable only for objects which are
circular in shape.
Computationally expensive as it
involves Hough transform

Not publicly available
dataset of
micro-sphere

Achieves sub-pixel accuracy

Glover and
Bartolozzi
(2016)

More robust to background clutter
as it combines information
obtained from Hough transform
and optical flow

Works well for circular shaped
objects (especially ball) only

Not publicly available
datasets known as
hand-move
(HM) dataset and
eye-move
(EM) dataset

Performance is measured in terms
of recall vs. precision, which is
appr. 0.6 vs 0.7 for HM dataset
and appr. 0.5 vs 0.4 for EM
dataset

Barranco et al.
(2018)

Works for multi-target tracking.
Does not require number or
shape of the objects to be
detected

The minimization function of mean
shift clustering includes
Gaussian kernel, which
increases the convergence time.
As Kalman filter is used for
tracking, it demands an accurate
model of the system

Mueggler et al. (2017)
and not publicly
available dataset

Performance compared in terms of
adjusted rank index (ARI:
Around 0.941), normalized
mutual information (NMI:
Around 0.952), precision
(around 0.981), recall (around
0.927) and F-measure (around
0.951)

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

LAKSHMI ET AL. 19 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

processing techniques such as Kinect Fusion (Izadi et al., 2011). The tracking pipeline consisted of motion compensation
(Figure F1414) followed by motion inconsistency analysis. Motion compensation led to a new form of representation of events
known as time-image. The time-image is a plane where each pixel contains the average timestamp of warped events that
belong to that particular pixel (Figure F1515). This reduces the effect of projecting events of different edges onto the same point
which could be observed in works such as Gallego and Scaramuzza (2017), where the count of events was used rather than
the time stamp of the events. The warping of pixels results in motion estimation, where the motion is modeled as a shift paral-
lel to the image plane, motion towards the image plane and rotation around z-axis of the image plane. The events whose
motion deviates from the estimated global motion were segmented, which results in tracking (Table T77).

3.3 | Vision-based localization

Localization, otherwise known as ego-motion estimation, is the process of estimating the pose of the robot in terms of transla-
tion and rotation from the associated images. The process of estimating the pose effectively plays a noteworthy role in the nav-
igation of mobile robotics application. Localization for the conventional camera is a very much examined problem. However,
the algorithms to be deployed for event-based cameras should be different from conventional algorithms in order to leverage
the higher temporal resolution of event-based cameras. Event-based visual odometry will pave the way for the design of
highly reactive robots, as each incoming event contributes to the localization. It is a cumbersome task to localize from an
event-based data, as a solitary event may not have much information to perform the estimation. Despite the challenges, consid-
erable progress has been made in this field. The localization approaches can be categorized into three types as follows.

1. Only Localization: These algorithms concentrate on localization without any attempt to generate the self-map or to correct
the errors that accumulate over a period of time.

FIGURE 13 Object tracking for a moving camera. The image (available in the internet) is captured from DVS camera. As the camera was also moving,
background generates a lot of clutters. Hence, tracking becomes a nontrivial task

FIGURE 14 Left: image before motion compensation, right: image after motion compensation. Figure courtesy (Mitrokhin et al., 2018)

20 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

2. Localization and Mapping: Having a mechanism to self-generate map is mandatory in any real-time applications. Towards
this, a lot of work has progressed in the field of localization and mapping for the event based camera. The two major
assignments involve depth estimation and visual odometry estimation.

3. Methods with error correction module: Accurate pose estimation forms the foundation of any robotics application. A sig-
nificant bottleneck of localization is the overwhelming nonconvexity of the optimization problem, thus leading to drift in
trajectories over time. The two famous techniques followed to mitigate the effect of error are (i) Loop closure based tech-
niques which employ methods such as bundle adjustment and pose graph optimization to minimize the drifts in visual
odometry estimation and (ii) fusion of vision with IMU which results in reduction of trajectory ambiguities that would
occur when using the camera or IMU alone.

3.3.1 | Visual odometry

The methods that deal with localization estimation alone can be categorized into works that handle constrained motions
(3 degrees of freedom [DoF]) such as rotation only or planar alone and those that estimate the most complex case of freely
moving camera (6 DoF).

FIGURE 15 Motion compensated time image of a moving object drone. Blue represents event at time t0 and green represents event at time t0 + Δt. Though
the moving object was occupying more space, motion compensation works well. Figure courtesy (Mitrokhin et al., 2018)

TABLE 7 Analyses of tracking algorithms under dynamic background

Methods Merits De-merits Dataset Accuracy

Liu et al. (2016) Region of interest generated by event
camera is utilized for CNN
recognition, thus reducing the
computational complexity

Depends on frame data for tracking in
event data

Predator-prey
dataset

Performance measured in terms of
accuracy vs. allowed error
distance. For a distance
threshold of 20 pixels, it
achieves an accuracy of 90 mod

Glover and
Bartolozzi
(2017)

Gives good performance even when
the relative velocity between the
camera and the object varies.

The maximum target speed that could be
tracked depends on the update rate of
the particle filter, which is in turn
dependant on the computation power
available. Once the target is lost, no
attempt is proposed for target
recovery

EM and HM
dataset
Glover and
Bartolozzi
(2016)

Average error of 4.5 pixels for HM
dataset and 2.1 pixels for EM
dataset

Vasco et al.
(2017)

Works for arbitrarily shaped objects Off-line calibration to generate a model
to correlate the velocity of the camera
and resulting visual motion is
required. When an object stops
moving or changes direction, tracking
of the particular object fails

Not publicly
available
dataset

Performance measured in terms of
recall vs. precision, achieving a
precision of 90 mod at low
recall.

Mitrokhin et al.
(2018)

No off-line calibration is required. No
prior knowledge about the scene or
motion of the object is required.
Proposed a novel representation
called time-image representation of
events

Performance deteriorates under a noisy
situation such as low light conditions.
The algorithm requires enough of
background to be visible for robust
results

Extreme event
dataset
(EED)

Performance is measured in terms
of success rates, which was
92.78% for “fast-moving drone”
sequence

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

LAKSHMI ET AL. 21 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

3 DoF motion estimation

The earlier work started with Weikersdorfer and Conradt (2012) for 2D motion estimation with event sensor alone. The 2D
planar motion of the robot was estimated by applying particle filter on the features that the robot observes on the ceiling. For
every event that arrived, a set of particles were updated based on a motion model and the score of each particle was updated
based on the likelihood of occurrence of the current event with respect to the estimated pose. The particles were resampled if
significant changes have occurred since the last event. A prerecorded ceiling map was provided to the robot during test time.
The algorithm works with very high time resolution as it processes each and every event.

Parallel to the estimation of 2D planar motion estimation, there was huge progress in literature to estimate the rotation of
the camera. The earlier preliminary work started with Cook, Gugelmann, Jug, Krautz, and Steger (2011). It became more
matured with Kim et al. (2014), which simultaneously generated high-resolution panorama images of natural scenes in addi-
tion to the estimation of rotational motion. There was no attempt to estimate depth or translation. The approach involved two
probabilistic filters, one to track the rotational motion of the camera event by event with respect to the scene mosaic and
another to estimate the mosaic from the gradient image. The pixel-wise gradient estimation was carried out as follows: On
receiving an event at a pixel location in the camera frame, the corresponding location in the panoramic map frame was esti-
mated using the pose of tracking algorithm. Each pixel was initialized with a gradient of zero vectors. The gradient estimate
was improvised using the brightness constancy assumption whenever a new event occurred. The brightness constancy states
that the difference in the log gray level from the last event is equal to the log intensity, which has triggered the event. This esti-
mated gradient image was utilized for the creation of scene mosaic by the method mentioned in Tumblin et al. (2005).

Gallego and Scaramuzza (2017) have proposed an event-based method to estimate the rotational motion of the camera
searching for the motion parameters that maximize the strength of the motion-compensated edges. As the problem involved
the estimation of rotational motion alone, there was no requirement of depth estimation. As a first step, event images were esti-
mated from events. Under rotational motion, given a point x0, its path in the image plane will be described by x

0
(t) = W

(x, ω(t)), where W is the warp function determined by the angular velocity, ω(t) alone. In calibrated coordinates, such a warp
is defined by 2D homography.

W x;ω, tð Þ � exp �̂ωt
� �

x, ð12Þ
where, �̂ωt is the rotation matrix R(t) for constant angular velocity, �̂ω is the cross-product matrix and x is the point to be
warped. With this concept, the event that occurred at the location, xk in the image plane at time tk is warped to the location
x
0
k as:

x
0
k = W xk;ω, tk − t0ð Þ, ð13Þ

where, t0 is the time of the first event in the reference set. The 3D rotation angle (tk − t0)ω is different for each event as it
depends on the time of the event. An image, I(x; ω) of rotated events was produced by summing the value of rotated events at
each pixel location. I(x; ω) was used to estimate the ω that aligns the events triggered by a particular scene point to their corre-
sponding image point. This is done by contrast maximization of the rotated image.

With the advent of deep learning in multiple domains, Maqueda et al. (2018) proposed a method to estimate rotation from
the event-based vision sensor using deep-learning. The overall architecture of the proposed algorithm consisted of a feature
extraction layer followed by steering angle prediction layer. The events were converted into two synchronous frames by aver-
aging the positive and negative polarity event data separately over a period of time. These event frames were fed to a deep
neural network, ResNet, which learned a regression task to output the steering angle of the vehicle. As the ResNet has been
mostly deployed in classification tasks, the convolutional layers of the ResNet have been used to extract features. The
extracted features were subjected to a global average pooling in order to reduce the over-fitting by reducing the number of
parameters. The global average pooling layer was followed by a 256-dimension (for ResNet18) or 1,024-dimension (for
ResNet50) fully connected layer. The final layer of the network was a one-dimensional steering angle prediction layer, which
was preceded by a nonlinear ReLU layer.

6DoF motion estimation

The last section was limited to 2D motion estimation or rotation estimation. In Censi and Scaramuzza (2014) proposed a
6DoF pose estimation that combined an event camera with CMOS sensor. The frame-based camera was synchronized with
the event camera before the start of pose estimation. As and when a new event occurs, the 6DoF pose was estimated by esti-
mating the likelihood of observing the present event given the motion model and the most recent low-frequency frame. As the
time resolution of event data is very high, the estimation of every degree of the pose such as yaw, roll, pitch, translation was
decoupled. The method gives freedom to implement it as a pure asynchronous algorithm or to accumulate pose over a series
of events to acquire a robust pose estimate.

22 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Sticky Note
Space between 6 and DoF

In the above paper, the authors have used CMOS sensor, which limits the speed capability of localization estimation.
Hence, the authors have attempted to use DVS alone for 6DoF estimation in Mueggler et al. (2014), where the pose was esti-
mated by minimizing point-to-line reprojection error. Estimation of 6-DoF motion occurs as and when an event arrives. As
the pose was estimated asynchronously, there is no latency introduced, which is the major contribution of the paper. DVS
mounted on a flying platform looked at a black square on a white background. The algorithm accumulated events until the
border lines become detectable for Hough Transform and a four-sided shape was created with the detected four lines. On the
arrival of a new event, the closeness of the event to any of the lines of the square was checked. If the event succeeded to be
closer to any of the line, then the closest point in the line was replaced with this event. Following this, the pose was estimated
by minimizing the error (Equation (14)) between line reprojections and the events belonging to it.

ξ* = arg min
ξ

X4
l = 1

XN
i = 1

kd π Ll, ξð Þ, el, i
� �k, ð14Þ

where, Ll indicates the line belonging to the pattern, π(Ll, ξ) is the projection of the line onto the image plane, ξ is the pose,
el,i denotes the event i belonging to line l and d is the distance between the event and the line. However, this method was
developed for artificial black and white line maps.

Following their previous paper on localization, Mueggler et al. posed a novel trajectory estimation approach (Mueggler
et al., 2015), where localization has been addressed as a continuous time problem estimated on a given map, as and when
events were obtained from event-based vision sensors asynchronously. The trajectory estimation over an interval T was posed
as a probabilistic formulation. The formulation seeks a DVS state ξ(t), which is, pose over the given interval, which maximizes
p(ξ(t)/M, e1 : N), where M is the given map and e1:N is the set of measured events {e1 … eN}. p(ξ(t)/M, e1 : N) is given as:

p ξ tð Þ=M, e1:Nð Þ / p
e1:N

ξ tð Þ,M
� �

p e tð Þð Þ: ð15Þ

In the absence of the prior belief, the problem reduces to maximizing the likelihood of p e1:N
ξ tð Þ,M

� �
.

Contrary to the previous work, Mueggler et al. proposed a low latency 6DoF estimation which is not restricted to artificial
scenes (Gallego et al., 2016). Maps were assumed to be available during pose estimation. These maps were obtained by a pre-
vious run of dense standard reconstruction approaches of CMOS camera such as DTAM (Newcombe et al., 2011) or
REMODE (Pizzoli et al., 2014). The pose was updated using Bayesian filtering approach as and when a new event occurred.
The main contribution of this paper is that they have put forward a normal-uniform (normal for good measurement and uni-
form for noisy measurement) mixture model for likelihood function considering the fact that event data is prone to have out-
liers. Another noteworthy contribution is the approximation of the posterior with tractable exponential distribution which
allows for closed form solution for pose estimation.

Following the recent advances in deep learning approaches, Nguyen et al. (2017) posed six-DoF localization task as a
regression problem of the deep neural network (Figure F1616). A pose was modeled as [ξp, ξq], where ξp is the position and ξq is
the quaternion representation of rotation. The pose regression network proposed was composed of two modules: CNN and
SP-LSTM (Stacked Spatial LSTM). The CNN network was used as a feature extractor. The output of the CNN was fed to a
drop-out layer to avoid overfitting, after which it was reshaped to 64 × 64 to feed it into the LSTM with 256 hidden units.
Generally, the LSTM is used to learn temporal dependencies, whereas, in this work, the LSTM had been used to learn the spa-
tial dependencies between 64 features, each with a 64-dimension feature vector. Two such LSTMs were used to capture hid-
den semantics of the data. The output of the LSTM was leading to a fully connected layer with seven neurons (that model the
parameters of the pose) through a fully connected layer that has 512 neurons as output (Table T88).

FIGURE 16 The network consists of a feature extraction CNN, a fully connected layer, followed by drop-out and reshaping and SP-LSTM. Finally it gives
the six dimensional pose as regressed output

LAKSHMI ET AL. 23 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

3.3.2 | Localization and mapping

Tracking problem has been well addressed in event data domain as it has lesser degrees of freedom as compared to tracking
and mapping. As mapping with event data is a complex task, it started with 2D map generation and later developed into 3D
map creation. Some methods also tried to estimate the map by relying on additional sensors such as RGB-D or conventional
CMOS sensors, but it leads to the same bottlenecks of standard frame-based systems such as high latency.

In Weikersdorfer et al. (2014a) visual odometry algorithm of event camera was augmented with a depth sensor. This
restricts the type of scenarios where event based localization could be deployed. The next stage of development in parallel
localization and mapping was the introduction of 2D map estimation. The state-of-the-art works that generate 2D map while
estimating 2D planar motion are Weikersdorfer et al. (2013) and Reinbacher et al. (2017a). The authors of Weikersdorfer and
Conradt (2012) extended their work to 2D mapping and localization (Weikersdorfer et al., 2013). For each event ek, the event-
based tracking algorithm proposed initialized a particle set Pk 2 Ω for the current system state (position and orientation of the
sensor) and a score value 2[0, 1] representing the likelihood of the state estimate. The major contribution of this paper over
Weikersdorfer and Conradt (2012) is the introduction of dynamic 2D map estimation with event-based vision sensors. Each
location on the map indicates the likelihood that the particular event will be generated by the event-based sensor that moves as
per the estimated motion model. The position was estimated by projecting the events on the generated 2D map. Reinbacher
et al. (2017a) also proposed a panoramic mapping and tracking. This method differs from the previous in tracking methodol-
ogy. The 3D tracking that was followed in this paper is an inspiration from conventional direct alignment approaches such as
Newcombe et al. (2011).

2D maps restrict the use of the localization module to planar scenarios. In order to extend the capability of the event based
localization and mapping to complex scenarios, Weikersdorfer et al. (2014a) have augmented the event sensor with a depth-
sensing camera. This augmented camera gave 3D coordinates of the events generated. With the map provided by the depth
sensors, the authors tracked the 6DoF motion of the event camera with the particle filter based odometry estimation proposed
by them in Weikersdorfer and Conradt (2012). This restricts the robot from generating the map without any additional
sensors.

The section that follows will present state-of-the-art methods that generated 3D map with event camera. Kueng et al.
(2016) proposed an event-based mapping and tracking. The proposed method alternated between two phases, mapping and
tracking. During the mapping phase, features were detected and tracked with the hybrid feature detection and tracking method
proposed in Tedaldi et al. (2016). The depth of these tracked features was estimated via triangulation of the current frame and
its first detection, using the relative camera pose between the frames. The estimated depth was modeled as a random variable
with a probabilistic distribution. The uncertainty of the depth was initialized to a very high value. As and when new measure-
ments appeared, the variance and depth were updated through a Bayesian framework. When the variance decreased to a prede-
fined threshold, the new 3D point was inserted into the map and became eligible for pose estimation utility. In tracking phase,
with the given sparse 3D points, the current camera pose ξk was estimated by minimizing the reprojection error,
arg min

ξ

P
i
kxi − π ξ,Xið Þk, where xi and Xi are 2D and 3D positions of ith feature and π is the projection of 3D world points

onto the image plane.
The previous method relied on frame based data for feature detection, though tracking was carried out in the event domain.

This setback has been overcome in (Kim et al., 2016), which came up with a 3D motion estimation and reconstruction through
three interconnected filters, one for tracking the motion, second for estimating the gradients, followed by log intensity recon-
struction and third for estimating the inverse depth. The second and third filters were run on key-frame images, whereas the
first filter runs on every image. Each and every filter is explained briefly as follows: (i) 3D Motion Estimation: An extended
Kalman filter was used to estimate 6-DoF minimal representation of camera motion. For the motion prediction stage, 6-DoF
constant position motion model was assumed. In the measurement update phase, the value of the measurement was estimated
based on the given event, the current key-frame pose, and the current camera pose estimate. The measurement was used to
update the 3D motion prediction. (ii) Log intensity reconstruction: EKF was employed on each pixel to estimate its gradient,
which was in-turn utilized to reconstruct the log intensity image. The log intensity reconstruction was defined as an optimiza-
tion problem that minimizes the error between the estimated gradients and the gradients of the reconstructed log intensity.
(iii) Inverse depth estimation: Pixel-wise EKF was followed to estimate the inverse depth at each pixel by using the estimated
pose and the reconstructed log intensity image.

The system proposed above included image reconstruction which increased the time complexity of the algorithm. In order
to decrease the computational complexity of the algorithm, Rebecq et al. (2017) proposed a keyframe-based approach
(Figure F1717) which does not need image reconstruction and also does the costly map estimation operation only on key-frames.
The framework had two interlinked modules, 3D tracking and mapping. Mapping of keyframes involved the generation of the
disparity image, known as the Disparity Space Image (DSI). Keyframes were created whenever the distance between the cur-
rent camera pose and that of the keyframe scaled by mean scene depth exceeded a threshold. In tracking, the global image

24 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

alignment strategy (Forster et al., 2014) was proposed, which tried to minimize the geometric alignment between two edge
images. The two edge images are an event image, I and a template M, which is the projection of a semi-dense 3D map of the
scene using a known pose. The mapping module updates the local map from the events based on Event-based Multiview Ste-
reo (EMVS) method proposed in Rebecq et al. (2016) (Table T99).

3.3.3 | Localization with error correction

In order to reduce the drift in trajectory estimation, the two prevalent state-of-the-art methods are loop closure and visual-
inertial fusion.

Visual inertial fusion

It is a well-accepted fact that complementing the camera with an IMU aids in the resolution of trajectory ambiguities that
would occur when using the camera or IMU alone. While there is a significant amount of literature available for the fusion of

TABLE 8 Analyses of localization (only) algorithms that estimate either 3 DoF or 6 DoF motions

Methods Merits De-merits Dataset
3DoF
or 6DoF Trajectory error

Weikersdorfer and
Conradt (2012)

Purely event based. Does not employ
any event integration. Hence
operates with high time resolution
accuracy

Assumes map to be made up of
lines, which restricts its usage in
real-world scenarios

Simulated
and not
publicly
available

experimental dataset

3DoF Average tracking error not provided.
Tracking error vs distance traveled
is provided in the paper

Kim et al. (2014) Builds mosaic of the scene without
any additional sensing

No bootstrapping is used. This may
result in convergence failure.
The mosaic generation algorithm
involves pixel-wise extended
Kalman filter (EKF), which is
computationally complex.

Not publicly
available
dataset

Rotation Trajectory error not reported in
the paper

Gallego and
Scaramuzza
(2017)

Predicts angular velocity from
rotation without the requirement
to estimate optical flow or image
intensity. Reduces the effect of
noise by smoothing the rotated
events with Gaussian blur

Applicable only to rotational
motions

Mueggler
et al.
(2017)

Rotation Performance given in terms of
angular velocity error which
was having a maximum
deviation of 80�/s

Maqueda et al.
(2018)

Regression network used to predict
angle, which allows modeling of
angle as a continuous value

Transfer learning from
conventional CNN to
event-based data used for angle
prediction. To use conventional
CNN, events are accumulated to
form frames

Binas et al.
(2017a,
2017b)

Steering
angle

Root mean square error of
4.58�

Censi and
Scaramuzza
(2014)

Low latency event-based algorithm Requires input from frame-based
camera as well and calibration of
conventional and event camera

Not publicly
available
dataset

6 DoF Angular drift of 1�

Mueggler et al.
(2014)

Low latency algorithm that works on
each and every event, thus making
it suitable for quadrotor exhibiting
high-speed maneuvers

Works with planar maps only Simulated
and real
dataset

6 DoF Mean position error of 10.8 cm
and mean orientation error
of 5.1�

Mueggler et al.
(2015)

Trajectory is modeled as continuous
time parameter to match the high
speed of event camera

Map is assumed to be a set of 3D
line segments.

Mueggler
et al.
(2014)

6 DoF Position and orientation mean
error for simulation is
5.47 cm and 1.74� position
and orientation error for
quad-rotor data is 4.6 cm
and 1.8�

Gallego et al.
(2016)

Event based pose update. The effect
of noise is reduced by proposing a
sensor likelihood function based
on Gaussian mixture model. A
closed form solution to filter
update equation.

Assumes the existence of
photometric depth map

Mueggler
et al.
(2017)

6 Dof Position mean error of 3.97 cm
and orientation mean error
of 2.00�

Nguyen et al.
(2017)

Does not require any map. The Pose
is regressed through the network

Pose not estimated for every event.
Events are stacked to get images
and the algorithm works on
these images

Mueggler
et al.
(2017)

6 DoF Average position error of
0.028 m and average
orientation error of 2.486�

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

LAKSHMI ET AL. 25 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

an IMU and a conventional camera, the study of complementing event sensors with the IMU is a developing research subject.
In this section, we furnish a brief outline of the papers that have proposed novelties in visual-inertial fusion.

The major breakthrough in visual inertial event based SLAM came with the work of Zhu et al. which proposed an asyn-
chronous filter-based algorithm to fuse event-based pose estimation with the IMU estimate (Zhu et al., 2017). It used a sensor
package consisting of the IMU and an event-based camera, with the assumption of the IMU and camera frames being aligned
with each other. The joint state of the IMU and event camera includes position, velocity and orientation of the global frame in
sensor frame, accelerometer and gyroscope biases. The sensor was assumed to operate in an environment with landmarks
L≔ Lj 2 R3

� 	m
j = 1 with a known initial state si. When an event-based camera generated events at discrete times t1, t2, …, the

visual tracker used sensor state information to track the positions of landmarks (of the events generated) within the image
plane. The mentioned tracking algorithm makes use of the fact that the events triggered by a particular landmark will fall on a
spatio-temporal curve. The gradient along this curve is an indication of the optical flow of that particular landmark. Hence,
tracking proceeded as estimating the projection of landmarks on the image plane, finding the spatio-temporal curve, and esti-
mating the gradient along the curve. Having estimated the visual tracks, an EKF with a structureless vision model has been
used to fuse the same with the available IMU readings. The structureless form of the EKF was used as it facilitates us to
impose constraints between the poses that observe the landmarks as against the structured EKF, which tries to optimize over
feature points as well. This proves to be a major achievement in limiting the size of the state vector to a greater extent.

The major hurdles of EKF are that it requires very robust features and it becomes computationally expensive with increas-
ing map size. In contrast to the EKF-based fusion algorithms, Rebecq et al. (2017) proposed a smoothing approach based on
nonlinear optimization on selected keyframes. It has two modules: front end, which estimated the features, tracked them and
determined their 3D position via triangulation; and back end, which fused the IMU readings and triangulated feature tracks in
a nonlinear fashion to update the camera pose and IMU parameters. The front end comprised the following steps: (i) Events
spatiotemporal window: The given set of events {e1, … , en} were divided into a set of overlapping spatiotemporal windows
{Wk}, where Wk = {eks, … , eks + N − 1} with N and s being the window size and step size, respectively, (ii) Event Frame
Generation: A well-known approach to generate event frames is to sum the events that fired a response at pixel location xj.
This does not convey good information to detect features, as a small window size will result in noisy images and larger win-
dow size will result in motion blur. Hence, the authors have motion-compensated each event, based on the timing of the event.
The event frames generated from these motion-compensated events were further used for feature tracking, (iii) Feature detec-
tion and Tracking: New features were detected in keyframes using the FAST corner detector. The detected features were
tracked using pyramidal Lukas-Kanade tracking. As soon as the landmark becomes eligible for triangulation, the correspond-
ing feature was triangulated and added to the map. The proposed back end was based on the back end implementation of Leu-
tenegger et al. (2015). The visual inertial localization problem was formulated as a joint optimization of a cost function that
includes visual landmark reprojection error and inertial error terms.

The next leap in visual IMU fusion came with the introduction of tight coupling of the frame-based camera, event-based
camera, and the IMU (Vidal et al., 2018) for pose estimation to leverage the complementary advantages of frame-based cam-
eras and event-based cameras. This extended the work of Rebecq et al. (2017) to include optical cameras as well for fusion. In

Event image

6 DoF Pose
Tracking

Keyframe?

Update depth
image

Generate point
cloud

Create new
depth image

No Yes

FIGURE 17 The architecture has a pose tracking module and disparity space image (DSI) generation module. DSI is generated every key-frame, which in
turn gets created based on the movement of the camera

26 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

addition to feature tracks from the event-based camera, the algorithm estimated feature tracks from the frame-based camera as
well. The feature tracks from the event camera, frame-based camera, and the IMU readings were fed into the back end module
for joint optimization to estimate the new state.

The above methods estimated visual odometry from a set of events and fed the same into the standard frame-based Visual
Inertial fusion techniques. This method may not be appropriate as events are asynchronous and the estimated pose may not
correspond to any single time stamp. Moreover, the temporal resolution of events is very high. Hence, Mueggler et al. (2018)
have adopted a continuous time framework. A similar technique of continuous time trajectory estimation has been published
by the same authors for vision only system on line based maps. A similar system has been extended to the fusion of vision
and IMU for natural scenes. The camera trajectory has been approximated as a smooth curve in rigid body motion space using
splines. The trajectory estimation problem was put forth as a probabilistic approach that maximizes the likelihood of the trajec-
tory over a period of time T for the given event measurements and IMU measurements (angular velocities and linear accelera-
tion) (Table T1010).

Vision with loop closure based error correction

In the conventional camera SLAM, the techniques such as bundle adjustment and pose graph optimization are used to mini-
mize the drifts in visual odometry estimation. The application of bundle adjustment or pose graph optimization involves loop
closure detection via place recognition. As place recognition with event data is a very cumbersome task, there has not been
much progress on loop closure detection on event data and hence not many works published on error reduction using these
techniques. The one recent work for pose estimation using place recognition is proposed in (Milford et al., 2015). This could
form a baseline to integrate place recognition, loop detection and error correction into event-based localization and mapping.
They have built a place recognition module on top of the conventional SeqSLAM algorithm (Milford & Wyeth, 2012). Event
images were generated by binning the events which were then fed into the place recognition and loop closure modules of Seq-
SLAM. These modules were integrated into the system as proposed in (Milford & George, 2014).

4 | DATASETS AND SIMULATORS

Benchmark datasets assume an indispensable role in the development of research in various fields of computer vision. These
datasets help to identify and conquer the gap in the research in these fields and enable quantitative comparison of algorithms

TABLE 9 Analyses of localization and mapping algorithms

Methods Merits De-merits Dataset Trajectory error

Weikersdorfer
et al.
(2014a)

Processes each and every event and
hence produces trajectory estimation
with low latency. Computational
speed is increased by performing
resampling only after every kth event

Needs a depth sensor for pose
estimation

Not publicly available
dataset

Root mean square error
(RMSE) of position is
3.1 cm

Kueng et al.
(2016)

Event-based. Hence preserves the low
latency advantage of event sensor.
Utilizes geometric information
conveyed by edge features which are
more prominent in event data. Event
noise is filtered by supplementing
tracking with local histogram

Initial step of feature detection requires
frame data

Not publicly available
datasets
(checkerboard scene
and natural scene)

For checkerboard experiment,
the average position error
is 16 mm and for a natural
scene, the average position
error is 30 mm

Kim et al.
(2016)

Provides estimation of 3D
reconstruction and pose estimation

Involves intensity image reconstruction,
which is computationally complex

Not publicly available
dataset

Only qualitative results are
provided

Rebecq et al.
(2017)

Parallel tracking and mapping
methodology carry out costly 3D
reconstruction only in keyframes.
This reduces the computational
complexity and latency. Noise in 3D
reconstruction is reduced with a
median filter.

Bootstrapping assumes planar map,
which may not lead to convergence
always. DSI is discretized to allow
for depth estimation of far away
objects, which might lead to loss of
depth resolution.

Not publicly available
dataset

Average drift over 30 m
trajectory is 6 cm

Reinbacher
et al.
(2017a)

First event based parallel tracking and
mapping approach, which gives map
as well as pose only from event data.
As it does not require image
reconstruction, it is computationally
effective. Works for natural scenes as
well. Costly 3D reconstruction is
carried out only on keyframes.

Does not estimate pose for each and
every event. Works on event image,
obtained by collecting events over a
period of time

Not publicly available
dataset

For multi key-frame
trajectory, 6 cm
translational error and 3�

rotational drift

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

LAKSHMI ET AL. 27 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

developed across the globe. The availability of benchmark datasets for event-based vision sensors is limited as compared to
their counterparts, the frame-based cameras. This can be chiefly ascribed to the commercial nonavailability of these sensors.
Nevertheless, the researchers working on event-based vision sensors have driven the generation of event data dataset for vari-
ous vision algorithms such as optical flow estimation, visual odometry, SLAM, object recognition, and action recognition.

Despite the fact that the event-based vision sensors have been commercialized, the nonavailability of a wide variety of
event-based data still holds on. This has prompted the use of the existing frame-based vision datasets to simulate event data.
This spares the effort and time spent in collecting data and furthermore allows for direct comparison between algorithms in
the two-sensor domain.

This section gives a short layout of the datasets available for event-based vision sensors under two distinct categories, real
dataset and simulated dataset.

4.1 | Real dataset

This section furnishes the details of publicly available event datasets captured on 3D scenes to evaluate the performance of
optical flow, object recognition and SLAM.

4.1.1 | Optical flow

The dataset that accompanies (Rueckauer & Delbruck, 2015) is an optical flow dataset. The samples were recorded from a
240 × 180 pixel DAVIS240 sensor (Brandli et al., 2014a, 2014b). The dataset contains asynchronous events from the DVS,
as well as synchronous frames. The dataset consists of two synthesized sequences, two simple real sequences, and a more
complex real sequence. The synthesized samples were created in MATLAB. The authors have provided the script for generat-
ing synthetic sequences. The two synthetic sequences comprise a translating square and a rotating bar. The real sequences
were captured by mounting the camera on a rotor that is allowed for any one of the motions, pan or tilt or roll. In order to gen-
erate ground truth, the underlying geometric principles were used in the case of the synthetic sequence and IMU, gyro sensors
were used in the case of the real sequence.

4.1.2 | SLAM

Following the paper (Weikersdorfer et al., 2014b), Dynamic Vision/RGBD dataset (Dynamic Vision RGBD Dataset, 2014)
was released. The data contains three data streams, RGB data, depth data, and event data captured from D-eDVS, a depth-
augmented dynamic vision sensor proposed by the authors. The sensor consists of an embedded DVS with a resolution of
128 × 128, a depth sensor like PrimeSense RGB-D sensor with a resolution of 320 × 240 at 60 Hz. In order to compensate
for the information missing in the temporal space of the RGBD sensor, the smallest depth value from the latest frame is chosen
for each event. In addition to the temporal resolution difference, the spatial resolution difference should also be addressed.
The mapping of world point x 2 R3 to RGBD pixel points ud 2 R3 is defined as ud = Kdx, where Kd is the calibration matrix
of the RGBD sensor. The corresponding point in the DVS is estimated as KeTK− 1

d ud, where Ke and T are the calibration
matrix of the DVS and the transformation matrix between the RGBD and event sensor, respectively. The dataset consists of
five different scenarios. Each scenario comprises clips of duration 30–60 s each.

TABLE 10 Analyses of algorithms that fuse vision and IMU to improve the localization estimation

Methods Merits De-merits Dataset Trajectory error

Zhu et al. (2017) Optimization over feature points is avoided
which reduces the dimension of the state
to be updated in EKF

It is assumed that optical flow
within a small spatio-temporal
window is constant

Mueggler et al.
(2017)

Minimum mean position error
of 1.23% and rotation error
of 0.02�/m

(Rebecq et al.,
2017)

Keyframe based tightly coupled visual
inertial fusion. Outlier feature tracks are
rejected by RANSAC

Works on event images, which is
generated by accumulating
events over a period of time.
Window size becomes a critical
parameter

Mueggler et al.
(2017)

Minimum mean position error
of 0.54% and yaw error of
0.03�/m

(Vidal et al.,
2018)

Improved performance by combining
standard frames with IMU and event data

As it includes frame data as well, it
inherits the disadvantages faced
with conventional camera

Mueggler et al.
(2017)

Minimum mean position error
of 0.10% and orientation
error of 0.02�/m

(Mueggler et al.,
2018)

Continuous temporal model assumed to
cater for high temporal resolution of
event data and IMU data. Continuous
models allow to derive pose and linear
velocity from a unique trajectory
representation

Assumed that scene map is
available

Not publicly
available dataset

Mean position error of
1.48 cm and mean
orientation error of 0.19�

Note. The performance measure column gives the best performance among the variants of that particular algorithm/different databases used for that algorithm.

28 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Mueggler et al. (2017) provide dataset captured from the Dynamic and Active Pixel Vision Sensor (DAVIS), which trans-
mits frames in addition to events. Events are pixel-level relative brightness change. The DAVIS also carries an IMU that
includes a gyroscope and an accelerometer, thus helping in the evaluation of visual-inertial algorithms. The axis of the IMU is
coincident with that of the event sensor. The dataset comprises events, frames at 24 Hz, inertial measurements at 1 KHz, and
ground truth pose from motion capture system at 200 Hz. The dataset consists of indoor and outdoor scenarios. The indoor
dataset depicts the motion of objects of different shapes, poster and boxes. The outdoor dataset was acquired in an urban envi-
ronment with walking and running people. The ground truth is available only for indoor data. The calibrations provided are
intrinsic camera calibration and camera-IMU calibration.

The DDD17 dataset (Dynamic Vision Dataset, 2016; Neil et al., 2017 Q6) was recorded using the Ford Mondeo MK3
European Model using the DAVIS346B sensor, which contains an Active Pixel Vision (AVS) sensor and a DVS camera in
order to record traditional frame-based data and event-based data simultaneously. The camera has a resolution of 346 × 240
pixels, with its architecture similar to that presented in Brandli et al. (2014a, 2014b). Since the AVS data and the DVS data
are time-stamped with their own clocks, both data streams were supplemented with the system time of the recording computer
for possible synchronization in the future. The recorded data includes 12 hr of data recorded under different weathers, driving
and lighting conditions on different roads of Switzerland and Germany. The dynamic driving condition is achieved by varying
the speed. Low light condition is simulated by driving the vehicle with the headlights off.

Zhu et al. (2018) presented a large dataset with a synchronized stereo pair of an event-based camera, DAVIS m346B, a
360 × 240 pixel camera with DVS, APS and IMU. The dataset contains APS gray scale images at 50 Hz, IMU measurements,
left and right DVS camera events, stereo frame-based images from VI sensor, and ground truth data. The ground truth pose is
recorded using a GPS and motion capture systems. The ground truth depth images for left and right cameras were recorded
using the Velodyne VLP-16 LIDAR, which is mounted such that there is enough overlap between the field of view of the
LIDAR and DVS. The data is captured by three different modes: (i) by mounting it on a hexacopter, (ii) by carrying it around,
and (iii) by driving in a sedan. Hexacopter data contains indoor and outdoor scenarios. The motion capture system provides
the ground truth pose. High-dynamic data are collected by carrying it in hand. The LIDAR SLAM provides the ground truth
pose and depth. For slow to medium motion, the sedan is used for data capture. It includes day and evening situations. The
ground truth pose is obtained from the GPS and LIDAR SLAM, whereas ground truth depth is provided by the LIDAR. The
GPS gives additional ground truth reference in outdoor in all the three modes.

4.1.3 | Object recognition

Moeys et al. (2016) have made available the PRED18 dataset (Dynamic Vision Object Recog Dataset, 2016) to demonstrate
predator/prey scenario, where the predator has to recognize the prey. The data was captured using a DAVIS camera, which
has a 240 × 180 AVS that captures images at the rate of 15 Hz and a DVS that records events at variable rates ranging from
15 to 500 Hz depending on the speed of the robot. The camera was mounted on a Robotnik Summit XL mobile robot, running
at a maximum speed of 2 m/s. The dataset consists of around 20 recordings that extend to a duration of 1.25 hr. The scenario
recorded comprised prey robot and humans as well. Different lighting conditions were simulated by turning the lights on and
off, by shutting the blinds, and by the ambient light that entered the room through unshaded windows. The ground truth label-
ing of prey robot was achieved by annotating the scene with the jAER software framework.

Sironi et al. (2018a, 2018b) introduced an event dataset called N-CARS (Dynamic Vision Object Recog Dataset, 2018)
recorded from real-world scenes using the ATIS camera for a duration of 80 min. The camera was mounted behind the wind-
shield of a car. The N-CARS is a two class dataset with 12,336 car samples and 11,693 noncar samples. Conventional gray
scale images were created from the measurements of the ATIS camera. In order to generate the ground truth, gray scale images
were processed with a state-of-the-art object detector, followed by the automatic extraction of the bounding box and the corre-
sponding labels.

4.2 | Simulated dataset

Serrano Q7et al. (Orchard et al., 2015; Gotarredona & Linares-Barranco, 2015; Hu et al., 2016) have converted the famous
frame-based vision benchmark datasets into event-based data. As the event-based vision sensors are designed to respond to
changes in illumination, the static images can be converted into events by simulating changes in intensity with respect to time
It. Generally, intensity change over time is achieved either by flashing the images in front of an event-based sensor (flashing
input method) or by moving the images over a computer monitor and seeing them through an event-based vision sensor (mov-
ing input method). In flashing input, the image display is alternated with that of a blank image. This methodology targets the
evaluation of recognition problem alone, whereas the moving input method targets evaluation of algorithms in a real-world
scenario.

LAKSHMI ET AL. 29 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Inserted Text
Neil, B., Liu.S.C, D., & Delbruck.T. (2017). Ddd17: End-to-end davis driving dataset. Int.
Conf. Machine Learning

user
Inserted Text
Orchard.G, Jayawant.A, Cohen.G.K, & Thakor.N. (2015). Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci, Vol. 9, Article No. 437

user
Textbox

user
Textbox

Event datasets of the MNIST were generated via four different protocols, two of which are flashing-input-based and two
are moving-input-based. Gotarredona and Linares-Barranco (2015) and Hu et al. (2016) followed the moving input method to
simulate the MNIST-DVS dataset (Dynamic Vision Object Recog Simulated Dataset, 2015) and single object tracking dataset,
action recognition dataset, Caltech-256 object recognition dataset (Dynamic Vision Object Recog and Action Recog and
Tracking Simulated Dataset, 2016), respectively. However, the response thus obtained from the event-based vision sensor will
differ from the sensor viewing the real 3D scene, as It depends on the depth of the scene, which is lost during perspective pro-
jection of conventional image capture. Hence, the authors of Orchard et al. (2015) have proposed rotation as the relative
motion between the camera and the static image, as the rotational motion is independent of depth.

5 | OPEN SOURCE CODES

Open source codes are available for certain publications, thus enabling the researchers to quickly evaluate their algorithms
against the literature. Open source codes can be found for the following computer vision technologies

1. Optical flow: Source Code for Optical Flow (2017a) provides code for the algorithm proposed in Benosman et al. (2013).
Several algorithms compared in the paper (Rueckauer & Delbruck, 2016) are implemented in Source Code for Optical
Flow (2017b). The code provided in Source Code for Event Lifetime (2017) augments each event with its lifetime, which
is nothing but the time taken by moving brightness that caused the event to move one pixel. The code is based on the
event lifetime estimation algorithm proposed in Mueggler et al. (2015).

2. Intensity image reconstruction: Codes developed in Source Code for Image Reconstruction (2017a) and Source Code for
Image Reconstruction (2017b) reconstruct intensity images from the DVS as per the algorithms proposed in Kim et al.
(2014) and Reinbacher et al. (2016), respectively.

3. Localization: Localization, also known as ego motion estimation algorithm is implemented in Source Code for Localiza-
tion (2016) inspired by the algorithm proposed in Reinbacher et al. (2017b).

4. Object Recognition: Implementation of a spiking neural network to recognize objects from the DVS data (Orchard et al.,
2015) is provided at Source Code for Object Recognition (2016).

6 | CONCLUSION

In this review paper, we have tried to provide a summary of vision algorithms developed for event-based vision sensors. We
have not restricted ourselves to algorithms, but additionally explored the silicon retina in brief. The paper also provides an
insight into numerous databases available to evaluate event-based vision algorithms.

The beginning of the paper gives a short introduction of cutting-edge vision sensors, referred to as the silicon retina. The
goal of this section was to produce a helpful insight into the immensely improved capabilities of the silicon retina over the
conventional camera. Further down, this section puts forward the varied types of silicon retinae and elaborates on a particular
well-known type, the temporal difference silicon retina commonly known as activity-driven event-based vision sensor. The
paper explains the image generation, transmission, and processing mechanisms of the event-based vision sensors, focussing
on its benefits such as low latency and power efficiency. This is followed by a brief history of event-based vision sensors, with
emphasis on the architecture of the DVS and ATIS. Before venturing into event-based vision algorithms, the paper analyses
the dimensions that paved way for these sensors to gain their position in vision applications. For the sake of completeness, we
have also provided a short note on the software frameworks, which are essential for the easy use of sensors and enhancement
of interoperability.

The body of the paper involves an elaborated presentation of three major vision applications proposed in the literature to
deal with event-based data. The commercialization of these sensors has accelerated the research in event-based vision algo-
rithms. The three major vision applications discussed in this paper are those that have seen good development in event data
domain in the past few years (object detection/recognition, object tracking and localization). The vision algorithms such as
anomaly detection or activity analyses are in the early stages of development as far as event data is concerned. Although there
are quite a few research papers in the field of event data processing, most of them are conventional vision algorithms adapted
to event data. The vision algorithms for event data should stem from computational aspects of biological vision. As event cam-
eras are a result of sensing from a biological perspective, the algorithms for event data should be bio-inspired, which will
extract information from the data as biological vision does. Bio-inspired vision algorithms are a developing field, which
demands the merger of biological vision and computer vision.

30 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Availability of datasets is mandatory for any field of research to enable researchers to compare the algorithms developed
across the globe. Though the event-based dataset is not as exhaustive as the frame-based dataset, lot of work has gone into
acquiring and annotating the event-based dataset, both real and simulated. We have tried to give comprehensive information
on the real dataset, which was captured with event-based vision sensors on real 3D scenes and as well on the simulated data-
set, which was built on the conventional frame-based dataset through varied conversion mechanisms.

CONFLICT OF INTEREST

The authors have declared no conflicts of interest for this article Q8.

ENDNOTES
1https://github.com/uzh–rpg/event– based_ vision_resources.
2https://github.com/rasmusbergpalm/DeepLearnToolbox.
3http://ilab.usc.edu/neo2/dataset/.
4http://www.prophesee.ai/dataset-n-cars/.

RELATED WIREs ARTICLE

Local computation of optical flow using a silicon retina

REFERENCES

Afshar, S., Cohen, G., Hamilton, T., Tapson, J., & van Schaik, A. (2016). Investigation of event-based memory surfaces for high-speed tracking, unsupervised feature
extraction and object recognition. arXiv preprint arXiv:1603.04223. Q9

Q10Alzugaray, I., & Chli, M. (2018). Asynchronous corner detection and tracking for event cameras in real-time. IEEE Robotics and Automation Letters.
Q11Ballard, D., & Jehee, J. (2012). Dynamic coding of signed quantities in cortical feedback circuits. Frontiers in Psychology, 3(254).

Barbaro, M., Burgi, P. Y., Mortara, A., Nussbaum, P., & Heitger, F. (2002). A 100 x 100 pixel silicon retina for gradient extraction with steering filter capabilities and
temporal output coding. IEEE Journal of Solid-State Circuits, 37, 160–172.

Bardallo, J., Gotarredona, T., & Barranco, B. (2009). A mismatch calibrated bipolar spatial contrast AER retina with adjustable contrast threshold. In IEEE international
symposium on circuits and systems (pp. 1493–1496).

Bardallo, J., Gotarredona, T., & Barranco, B. (2011, June). A 3.6 s latency asynchronous frame-free even-driven dynamic-vision-sensor. The IEEE Journal of Solid-
State Circuits, 46, 1443–1455.

Barranco, F., Fermuller, C., & Ros, E. (2018). Real-time clustering and multi-target tracking using event-based sensors. arXiv preprint arXiv:1807.02851. Q12

Benosman, R., Clercq, C., Lagorce, X., Ieng, S., & Bartolozzi, C. (2014). Event-based visual flow. IEEE Transactions on Neural Networks and Learning Systems, 25
(2), 407–417.

Benosman, R., Clercq, C., Lagorce, X., Ieng, S. H., & Bartolozzi, C. (2013). A event based visual flow. In IEEE transactions on neural networks and learning systems.
Binas, J., Neil, D., Liu, S., & Delbruck, T. (2017a). Ddd17: End-to-end Davis driving dataset. ICML workshop on machine learning for autonomous vehicles.
Binas, J., Neil, D., Liu, S. C., & Delbruck, T. (2017b). Ddd17: End-to-end Davis driving dataset. In The international conference on machine learning.
Brandli, C., Berner, R., Yang, M., Liu, S. C., & Delbruck, T. (2014a). A 240 180 130 db 3 us latency global shutter spatiotemporal vision sensor. The IEEE Journal of

Solid-State Circ, 49, 2333–2341.
Brandli, C., Berner, R., Yang, M., Liu, S. C., & Delbruck, T. (2014b). A 240x180 130 db 3 us latency global shutter spatiotemporal vision sensor. The IEEE Journal of

Solid-State Circuits, 49, 2333–2341.
CamunasMesa, L., SerranoGotarredona, T., Ieng, S., Benosman, R., & LinaresBarranco, B. (2018). Event-driven stereo visual tracking algorithm to solve object occlu-

sion. IEEE Transactions on Neural Networks and Learning Systems, 29(9), 4223–4237.
CamunasMesa, L., SerranoGotarredona, T., Ieng, S., Benosman, R., & Linares-Barranco, B. (2014). On the use of orientation filters for 3d reconstruction in event-

driven stereo vision. Frontiers in Neuroscience, 8, 48.
Cannici, M., Ciccone, M., Romanoni, A., & Matteucci, M. (2018). Event-based convolutional networks for object detection in neuromorphic cameras. CoRR,

abs/1805.07931. Retrieved from http://arxiv.org/abs/1805.07931
Cao, Y., Chen, Y., & Khosla, D. (2014). Spiking deep convolutional neural networks for energy-efficient object recognition 1–13. Q13

Censi, A., & Scaramuzza, D. (2014). Low-latency event-based visual odometry. In IEEE international conference on robotics and automation (ICRA).
Clady, X., Ieng, S. H., & Benosman, R. (2015). Asynchronous event-based corner detection and matching. Neural Networks, 65, 91–106.

Q14Connor, O., Neil, D., Liu, S. C., Delbruck, T., & Pfeiffer, M. (2016). Real-time classification and sensor fusion with a spiking deep belief network. Frontiers in
Neuroscience.

Conradt, J., Berner, R., Cook, M., & Delbruck, T. (2009). An embedded AER dynamic vision sensor for low-latency pole balancing. In IEEE 12th international confer-
ence on computer vision workshops (ICCV workshops) (pp. 780–785).

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R., & Delbruck, T. (2009). A pencil balancing robot using a pair of aer dynamic vision sensors. In IEEE
international symposium on circuits and systems (ISCAS) (pp. 781–784).

Cook, M., Gugelmann, L., Jug, F., Krautz, C., & Steger, A. (2011). Interacting maps for fast visual interpretation. In International joint conference on neural networks
(IJCNN) (pp. 770–776).

Q15Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. CVPR.
Q16Delbruck, J. L. T., & Pfeiffer, M. (2016). Training deep spiking neural networks using backpropagation. Frontiers in Neuroscience.

Delbruck, T. (2008). Frame-free dynamic digital vision. In Proceedings of international symposium on secure-life electronics (Vol. 1, pp. 21–26).

LAKSHMI ET AL. 31 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Inserted Text
Front. Neurosci., 17 January 2019

user
Inserted Text
3177-3184

user
Inserted Text
page: 254

user
Inserted Text
International Journal of Computer Vision 113.1 (2015): 54-66.

user
Inserted Text
Vol No: 7PAGE : 178

user
Inserted Text
international Conference on computer vision & Pattern Recognition (CVPR'05) (Vol. 1, pp. 886-893). IEEE Computer Society.

user
Inserted Text
Vol: 10Page: 508

user
Inserted Text
Ok

user
Inserted Text
journal={2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2018},
pages={5764-5769}

user
Textbox

user
Textbox

user
Textbox

user
Textbox

https://doi.org/10.1002/scj.20343
http://arxiv.org/abs/1805.07931

Delbruck, T., & Berner, R. (2010). Temporal contrast aer pixel with 0.3 threshold. In Proceedings of 2010 I.E. international symposium on circuits and systems
(ISCAS) (pp. 2442–2445).

Delbruck, T., & Lichtsteiner, P. (2007). Fast sensory motor control based on event-based hybrid neuromorphic-procedural system. In IEEE international symposium on
circuits and systems (pp. 845–848).

Q17Delbruck, T., & Lang, M. (2013). Robotic goalie with 3 ms reaction time at 4 cpu load using event-based dynamic vision sensor. Frontiers in Neuroscience.
Diehl P, Neil D, Binas J, Cook M, Liu SC, & Pfeiffer M. (2015). Fast classifying, high-accuracy spiking deep networks through weight and threshold balancing. Q18

Dynamic Vision Dataset. (2016). http://sensors.ini.uzh.ch/databases.html Q19

Dynamic Vision Object Recog and Action Recog and Tracking Simulated Dataset. (2016). http://sensors.ini.uzh.ch/databases.html
Dynamic Vision Object Recog Dataset. (2016). http://sensors.ini.uzh.ch/databases.html
Dynamic Vision Object Recog Dataset. (2018). http://www.prophesee.ai/dataset-n-cars/
Dynamic Vision Object Recog Simulated Dataset. (2015). http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
Dynamic Vision RGBD Dataset. (2014). http://ci.nst.ei.tum.de/EBSLAM3D/dataset
Dynamic Vision Software. (2017). https://github.com/SensorsINI/
Dynamic Vision Software. (2018a). https://github.com/inilabs/caer
Dynamic Vision Software. (2018b). https://github.com/inilabs/libcaer
Dynamic Vision Software. (2018c). https://github.com/uzh-rpg/
Dynamic Vision Software. (2018d). https://github.com/robotology/event-driven
Farabet, C., Martini, B., Akselrod, P., Talay, S., LeCun, Y., & Culurciello, E. (2010). Hardware accelerated convolutional neural networks for synthetic vision systems.

In The IEEE international symposium on circuits and systems (pp. 257–260).
Folowosele, F., Vogelstein, R., & EtienneCummings, R. (2011). Towards a cortical prosthesis: Implementing a spike-based hmax model of visual object recognition in

silico. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 516–525.
Q20Forster, C., Pizzoli, M., & Scaramuzza, D. (2014). Svo: Fast semi-direct monocular visual odometry (pp. 15–22). ICRA.

Fukushima, K., Yamaguchi, Y., Yasuda, M., & Nagata, S. (1970). An electronic model of the retina. In Proceedings of the IEEE (Vol. 11, pp. 1950–1952). https://doi.
org/10.1109/PROC.1970.8066

Gallego, G., Lund, J., Mueggler, E., Rebecq, H., Delbruck, T., & Scaramuzza, D. (2016). Event-based, 6-dof camera tracking for high-speed applications. arXiv preprint
arXiv:1607.03468. Q21

Gallego, G., & Scaramuzza, D. (2017). Accurate angular velocity estimation with an event camera. IEEE Robotics and Automation Letters, 2(2), 632–639.
Ghosh, R., Mishra, A., Orchard, G., & Thakor, V. (2014). Real-time object recognition and orientation estimation using an event-based camera and cnn. In IEEE bio-

medical circuits and systems conference (pp. 544–547).
Glover, A., & Bartolozzi, C. (2016). Event-driven ball detection and gaze fixation in clutter. In IEEE/RSJ international conference on intelligent robots and systems

(IROS) (pp. 9–14).
Glover, A., & Bartolozzi, C. (2017). Robust visual tracking with a freely-moving event camera. In IEEE/RSJ international conference on intelligent robots and systems

(IROS).
Q22Gotarredona, S., & Barranco, L. (2015). Poker-dvs and mnist-dvs. Their history, how they were made, and other details. Frontiers in Neuroscience.

Gotarredona, T. S., Andreou, A., & Barranco, B. L. (1999). Aer image filtering architecture for vision processing systems. IEEE Transactions on Circuits and Systems,
46(9), 1064–1071.

Gotarredona, T. S., Andreou, A., & Linarese, B. (1999). Aer image filtering architecture for vision-processing systems. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 46(9), 1064–1071.

Gotarredona, T. S., & Barranco, B. L. (2013). A 128x128 1.5 asynchronous frame-free dynamic vision sensor using transimpedance amplifiers. IEEE Journal of Solid-
State Circuits, 48(3), 827–838.

Haessig, G. & Benosman, R. (2018). A sparse coding multi-scale precise-timing machine learning algorithm for neuromorphic event-based sensors. CoRR,
abs/1804.09236. Retrieved from http://arxiv.org/abs/1804.09236

Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In Alvey vision conference.
Q23Hu, Y., Liu, H., Pfeiffer, M., & Delbruck, T. (2016). Dvs benchmark datasets for object tracking, action recognition, and object recognition. Frontiers in Neuroscience.

Illingworth, J., & Kittler, J. (1987). The adaptive hough transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5), 690–698.
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., … Davison, A. (2011). Kinectfusion: Real-time 3d reconstruction and interaction using a

moving depth camera. In Proceedings of the 24th annual ACM symposium on User interface software and technology (pp. 559–568).
Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070.
Kim, H., Handa, A., Benosman, R., Ieng, S., & Davison, A. (2014). Simultaneous mosaicing and tracking with an event camera. In British machine vision conference.

Q24Kim, H., Leutenegger, S., & Davison, A. (2016). Real-time 3d reconstruction and 6-dof tracking with an event camera. ECCV.
Kramer, J. (2002). An on/off transient imager with event-driven, asynchronous read-out. In IEEE international symposium on circuits and systems (pp. 165–168).
Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. (MSc thesis). University of Toronto, Department of Computer Science.
Kueng, B., Mueggler, E., Gallego, G., & Scaramuzza, D. (2016). Low-latency visual odometry using event-based feature tracks. In IEEE/RSJ International Conference

Intelligent Robots and Systems (IROS) (pp. 16–23).
Lagorce, X., Meyer, C., Ieng, S., Filliat, D., & Benosman, R. (2015). Asynchronous event-based multikernel algorithm for high-speed visual features tracking. IEEE

Transactions on Neural Networks and Learning Systems, 26(8), 1710–1720.
Lagorce, X., Orchard, G., Galluppi, F., Shi, B., & Benosman, R. (2017). Hots: A hierarchy of event-based time-surfaces for pattern recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(7), 1346–1359.
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient based learning applied to document recognition. In Proceedings of the IEEE (pp. 1178–2324).

Q25Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., & Furgale, P. (2015). Visual-inertial slam using nonlinear optimization. The International Journal of Robotics
Research.

Li, C., Brandli, C., Berner, R., Liu, H., Yang, M., Liu, S. C., & Delbruck, T. (2015). Design of an rgbw color vga rolling and global shutter dynamic and active-pixel
vision sensor. In IEEE international symposium on circuits and systems (ISCAS) (pp. 718–721).

Li, J., Shi, F., Liu, W., Zou, D., Wang, Q., Lee, H., Park, P., & Ryu, H. (2017). Adaptive temporal pooling for object detection using dynamic vision sensor. British
machine vision conference (BMVC), 1.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2006). A 128 x 128 120db 30mw asynchronous vision sensor that responds to relative intensity change. In IEEE interna-
tional solid state circuits conference (pp. 2004–2006).

Q26Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128x128 120db 15 micro seconds latency asynchronous temporal contrast vision sensor. IEEE Journal of Solid-
State Circuits, 566–576.

LinaresBarranco, A., GomezRodriguez, F., Villanueva, V., Longinotti, L., & Delbruck, T. (2015). A usb3. 0 fpga event-based filtering and tracking framework for
dynamic vision sensors. IEEE International Symposium on Circuits and Systems (ISCAS), 26(12), 2417–2420.

32 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Inserted Text
Vol: 10Page: 405

user
Textbox

http://sensors.ini.uzh.ch/databases.html
http://sensors.ini.uzh.ch/databases.html
http://sensors.ini.uzh.ch/databases.html
http://www.prophesee.ai/dataset-n-cars/
http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
http://ci.nst.ei.tum.de/EBSLAM3D/dataset
https://github.com/SensorsINI/
https://github.com/inilabs/caer
https://github.com/inilabs/libcaer
https://github.com/uzh-rpg/
https://github.com/robotology/event-driven
https://doi.org/10.1109/PROC.1970.8066
https://doi.org/10.1109/PROC.1970.8066
http://arxiv.org/abs/1804.09236

Litzenberger, M., Posch, C., Bauer, D., Belbachir, A., Schon, P., Kohn, B., & Garn, H. (2006). Embedded vision system for real-time object tracking using an asynchro-
nous transient vision sensors. In IEEE workshop on digital signal processing and signal processing education DSP/SPE (pp. 173–178).

Liu, H., Moeys, D., Das, G., Neil, D., Liu, S., & Delbruck, T. (2016). Combined frame and event-based detection and tracking. In IEEE international symposium on cir-
cuits and systems (ISCAS) (pp. 2511–2514).

Mahowald, M. (1994). An analog vlsi system for stereoscopic vision. In International series in engineering and computer science.
Mallik, U., Clapp, M., Choi, E., Cauwenberghs, G., & Cummings, R. E. (2005). Temporal change threshold detection imager. In IEEE international digest of technical

papers, solid-state circuits conference (pp. 362–364).
Q27Maqueda, A., Loquercio, A., Gallego, G., Garcia, N., & Scaramuzza, D. (2018). Event-based vision meets deep learning on steering prediction for self-driving cars.

CVPR.
Milford, M., & George, A. (2014). Featureless visual processing for slam in changing outdoor environments (pp. 569–583). Berlin, Heidelberg: Field and Service

Robotics, Springer.
Milford, M., Kim, H., Leutenegger, S., & Davison, A. (2015). Towards visual slam with event-based cameras. In The problem of mobile sensors workshop in conjunc-

tion with RSS.
Milford, M., & Wyeth, G. (2012). Visual route-based navigation for sunny summer days and stormy winter nights. In IEEE international conference on robotics and

automation.
Mitrokhin, A., Fermuller, C., Parameshwara, C., & Aloimonos, Y. (2018). Event-based moving object detection and tracking. arXiv preprint arXiv:1803.04523. Q28

Q29Moeys, D. P., Neil, D., Corradi, F., Kerr, E., Vance, P., et al. (2016). Pred18: Dataset and further experiments with Davis event camera in predator-prey robot chasing.
EBCCSP. Q30

Mueggler, E., Bartolozzi, C., & Scaramuzza, D. (2017). Fast event-based corner detection. In Proceedings of the British machine vision conference.
Mueggler, E., Forster, C., Baumli, N., Gallego, G., & Scaramuzza, D. (2015). Lifetime estimation of events from dynamic vision sensors. In IEEE international confer-

ence on robotics and automation (ICRA).
Q31Mueggler, E., Gallego, G., Rebecq, H., & Scaramuzza, D. (2018). Continuous-time visual-inertial odometry for event cameras. IEEE Transactions on Robotics, 1–16.

Mueggler, E., Gallego, G., & Scaramuzza, D. (2015). Continuous-time trajectory estimation for event-based vision sensors. In Robotics: Science and systems XI (RSS).
Mueggler, E., Huber, B., & Scaramuzza, D. (2014). Event-based, 6-dof pose tracking for high-speed maneuvers. In IEEE/RSJ international conference on intelligent

robots and systems (IROS) (pp. 2761–2768).
Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., & Scaramuzza, D. (2017). The event-camera dataset and simulator: Event-based data for pose estimation, visual

odometry, and slam. International Journal of Robotics Research, 36, 142–149.
Neil, D., Pfeiffer, M., & Liu, S. (2016). Learning to be efficient: Algorithms for training low-latency, low-compute deep spiking neural networks. In Proceedings of the

31st annual ACM symposium on applied computing.
Newcombe, R., Lovegrove, S., & Davison, A. (2011). Dtam: Dense tracking and mapping in real-time. In International conference on computer vision (ICCV)

(pp. 2320–2327).
Nguyen, A., ThanhToan, D., Darwin, G., & Nikos, G. (2017). Real-time pose estimation for event cameras with stacked spatial lstm networks. arXiv preprint arXiv:

1708.09011. Q32

Ni, Z., Ieng, S., Posch, C., Regnier, S., & Benosman, R. (2015). Visual tracking using neuromorphic asynchronous event-based cameras. Neural Computation, 27(4),
925–953.

Ni, Z., Pacoret, C., Benosman, R., Leng, S., & Regnier, S. (2012). Asynchronous event-based high speed vision for microparticle tracking. Journal of Microscopy, 245
(3), 236–244.

Orchard, G. (2015). Hfirst: A temporal approach to object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(10), 2028–2040.
Q33Orchard, G., Jayawant, A., Cohen, G. K., & Thakor, N. (2015). Converting static image datasets to spiking neuromorphic datasets using saccades. Frontiers in

Neuroscience.
Perez-Carrasco, J., Zhao, B., Serrano, C., Acha, B., SerranoGotarredona, T., Chen, S., & Linares-Barranco, B. (2013). Mapping from frame- driven to frame-free event-

driven vision systems by low-rate rate coding and coincidence processing-application to feedforward convnets. Pattern Analysis and Machine Intelligence, 35(11),
2706–2719.

Perez-Carrasco, J. A., Zhao, B., Serrano, C., & Chen, S. (2013, Nov). Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and
coincidence processing application to feedforward convnets. IEEE Transaction on Pattern Analysis and Machine Intelligence, 35(11), 2706–2719.

Piatkowska, E., Belbachir, A., Schraml, S., & Gelautz, M. (2012). Spatiotemporal multiple persons tracking using dynamic vision sensor. In IEEE conference on com-
puter vision and pattern recognition (pp. 35–40).

Pizzoli, M., Forster, C., & Scaramuzza, D. (2014). Remode: Probabilistic monocular dense reconstruction in real time. In IEEE international conference on robotics
and automation (ICRA).

Posch, C., Hoffstaetter, M., & Schoen, P. (2010). A sparc-compatible general purpose address-event processor with 20-bit 10ns-resolution asynchronous sensor data
interface in 0.18um cmos. In IEEE international symposium on circuits and systems (ISCAS).

Posch, C., Matolin, D., & Wohlgenannt, R. (2011). A qvga 143 db dynamic range frame free pwm image sensor with lossless pixel-level video compression and time
domain cds. IEEE Journal of Solid-State Circuits, 46(1), 259–275.

Q34Posch, C., Matolin, D., Wohlgenannt, R., Maier, T., & Litzenberger, M. (2009). A microbolometer asynchronous dynamic vision sensor for lwir. IEEE Sensors Jour-
nal, 9.

Q35Rebecq, H., Gallego, G., & Scaramuzza, D. (2016). Emvs: Event-based multi-view stereo. BMVC.
Q36Rebecq, H., Horstschaefer, T., Gallego, G., & Scaramuzza, D. (2017). Evo: A geometric approach to event-based 6-dof parallel tracking and mapping in real-time. IEEE

Robotics and Automation Letters (RA-L), 593–600.
Rebecq, H., Horstschaefer, T., & Scaramuzza, D. (2017). Real-time visual-inertial odometry for event cameras using keyframe-based nonlinear optimization. In British

machine vision conference (BMVC).
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition (pp. 779–788).
Reinbacher, C., Graber, G., & Pock, T. (2016). Real time intensity-image reconstruction for event cameras using manifold regularisation. In British machine vision con-

ference (BMVC).
Reinbacher, C., Munda, G., & Pock, T. (2017a). Real-time panoramic tracking for event cameras. arXiv preprint arXiv:1703.05161. Q37

Reinbacher, C., Munda, G., & Pock, T. (2017b). Real-time panoramic tracking for event cameras. In International conference on computational photography.
Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. In European Conference on Computer Vision (ECCV) (pp. 430–443).

Q38Rueckauer, B., & Delbruck, T. (2015). Evaluation of algorithms for normal optical flow from dynamic vision sensors. Frontiers in Neuroscience.
Q39Rueckauer, B., & Delbruck, T. (2016). Evaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensor. FNINS.

Ruedi, P. F., Heim, P., Gyger, S., Kaess, F., Arm, C., et al. (2009). An soc combining a 132db qvga pixel array and a 32b dsp/mcu processor for vision applications. In
IEEE international solid-state circuits conference (pp. 47–48). Q40

LAKSHMI ET AL. 33 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Inserted Text
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5419-5427).

user
Inserted Text
vol: 99

user
Sticky Note
Cancelled set by user

user
Textbox

Schraml, S., & Belbachir, A. (2010). A spatio-temporal clustering method using real-time motion analysis on event-based 3D vision. In IEEE conference on computer
vision and pattern recognition.

Q41SerranoGotarredona, T., & Linares-Barranco, B. (2015). Poker-dvs and mnist-dvs. Their history, how they were made, and other details. Frontiers Neuroscience, 9.
Q42Simard, P., Steinkraus, D., & Platt, J. C. (2003). Best practices for convolutional neural networks applied to visual document analysis. In Seventh international confer-

ence on document Analysis and recognition, 2003. Proceedings (pp. 958–963).
Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., & Benosman, R. (2018a). HATS: Histograms of averaged time surfaces for robust event-based object classification.

CoRR, abs/1803.07913. Retrieved from http://arxiv.org/abs/1803.07913
Q43Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., & Benosman, R. (2018b). Hats: Histograms of averaged time surfaces for robust event-based object classification.

In IEEE conference computer vision and pattern recognition (CVPR).
Q44Son, B., Suh, Y., et al. (2017). A 640 480 dynamic vision sensor with a 9m pixel and 300meps address-event representation. In IEEE international solid-state circuits

conference (ISSCC) (pp. 66–67). Q45

Q46Source Code for Event Lifetime. (2017). https://github.com/uzh-rpg/rpg_event_lifetime
Source Code for Image Reconstruction. (2017a). https://github.com/uzh-rpg/rpg_image_reconstruction_from_events
Source Code for Image Reconstruction. (2017b). https://github.com/VLOGroup/dvs-reconstruction
Source Code for Localization. (2016). https://github.com/VLOGroup/dvs-panotracking
Source Code for Object Recognition. (2016). http://www.garrickorchard.com/code
Source Code for Optical Flow. (2017a). https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/LocalPlanesFlow.

java
Source Code for Optical Flow. (2017b). https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/

Q47Stromatias, E., Soto, M., SerranoGotarredona, T., & LinaresBarranco, B. (2017). An event-driven classifier for spiking neural networks fed with synthetic or dynamic
vision sensor data. Frontiers in Neuroscience.

Q48Tedaldi, D., Gallego, G., Mueggler, E., & Scaramuzza, D. (2016). Feature detection and tracking with the dynamic and active-pixel vision sensor (Davis). In IEEE inter-
national conference on event-based control, communication, and signal processing (EBCCSP).

Q49Tumblin, J., Agrawal, A., & Raskar, R. (2005). Why I want a gradient camera. In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR).

Valeiras, D., Lagorce, X., Clady, X., Bartolozzi, C., Ieng, S., & Benosman, R. (2015). An asynchronous neuromorphic event-driven visual part-based shape tracking.
IEEE Transactions on Neural Networks and Learning Systems, 26(12), 3045–3059.

Q50Vasco, V., Glover, A., & Bartolozzi, C. (2016). Fast event-based Harris corner detection exploiting the advantages of event-driven cameras. Intelligent Robots and Sys-
tems (IROS).

Q51Vasco, V., Glover, A., Mueggler, E., Scaramuzza, D., Natale, L., & Bartolozzi, C. (2017). Independent motion detection with event-driven cameras. In International
conference on advanced robotics (ICAR) (pp. 530–536).

Vidal, A., Rebecq, H., Horstschaefer, T., & Scaramuzza, D. (2018). Ultimate slam? Combining events, images, and imu for robust visual slam in hdr and high speed
scenarios. IEEE Robotics and Automation Letters, 3(2), 994–1001.

Q52Weikersdorfer, D., Adrian, D., Cremers, D., & Conradt, J. (2014a). Event-based 3D slam with a depth-augmented dynamic vision sensor. In IEEE international confer-
ence on robotics and automation (ICRA).

Q53Weikersdorfer, D., Adrian, D. B., Cremers, D., & Conradt, J. (2014b). Event-based 3d slam with a depth-augmented dynamic vision sensor. In International conference
on robotics and automation.

Q54Weikersdorfer, D., & Conradt, J. (2012). Event-based particle filtering for robot self-localization. In IEEE international conference on robotics biomimetics
(pp. 866–870).

Q55Weikersdorfer, D., Hoffmann, R., & Conradt, J. (2013). Simultaneous localization and mapping for event-based vision systems. In International conference computer
vision systems (ICVS) (pp. 133–142).

Yang, M., Liu, S. C., & Delbruck, T. (2015). A dynamic vision sensor with 1asynchronous delta modulator for event encoding. IEEE Journal of Solid-State Circuits,
50, 2149–2160.

Q56Zhu, A., Daniilidis, K., & Atanasov, N. (2017). Event-based visual inertial odometry. In IEEE conference computer vision and pattern recognition (CVPR)
(pp. 5816–5824).

Q57Zhu, A., Thakur, D., Ozaslan, T., Pfrommer, B., Kumar, V., & Daniilidis, K. (2018). The multi vehicle stereo event camera dataset: An event camera dataset for 3d per-
ception. IEEE Robotics and Automation Letters.

How to cite this article: Lakshmi A, Chakraborty A, Thakur CS. Neuromorphic vision: Sensors to event-based algo-
rithms. WIREs Data Mining Knowl Discov. 2019;e1310. https://doi.org/10.1002/widm.1310

34 of 34 LAKSHMI ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

user
Textbox

http://arxiv.org/abs/1803.07913
https://github.com/uzh-rpg/rpg_event_lifetime
https://github.com/uzh-rpg/rpg_image_reconstruction_from_events
https://github.com/VLOGroup/dvs-reconstruction
https://github.com/VLOGroup/dvs-panotracking
http://www.garrickorchard.com/code
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/LocalPlanesFlow.java
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/LocalPlanesFlow.java
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/
https://doi.org/10.1002/widm.1310

