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Abstract—Computing and attending to salient regions of a
visual scene is an innate and necessary preprocessing step
for both biological and engineered systems performing high-
level visual tasks including object detection, tracking, and clas-
sification. Computational bandwidth and speed are improved
by preferentially devoting computational resources to salient
regions of the visual field. The human brain computes saliency
effortlessly, but modeling this task in engineered systems is
challenging. We first present a neuromorphic dynamic saliency
model, which is bottom-up, feed-forward, and based on the notion
of proto-objects with neurophysiological spatio-temporal features
requiring no training. Our neuromorphic model outperforms
state-of-the-art dynamic visual saliency models in predicting
human eye fixations (i.e., ground truth saliency). Secondly, we
present a hybrid FPGA implementation of the model for real-time
applications, capable of processing 112×84 resolution frames at
18.71 Hz running at a 100 MHz clock rate — a 23.77× speedup
from the software implementation. Additionally, our fixed-point
model of the FPGA implementation yields comparable results to
the software implementation.

Index Terms—Saliency, Dynamic, Motion, FPGA, Real-time,
Proto-object

I. INTRODUCTION

THe ability to attend to salient regions of a visual scene
is a critical preprocessing step for both biological and

engineered systems. In the human visual system (HVS), each
optic nerve transmits input from retinal ganglion cells to the
brain in the form of spikes, otherwise referred to as action
potentials [1]. The rate at which these cells transmit neural
information is equivalent to the brain receiving ∼ 100 Mbps
of spatial and temporal visual input per eye [2]. Processing this
overwhelming amount of data in parallel, and in real-time, is
impossible for any human brain. To overcome this complex-
ity, the HVS instead utilizes selective attention and attends
preferentially to the most salient regions of the visual field.
Psychophysical and neurophysiological evidence supports the
existence of a retinotopic saliency map computed within the
HVS [3]–[6].
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Visual saliency also serves as an aid in the field of computer
vision. It is a vital initial processing step for engineered
systems designed to perform high-level visual tasks in real-
time including, but not limited to, navigation and localization,
object detection, classification, tracking, image/video com-
pression, surveillance and security, and action recognition.
It enables data triaging by detecting and transmitting only
relevant data to subsequent layers of processing. This frees
up computational resources required for high-level tasks and
reduces data dimensionality and processing latency [7]–[9].

We present a novel neuromorphic model of dynamic visual
saliency, which takes into account the temporal dynamics of
the scene, inspired by the HVS. By doing so, we further bridge
the gap between biological systems and engineered systems,
resulting in an improved model of dynamic visual saliency for
predicting human eye fixations.

There are two components of visual attention, bottom-
up and top-down. Top-down attention is a function of the
viewer’s biases based on their internal state and goals and is
not considered in this study. We focus instead on bottom-up
attention, which is a function only of the inherent properties of
the visual stimulus itself and often referred to as saliency. An
early, purely functional (not computational) model of visual
saliency by Koch and Ullman [10] was feature-based. This
lead to the development of arguably the most influential early
model of feature-based visual attention by Itti, Koch and
Niebur [11].

Going beyond feature-based models, more recent object-
based saliency models are supported by Gestalt pyschology.
They are based on the idea that scenes are represented and
manipulated not in terms of elementary features, but in terms
of perceptual objects — both static and dynamic [12]–[20].
One hypothesis explaining object-based attention is Rensink’s
coherence theory [21]. It states that elementary features are
organized in low-level “proto-objects”, which are formed
rapidly and in parallel across the visual field. These proto-
objects are pre-attentive structures with limited spatial and
temporal coherence. Focused attention is required to stabilize
them, which is possible only for a small number of proto-
objects. This generates the perception of an object with a
much higher degree of coherence over space and time (these
ideas were foreshadowed by Treisman’s Feature Integration
Theory of Attention [22]). Once attention is released, the
object dissolves back to its dynamic proto-object state [21].

In this study, we develop a proto-object based, bottom-up,
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computational saliency model based on the intrinsic properties
of visual stimuli and the neuronal dynamics at early stages
of HVS processing. In addition to static features, motion is
an important signal for the computation of saliency, both in
biology and in our model. In prior, preliminary work [23], [24],
we investigated multiple methods for integrating motion, uti-
lizing a smaller video dataset. However, in this work, we have
determined a more accurate and biologically plausible method
for integrating temporal features for computing dynamic visual
saliency, which considers motion exhibited within the scene.
Additionally, we validate the model by utilizing a complete
video dataset. Finally, in this work, we describe a novel hybrid
FPGA implementation for real-time applications.

The structure of our model is based on the proto-object
based model by Russell et al. [14] – a bottom-up, feed-forward
computational model of visual saliency that computes saliency
as a function of figure-ground relationships attained via the
notion of proto-objects. Although biologically plausible and
capable of predicting human eye fixations on static scenes
better than other state-of-the-art (SOTA) saliency models, the
Russell et al. model did not take into account the temporal
characteristics of visual stimuli. Taking this into account is
critical, given motion is the most significant contributor when
computing visual saliency [25].

An additional contribution of the present study is that it
goes beyond previous work in which visual saliency was
computed in software. Except in very simple cases, software
models do not allow for real-time, real-world applications.
Therefore, we present a hybrid Field Programmable Gate
Array (FPGA) implementation of the model, which offloads
the most computationally expensive components of the model
onto an FPGA to speed up processing. The main innovative
contributions of this work are thus as follows:

1) We present a neuromorphic, dynamic visual saliency
model, which takes into account motion in the visual
scene. Motion is integrated into the proto-object based
visual saliency model in a biologically plausible manner
that is sufficient for computing bottom-up visual saliency
on videos (i.e., dynamic scenes). This model is based
solely on neurophysiological properties of the HVS, thus
parameters are fixed and no training is required. This
is an immense advantage over conventional machine
learning based models, which require computationally
demanding training procedures and suffer in the case
of data unavailability. Training deep neural networks,
with hundreds of thousands of parameters is also very
costly, in terms of time, energy and other resources, and
may soon be constrained by very severe economical and
ecological limitations [26]. In addition, these models
are subject to problems due to overfitting and lack of
generalization, and they are sensitive to spurious inputs,
as in adversarial attacks [27]. None of these constraints
apply to our model, and, in addition, it outperforms other
SOTA dynamic saliency models in computing saliency
such that human eye fixations are considered ground
truth.

2) We introduce a novel hybrid hardware implementation of
this dynamic proto-object based visual saliency model on
an FPGA, making possible the real-time processing that
we seek. While inexpensive computation is performed
in software, the computationally expensive components
of the model are implemented on an FPGA to speed
up processing, taking us closer to an end-to-end FPGA
implementation. The system is capable of predicting
human eye fixations on both static and dynamic visual
stimuli, at frame rates that are acceptable for real world
settings.

II. RELATED WORK

A. SOTA Dynamic Visual Saliency Models

Many current models of visual saliency, both object-based
and feature-based, compute saliency only on static visual stim-
uli and do not consider motion that may exist within the visual
scene. To validate these saliency models, datasets of static
images with corresponding human eye fixation data are used
to quantify the extent to which the saliency model predicts
eye fixations. However, the world is dynamic and constantly
changing. Motion is a naturally occurring phenomenon that
plays an important role in both human and computer visual
processing, and specifically, in visual attention. For human
observers, it has been shown that given a dynamic visual stim-
ulus, motion plays a more significant role in visual saliency
than other low-level features [25]. Thus, it is important to
consider the temporal dynamics of the visual stimuli when
computing visual saliency. More recently, saliency models
have been implemented that do consider motion when com-
puting a dynamic saliency map.

Rosenholtz [28] introduced a dynamic saliency model,
which interprets saliency as an outlier to a statistical dis-
tribution of motion features. Similarly, Gao et al. [29] de-
veloped a model, which considers motion using biologically
plausible spatio-temporal Gabor filters and computes the
Kullback Leibler divergence between distributions of pixel
feature responses from the pixel’s local region. Seo et al. [30]
proposed a self-resemblance method for computing saliency
using statistics to measure likelihood of saliency at a given
pixel relative to its local neighborhood. Itti and Baldi [31],
[32] introduced a saliency model, which considers motion as
an additional feature using Bayesian surprise. This model is
also based on statistics and uses Bayes’ theorem to statistically
compute how much a new observation differs from its prior.
Zhang et al. [33] computed saliency on dynamic scenes by
computing dynamic saliency based on statistics and requires
learning the probability distribution for each spatio-temporal
feature. Fang et al. [34] proposed a novel algorithm, which
computed saliency on video based on both spatial and temporal
cues using an adaptive entropy-based uncertainty weighting
approach.

Itti et al. [32] extended their original model to include two
additional feature channels: flicker (onset/offset) and motion
channels (the onset/offset channel was already included in an
earlier model by Niebur and Koch [35]). Harel et al. [36] refor-
mulated this Itti et al. method from a graph-based perspective.
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In its original state, this model did not consider motion.
However, its software implementation included the option for
a motion channel [37]. Nonetheless, this graph-based approach
is less biologically plausible in its computation. Other feature-
based dynamic saliency models which consider motion include
[38]–[42].

More recent feature-based models are built on machine
learning-based designed to take into account compute dynamic
saliency [43]–[47]. However, these learning methods require
computationally expensive and time-consuming training steps
(e.g. backpropagation), large amounts of training data [46],
and may not be biologically plausible in their computations.

Our neuromorphic, bottom-up, object-based, dynamic visual
saliency model is based on the notion of proto-objects using
spatial and temporal filters analogous to neuronal receptive
fields of visual processing. There is no training data nor
learning required for this model as it utilizes parameters
extracted from neurophysiological evidence. It does so by
incorporating temporal filters based on receptive fields derived
from simple cell activity observed in visual cortex V1 in
the parvoceullar and magnocellular pathways of the HVS.
Therefore, no computationally expensive parameter learning
is required, making this model immediately applicable to new
environments.

B. SOTA FPGA-based, Real-time Saliency Models

Considering the computational complexity of this model, we
accelerate the computation of the dynamic visual saliency map
using a hybrid FPGA implementation. This allows for real-
time processing of a reliable, biologically plausible dynamic
visual saliency model that is capable of predicting human eye
fixations better than other SOTA models.

All of the visual saliency models previously discussed
were implemented in software and run on CPUs for proof-
of-concept. More recently, there has been increasing interest
in implementing visual saliency models on FPGAs for real-
time, low-power processing. Bouganis et al. [48] accelerated
a saliency model proposed by Li et al. [49], which operated
on the gray-scale of a single image only and utilized neuron
models tuned to specific orientation and spatial locations.
The differential equations used to model these neurons for
computing saliency are computationally demanding, and there-
fore, the array of neurons with their associated dynamics was
implemented on FPGA. Using the parallel architecture of the
FPGA demonstrated a speedup of more than 10×.

Kestur et al. [50] utilized FPGA to implement a library for
saliency computation based on the Itti et al. (1998) model
[11]. This FPGA-based accelerator is called Streaming Hard-
ware Accelerator with Run-time Configurability (SHARC) and
showed 5× speedup compared to the software version of the
saliency model on 256 × 256 images. Akselrod et al. [51]
utilized their NeuFlow platform of implementing a simplified
Itti et al. saliency model showing a 4× speedup on 480× 480
images in comparison to a software implementation. Motion
was also incorporated into the model. Kim et al. [52] also
implemented the model on FPGA, simplifying the normal-
ization operation for FPGA. Their implementation interfaces

with a silicon retina chip and extracts various features on
128×128 images. They were able to show a speedup of more
than 2.5× and power reduction of more than 32× by using
the FPGA implementation. Moradhasel et al. [53] designed an
FPGA based saliency model and showed computation speeds
of 50 million pixels per second. Similarly to the Akselrod
et al. [51] implementation, they also considered motion in
this model. It showed a 2× speedup over SOTA models at
that time. Most recently, Barranco et al. [54] developed a
simplified, yet more complete FPGA implementation of the
saliency model incorporating motion as well as winner-take-
all and inhibition of return. It also has a top-down component,
which modulates the final saliency map as a function of optical
flow and depth. This model outperformed all previous models
with respect to speed as it computed saliency maps at 180
fps for 640 × 480 resolution. Finally, other saliency models
have been implemented on FPGA including the work of Bae
et al. [55] where the AIM (Attention based on Information
Maximization) algorithm by Bruce et al. [56] was implemented
on an FPGA platform for real-time processing capable of 4
million pixels per second.

The FPGA implementations of saliency models discussed
demonstrate the advantages that FPGA implementations have
over purely software implementations with regard to process-
ing speed. However, all of these models implemented on
hardware are purely feature-based and do not compute saliency
as a function of objects. The hybrid FPGA implementation
presented here is, to our knowledge, the first proto-object
based model running in real-time by utilizing a low size,
weight, and power (low SWaP) hardware accelerator platform.
This brings us closer to an end-to-end low SWaP proto-object
based dynamic saliency model for real-world applications. By
implementing our proto-object based model in hardware, we
achieve speedup in processing as well as accurate saliency
computation.

III. OUR NEUROMORPHIC MODEL OF DYNAMIC
SALIENCY

We name our neuromorphic model of dynamic vi-
sual saliency PODVS (Proto-Object Based Dynamic Visual
Saliency). It utilizes the idea of separable space-time filters
for incorporating motion. This biologically plausible model
is based on the idea that simple cells in the magnocellu-
lar and parvocellular pathways act as spatio-temporal filters.
They not only extract spatial information preattentively, but
also temporal information. Spatially, information is extracted
within grayscale and color-opponency versions of the in-
coming frame, as well as edge and center-surround spatial
filtering. Strongly phasic and weakly phasic temporal filtering
is applied within the various channels in order to extract
dynamic features. This model utilizes the ideas of the original
proto-object based visual saliency model by Russell et al. [14],
however, now extracts both temporal and spatial information
for computing saliency on dynamic visual stimuli. This allows
for computing saliency in videos by considering motion that
may exist within the scene. A block diagram of the model can
be seen in Figure 2. The code is also publicly available [57].
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A. Proto-Object Based Saliency Model for Static Images

Our model is inspired by the original model of proto-
object based saliency by Russell et al. [14] for static images.
Therefore, it is important to discuss this original model prior to
discussing our saliency model for dynamic visual stimuli (i.e.
video). The Russell et al. model is an object-based, bottom-up,
feed-forward model of visual saliency. It is based on the notion
of proto-objects, which may exist within the visual field. The
model outperformed other SOTA models [11], [36] of visual
saliency on predicting human eye fixations on a dataset of
static images of natural scenes. The model works as follows:
It receives an RGB (Red, Green, Blue) color image (resolution
of 640 × 480) and decomposes this image into three feature
channels: intensity, color, and orientation. Within each of these
feature channels are sub-channels. The intensity channel has
one sub-channel. The color channel has four sub-channels:
red-green opponency, green-red opponency, blue-yellow op-
ponency, and yellow-blue opponency. The orientation channel
also has four sub-channels (four orientations): 0◦, 45◦, 90◦,
and 135◦. This results in a total of 9 feature channels. Once
the original color image is decomposed into these 9 channels,
within each channel, the feature map is successively down-
sampled in steps of

√
2 to form an image pyramid spanning

five octaves. Proto-object activity is then computed within
each channel and at each level of the pyramid, independently.
Proto-object activity gives rise to saliency with respect to
figure-ground relationship within the visual scene. The proto-
objects are computed using a grouping mechanism consisting
of edge and center-surround operators working together to
compute border ownership activity. Neurons encoding border
ownership (one-sided assignment of a border to a region
perceived as a figure) have been discovered in early stages
of visual processing, predominantly in visual cortex V2, by
Zhou et al. [58]. This border ownership activity is integrated
in a circular fashion to reveal grouping activity. More details
on this grouping mechanism can be found in Ref. [14]. A
normalization operation, N1, is then applied to each grouping
activity map to enhance maps with single proto-objects and
suppress maps with multiple proto-objects. This normalization
operator, N1, works as follows:

1) The maximum, m, of the map being normalized is
determined.

2) The average of the other local maxima, m̄, is determined.
3) Finally, there is a global, element-wise multiplication of

the map by (m− m̄)2.
This normalization, N1, is a function of the grouping activity
such that grouping activity with few proto-objects is promoted
while grouping activity of maps with multiple proto-objects is
suppressed. Following this normalization, a similar computa-
tion to that in the Itti et al. (1998) model [11] is performed.
The image pyramids within each channel are collapsed by
scaling each level to a common level and summing. This
results in a single conspicuity map within each channel.
These 9 conspicuity maps are then normalized using a second
normalization operator, N2. The normalization operator, N2,
works as follows:

1) The map is normalized to the range [0, ...,M ].

2) The maximum, m, of the map being normalized is
determined.

3) The average of the other local maxima, m̄, is determined.
4) Finally, there is a global, element-wise multiplication of

the map by (m− m̄)2.
The only difference in this normalization, N2, is the addi-
tional first step of normalizing each map to a common range
[0, ...,M ]. This step is necessary for allowing invariance to
modality (feature). This globally enhances conspicuity maps
with few strong peak responses and globally suppresses maps
with many comparable peak responses. Finally, these normal-
ized conspicuity maps are linearly summed to form the final
saliency map.

B. Motion Processing in the Human Visual System
We seek to represent motion in our model in a biologically

plausible manner. This model is purely bottom-up and feed-
forward. Henceforth, we focus on how motion is computed
at early stages of visual processing, and further, preattentive
visual processing. Neurophysiological research has shown that
motion extraction occurs along the dorsal pathway beginning
in V1 and proceeds to middle temporal area (MT) and then
continues to the medial superior temporal area (MST) [59].
Motion extraction in V1 can be represented by local spatio-
temporal filters and shows preference to spatial frequency,
spatial phase, spatial orientation, and direction of motion. Later
stages of motion are responsible for computing velocity and
optical flow. This motion processing requires attention [60].
However, we are interested in representing preattentive motion,
and therefore, consider motion extraction in V1 only.

It should be noted that we are concerned with the receptive
fields of non-direction selective simple cells. As previously
noted, there are two pathways within the visual system: the
magnocellular and parvocellular pathways [59]. Each of these
pathways has a select population of retinal ganglion cells,
which project to the LGN (Lateral Geniculate Nucleus), and
further to primary visual cortical cells. Strongly phasic simple
cells exist within the magnocellular pathway, they have high
temporal resolution, high contrast sensitivity and low color
sensitivity. Cells in the parvocellular pathway are weakly pha-
sic and have low contrast sensitivity and high color sensitivity
but low temporal resolution. Strongly phasic cells typically
have a strong excitatory phase followed by a strong inhibitory
phase. Weakly phasic cells typically have a less pronounced
excitatory phase followed by a weak inhibitory phase, resulting
in a weaker response to motion. Approximately 20-25 percent
of the population of non-direction selective simple cells in V1
are strongly phasic. The remaining are weakly phasic. The
temporal filters used in the models to be discussed are modeled
to fit the receptive fields of these strongly and weakly phasic
cells found in the primary visual cortex [59], [61].

1) Biologically Plausible Temporal Filters: The work of
Parkhurst [62] and De Valois et al. [59] was used to model
the transfer function for a biologically plausible temporal filter
modeling the temporal receptive field of strongly phasic and
weakly phasic, non-direction selective simple cells in V1. The
approximation of the transfer function of the V1 simple cell
temporal receptive field can be seen in Equation 1.
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Fig. 1. Plots A and B show the temporal profile (blue line) of a strongly
phasic and weakly phasic filter, respectively. Plots C, D, E, and F, show the
filter response (blue line) to a stimulus (red line). Plots C and D show the
filter response to an abrupt then constant stimulus. Plots E and F show the
filter response to flicker motion (continuous onset/offset change). Strongly
phasic filters are more sensitive to temporal change. I is the ratio of the peak
positive to the peak negative amplitude of the filter, hence, representing the
degree to which the filter is strongly phasic. Image derived from Ref. [62].

r(t) = α(t− τ − δ)eβ(t−τ)
2

(1)

• r(t) - continuous-time filter
• α - response amplitude parameter
• β - response amplitude parameter
• τ - time shift parameter
• δ - determines degree to which weakly or strongly phasic

in time
These parameters were fit to model the temporal response

profile of strongly phasic and weakly phasic cells in V1 from
neurophysiological recordings [62]. These parameter values
can be seen in Table I.

TABLE I
PARAMETERS FOR STRONGLY/WEAKLY PHASIC V1 SIMPLE CELL

TEMPORAL RESPONSE

Type α β τ δ

Strongly Phasic -0.00161 -0.00111 86.2 5.6
Weakly Phasic -0.000487 -0.000466 116 20

These temporal profiles for strongly and weakly phasic
simple cell receptive fields are applied in our dynamic model
of proto-object based visual saliency. The methodology in
regards to how they are applied will be discussed in Sec-
tion III-C. A visual representation of the filters can be seen in
Fig. 1. The strongly phasic temporal filter in Fig. 1A, has a
strong positive/excitatory lobe and a strong negative/inhibitory
lobe, hence, is more sensitive to motion. The weakly phasic
temporal filter in Fig. 1B, has a positive/excitatory lobe and
weak negative/inhibitory lobe, and, hence, is less sensitive to
motion. While the y-axis is the filter coefficient, the x-axis is
time (in the past) assuming a rate of 24 frames per second for
the incoming input image sequence.

Fig. 1 shows the response to various types of stimuli. The
value of I is the ratio of the peak positive amplitude to the
peak negative amplitude of the temporal filter, representing
the degree to which the filter is strongly phasic. Hence, the
strongly phasic filter has a larger value for I (I = 0.625)

and the weakly phasic filter has a smaller value for I (I =
0.250). Fig. 1A and Fig. 1B are the strongly and phasic filters,
respectively. Fig. 1C and Fig. 1D are their responses to an
abrupt onset then constant stimulus. Fig. 1E and Fig. 1F are
their responses to flicker (onset/offset) motion. The strongly
phasic filter clearly has a higher response to temporal changes
in the stimuli.

Because of the finite duration of the filter functions, frames
more than 250 ms in the past do not contribute to saliency.
Components of the visual stimulus that do not change over an
extended amount of time generate a lower temporal response.
Relatedly, these temporal filters have a stronger response to
onset and offset of objects within the scene. These temporal
dynamics are similar to those seen in the model of visual
saliency depicted in Ref. [33], however, their model uses
learning. In the following sections we will discuss how these
temporal filters are utilized within our model, specifically, how
these temporal filters are applied within each feature channel
for computing proto-objects.

C. Extracting Spatio-Temporal Activity
The model receives dynamic visual stimuli (i.e. color video)

as input. This input can be realized as a sequence of images
(RGB video frames). We assume a resolution of 640 × 480
and frame rate of 24 frames per second. For each frame, a
new saliency map is computed as a function of dynamic proto-
objects from spatio-temporal responses within different feature
channels: intensity, color, and orientation.

1) Intensity Channel: Given that simple cells in the mag-
nocellular pathway have high contrast sensitivity, low color
sensitivity, and high sensitivity to motion [59], we apply the
strongly phasic temporal filter in the intensity channel. To
extract the intensity of the current frame, the average of the red
(r), green (g), and blue (b) channel is computed. The temporal
filter is applied on the current frame and previous frames of the
intensity-valued frames. The convolution is applied temporally
across the video frames. The total number of frames in which
the convolution is applied is dependent on the frame rate of
the videos. In our case, our chosen frame rate of 24 Hz results
in a filter convolution over the current frame and five previous
frames. The representation of this discrete convolution can be
seen in Equation 2.

MS [n] = (F ∗RS)[n] =

T∑
t=0

Nr∑
r=1

Nc∑
c=1

Fr,c[n− t]×RS [t] (2)

MS [n] is the strongly phasic temporal output at frame
n. Fr,c[n] is the pixel intensity of the original grayscaled
(intensity version) video at row r and column c at frame
n. RS [t] is the discretized representation of the filter r(t) in
Equation 1 using the strongly phasic parameters in Table I.
Finally, F [n− t] represents the frame at t frames in the past.
T is the total number of frames in the past over which to
perform the convolution. In our case, T = 6. Nr and Nc are
the number of rows and columns, respectively, in each frame.
The output, MS [n] (strongly phasic output) is the input to
the grouping stage within the intensity channel. MS [n] has
dimensions Nr ×Nc.
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Fig. 2. PODVS - Proto-object based Dynamic Visual Saliency. This model utilizes spatial and temporal information of the dynamic scene as input to the
model. The model receives RGB video frames as input. For the intensity channel, motion is extracted using strongly phasic temporal filters (magnocellular
pathway). The output of this response serves as input into the grouping stage for computing dynamic, pre-attentive proto-objects in the intensity channel. In
the color channels, weakly phasic temporal filters (parvocellular pathway) are used, which are less sensitive to motion and retain more static regions of the
scene. The output of this spatio-temporal response serves as input to the grouping stage within the color channel. No motion is extracted within the orientation
channel, therefore, static information is preserved.

2) Color Channel: Given that simple cells in the par-
vocellular pathway have low contrast sensitivity, high color
sensitivity, and are less sensitive to motion, the weakly pha-
sic temporal filter is applied within this channel. The same
convolution is performed on the video sequence for the red,
green, and blue channels. However, in this case, the discretized
weakly phasic filter is applied, and henceforth, RW [t] is
modeled by Equation 1 using the weakly phasic parameters
in Table I. The weakly phasic motion response can be seen
in Equation 3. The only difference between Equation 2 and
Equation 3 is the temporal filter used.

MW [n] = (F ∗RW )[n] =

T∑
t=0

Nr∑
r=1

Nc∑
c=1

Fr,c[n−t]×RW [t] (3)

The output, MW [n] (weakly phasic output), is the input to
that of the color channel. MW [n] has dimensions Nr×Nc×3.
The RGB output after applying this weakly phasic temporal
filter within each channel is used as input to the color subchan-
nels. The color channel is made up of four subchannels. These
are red-green opponency (RG), green-red opponency (GR,
blue-yellow opponency (BY ), and yellow-blue opponency
(Y B). These features are extracted by decoupling hue from
intensity by normalizing each color channel by intensity. These
four separable spatio-temporal filtered outputs (RG, GR, BY ,
Y B) are used as input to the grouping stage of the color
channel.

3) Orientation Channel - Spatial Content Only: Within the
orientation channel, there is no temporal filtering. Extraction
of temporal information within the intensity channel and
color channel is sufficient. Furthermore, this helps to preserve
static information with regards to saliency. In the orientation
channel, there are four subchannels. Within each channel,
saliency is computed in regards to salient objects with respect

to a unique orientation. These four subchannels are O0, Oπ
4

,
Oπ

2
, and O 3π

4
where 0, π

4 , π
2 , and 3π

4 correspond to the
four unique orientations. For each of these subchannels, the
grayscaled, intensity version of the current frame is the input
to the grouping stage.

D. Grouping Mechanism and Normalization

The spatio-temporal responses of each of these feature
channels are fed as input to the grouping stage of the model.
The grouping mechanism is that used in Ref. [14]. It utilizes
computational methods inspired by Craft et al. [63]. The
grouping processing flow can be described in the following
processing steps, P1 to P7, as listed below:

a) P1: Extract Spatio-Temporal Activity
b) P2: Generate Frame Pyramid
c) P3: Complex Edge and Center-Surround Filtering
d) P4: von Mises Filtering
e) P5: von Mises Summation
f) P6: Border Ownership Responses
g) P7: Grouping Responses

1) P1 - Extract Spatio-Temporal Activity: The spatio-
temporal responses are extracted using the methods previously
described. Within the intensity channgel, the strongly pha-
sic temporal activity extracted from the grayscale frame is
computed. Within the color channel, weakly phasic temporal
activity of the color opponency response for each subchannel
(RG, GR, Y B, and BY ) is computed. Finally, within each
orientation subchannel, the grayscale frame is used. This
initial step results in 9 derivations of the original frame,
representative of the spatio-temporal activity extracted within
each of the 9 subchannels.
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2) P2 - Generate Frame Pyramid: To achieve scale-
invariance, within each of the 9 subchannels channels, the
spatio-temporal responses are successively down-sampled in
steps of

√
2 to form an image pyramid spanning five octaves

(10 pyramid levels). The grouping mechanism step is then
performed independently within each subchannel. Addition-
ally, for initial stages of the grouping mechanism, processing
occurs independently within each level of each pyramid.

3) P3 - Complex Edge and Center-Surround Filtering: The
first stage of this mechanism is extraction of object edges,
similarly to the receptive field of simple cells in V1. Both
odd and even edge responses are combined to form complex
cell responses. These complex cells are contrast-invariant edge
responses, which directly excite left or right side preferred
border ownership neurons. Even and odd Gabor kernels of size
19×19 are used. In order to extract information regarding the
existence of objects, a center surround operation is performed.
This is similar to the receptive field of neurons found within
the retina and LGN – both ON- and OFF-center receptive
fields. This is necessary for detecting dark objects on light
backgrounds as well as light objects on dark backgrounds.
Difference of Gaussians kernels of size 19 × 19 are used to
for the center-surround filtering. Each filtering operation can
be seen as a weighted sum between the kernel and image patch
at pixel location (x,y).

4) P4 - von Mises Filtering: To compute border own-
ership responses, the complex cell response is modulated
by the center-surround cell responses. Excitation from the
center-surround response coding for figure on the border
ownership cells preferred side increases border ownership
activity. Center-surround activity on the non-preferred side in-
hibits/suppresses border-ownership activity. To extract border
ownership responses, von Mises filtering is performed using
kernels of size 13 × 13. This operation must be performed
for both left- and right-sided responses, 4 orientations, and
ON- and OFF- center-surround responses resulting in 16
convolutions on each frame of each pyramid level.

5) P5 - von Mises Summation: The von Mises summation
step is computed for each pyramid level of each von Mises
response from step P4. This process involves, for each level
k, scaling up each lower level frame s in the pyramid (s ≤ k)
and accumulating the result. This results in a new pyramid
of border ownership responses for both left- and right-sided
responses, 4 orientations, and light and dark object activ-
ity. These responses are defined as BkLight,L[θ], BkLight,R[θ],
BkDark,L[θ], and BkDark,R[θ]. The parameter k is the pyramid
level. Light/Dark signifies ON-/OFF- responses, respectively.
L/R signifies left-/right-sided (θ and θ+π) border ownernship
responses, respectively. θ signifies the orientation (0, π4 , π2 , and
3π
4 ).

6) P6 - Final Border Ownership Responses: Total border
ownership activity for left- and right-sided borders is computed
by summing across ON- and OFF-center responses. This can
be seen in Equation 4 and Equation 5, respectively.

BkL[θ] = BkLight,L[θ] +BkDark,L[θ] (4)

BkR[θ] = BkLight,R[θ] +BkDark,R[θ] (5)

7) P7 - Grouping Responses: Finally, border ownership
activity is integrated in an annular fashion to give grouping cell
activity. This grouping activity is representative of dynamic
proto-object activity giving rise to figure-ground relationship
of the dynamic visual scene. To compute the final grouping
activity, masks must be generated using a max operator on
the border ownership activity that effectively computes border
ownership assignment by determining the side a border be-
longs to – BOMaskLkθ(x, y) and BOMaskRkθ (x, y)) for all
pyramid levels, k, and orientations ,θ. The grouping responses
for left border ownership and right border ownership are then
computed independently using Equations 6 and 7, respectively.

GrpLkθ(x, y) = BOMaskLkθ ⊗BkL[θ] ∗ vθ
−wp ×BOMaskLkθ ⊗BkR[θ] ∗ vθ

(6)

GrpRkθ (x, y) = BOMaskRkθ ⊗BkR[θ] ∗ vθ+π
−wp ×BOMaskRkθ ⊗BkL[θ] ∗ vθ+π

(7)

The parameter wp is the weight of the inhibitory connection
to the opposing side border ownership. In this model, wp = 1.
Note that vθ and vθ+π are the von Mises kernels used for
extracting for both left and right border ownership responses.
The operator ⊗ is an element-wise operation and ∗ is the con-
volution operator. The final grouping step involves summing
the left and right grouping responses as seen in Equation 8.

GrpSumk
θ(r, c) = GrpLkθ(r, c) +GrpRkθ (r, c) (8)

This results in grouping responses, GrpSumk
θ(r, c), for

each orientation, θ = 0, π4 ,
π
2 , and

3π
4 , for each pyramid level,

k = 1, 2, 3, ..., Nk), where Nk is the number of pyramid levels.
These grouping responses are representative of proto-object
activity.

E. Final Normalization Step

To compute conspicuity maps for each subchannel, maps
across a single pyramid are normalized, rescaled to a common
resolution, and summed. The same normalization techniques
from Itti et al. [11] are then applied across the subchannels’
conspicuity maps. The results within each channel are linearly
summed to form the instantaneous saliency map at the current
frame. These sequential saliency maps over time (frame by
frame) form the final dynamic saliency map. This is visualized
in Fig. 2.

IV. HYBRID FPGA IMPLEMENTATION

The grouping mechanism described for computing proto-
objects is a computationally expensive task. This is due to
the large number of multiply-accumulate (MAC) operations
required for the various filtering operations. For this model
to have real-world application and be integrated into vision
systems that must process frames in real-time, a hardware real-
ization of at least this grouping mechanism is necessary. There-
fore, we have implemented a hybrid FPGA implementation
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Fig. 3. Block diagram of our Proto-Object Based Dynamic Visual Saliency (PODVS) model processing flow. This also includes a visualization of the hybrid
FPGA implementation signifying components of the model implemented on FPGA for speedup in processing. The yellow blocks signify the components of
the model implemented on FPGA and the blue blocks signify components implemented in software. The orange circles indicate processing steps P1 to P7.

using the Opal Kelly XEM7350 Kintex-7 FPGA (XC7K160T-
1FFG676C) board. The computationally demanding tasks are
processed on an FPGA, while less computationally demanding
tasks are processed in software on the host. We name this
hybrid FPGA implementation PODVS-FPGA. In our case,
the host is an Intel Quad-Core i7 CPU. The FPGA enables
pipelining and parallel processing to speedup processing. It is
important to note that the CPU is used for proof-of-concept,
but these less computationally demanding tasks can also be
implemented on the same FPGA or other local processor
(e.g., ARM processor) to achieve a full end-to-end low-
SWaP hardware solution. A high-level processing flow of
this hybrid approach is visualized in Fig. 3. The design flow
for implementation consisted of writing VHDL code for the
computationally demanding processing steps. In the following
sections we describe each processing component of the hybrid
FPGA implementation.

A. FPGA-Host Communication

This hybrid approach incurs a latency cost for communica-
tion to and from the host and FPGA. However, the data transfer
between the CPU and FPGA is minimized and communication
latency is insignificant relative to the processing latency. For
transmitting data, USB 3.0 is used with a bandwidth of
340 MB/s. The Opal Kelly board has a built in USB interface
called FrontPanel containing an API on the host, and an HDL
IP for handling the communication on the FPGA. Physical
data transmission latency can be computed using Equation 9.
For 112 × 84 resolution, physical transmission latency of a
single frame is ∼ 30 µs. Even at a resolution of 640 × 480,
the transmission latency is ∼ 1 ms

Transmission Latency / Frame =
Nr ×Nc
340 MB/s

(9)

B. Input Video Stream

The input to the model is a video stream. The frame
resolution is of size Nr × Nc, where Nr is number of
rows and Nc is number of columns. In our software model,
Nr = 480 and Nc = 640. While a resolution of 640×480 was
ideal, the larger the resolution, more resources required. Due
to limited resources, for our PODVS-FPGA implementation,

Nr = 84 and Nc = 112. The bit resolution of each pixel
is 8 bits. The total number of pixels to process per frame is
Np = Nr ×Nc = 9408 pixels.

C. P1 - Extract Spatio-Temporal Activity

Spatio-temporal activity is first extracted on the host in soft-
ware. The spatial activity extraction for computing grayscale
and color-opponency frames does not require any MAC op-
eration. Additionally, the temporal responses require only 1-
D convolution operation across 6 frames (opposed to 2-D
filtering required for extracting spatial components). There-
fore, the temporal activity response is not computationally
demanding, and instead memory-demanding for storing 6
frames as input resolution increases. The objective was to
utilize only internal BRAM for fast memory access. This step
was not the limiting factor to achieve real-time processing,
and therefore, is performed software. The combined spatio-
temporal activity extraction and transfer to the FPGA incurs a
latency of ∼ 30ms. The amount of FPGA BRAM required for
storing a single frame for a single channel can be calculated
using Equation 10. This totals to 75.2KB for 112 × 84
resolution.

P1 bits = 112× 84× 8 bits = 75264 bits (10)

D. P2 - Generate Frame Pyramid

The frame pyramid is generated on the FPGA using a
“nearest-neighbor” downsampling method. For each new level
in the pyramid, computing the pixel address in the original
frame from which to subsample a pixel is approximated using
bit-shifts. Computing this address takes 5 clock cycles (CC).
The 112×84 is downsampled to 2 additional levels – 80×60
and 56 × 44. The total additional BRAM required is 57408
calculated as

P2 bits =

Nk∑
k=2

Nk
r ×Nk

c × 8 bits = 57408 bits (11)

where k is the pyramid level (in our case, k = 3), Nk is the
number of pyramid levels, and Nk

r and Nk
c are the number of

rows and columns of pixels at level k, respectively.
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E. P3 - Complex Edge and Center-Surround Filtering

The next stage in computation involves performing parallel
filtering tasks with supporting computation for extracting
the complex edge response and both ON-center-surround
and OFF-center-surround responses within the current feature
channel. The complex edge responses are extracted by com-
puting the square root of the even and odd edge responses.
The processing steps are as follows:

1) Load 5× 5 patch at the current pixel location
2) Compute weighted-sum for 8 edge and ON-center-

surround response
3) Compute square root for complex edge response of all 4

orientations
4) Invert ON-center-surround response, resulting in OFF-

center-surround response
5) Resulting 6 responses are stored in BRAM
For the filtering tasks, the weighted-sums are implemented

in hardware as a series of MAC operations. For each of the
4 even edge kernels, 4 odd edge kernels, and ON-center-
surround kernel, the MAC operations within each pyramid
level frame are computed in parallel, dramatically speeding up
processing. A single MAC has a latency of 5 CC (including
read/write). A square root operation has a latency of 1 CC.
Given parallel filtering operations (9 in parallel), the latency
for this stage can be calculated as

P3 Latency = (MAC+Sqrt CC)×Kr×Kc×(N1
r ×N1

c ) (12)

where Kr and Kc are the dimensions of the kernel. The latency
of the first level of the pyramid will be the longest latency
given parallel operation of each filtering operation across
kernels and across pyramid levels. Therefore, the latency of a
single filtering operation (with the complex edge compute) on
the first level of the pyramid determines the latency of step
P3. In our case, given Kr = 5, Kc = 5, N1

r = 84, and
N1
c = 112, latency for P3 is ∼ 1.66 M CC. At the edge of

each frame, MAC operations are performed by padding the
edge with a pixel value equivalent to that of the adjacent edge
pixel. For storing results, an additional ∼ 100KB of BRAM
is required to store 6 pyramid responses.

F. P4 - von Mises Filtering

Von mises filtering is required for computing border own-
ership responses. This includes 16 parallel filtering operations
per pyramid level (48 parallel convolutions for k = 3). The
total amount of BRAM required to store all responses is
∼ 265.7 KB and the total latency incurred for step P4 is the
similar to that in Equation 12, except the square root operation
is not required. This results in a latency of ∼ 1.2M CC.

G. P5 - von Mises Summation

There exist 16 finite state machines (FSMs) running in
parallel to compute the von Mises summation (8 for von Mises
responses for light objects and 8 for von Mises responses for
dark objects from previous section). Each FSM executes the
following process:

1) Apply scaling factor to obtain pixel value in other pyra-
mid level (3 CC)

2) Retrieve pixel value in bottom adjacent level (1 CC)
3) Multiply by factor 2−j where j is the pyramid level (1

CC)
4) Accumulate result for current pyramid level (1 CC)
5) Repeat prior steps for each lower pyramid level, k such

that → k ≤ j
6) Repeat all previous steps for each pyramid level j
7) Store results in BRAM used for von Mises filtering (1

CC)
This process must occur for each pixel location in each

image. No additional block RAM is required as the results of
the von Mises sum replace the values in the von Mises filtering
responses as they are no longer required for the remainder of
the model. The latency incurred for step P5 is ∼ 241K CC
given k = 3 and resolution of 84× 112.

H. P6 - Final Border Ownership Responses

The responses BkLight,L[θ], BkLight,R[θ], BkDark,L[θ], and
BkDark,R[θ] are computed using the von Mises summation
responses from step P5. The variable k corresponds to the
pyramid level. There are 8 FSMs used for each pyramid
level for computing the 2 border ownership responses (for left
border ownership and right border ownership) at each of the
4 edge orientations, θ ( 0, π

4 , π
2 , and 3π

4 ), and each of the 3
pyramid levels, in parallel. Therefore, 12 left and right border
ownership responses are computed in parallel. This totals to
24 border ownership responses, and therefore, 24 additional
instantiated BRAMs for storing the responses. Computing the
left and right border ownership (4 edge orientations) for a
single pixel requires 6 CC. Therefore, given a resolution of
112× 84, a latency of ∼ 56K CC is incurred for step P6 and
total additional BRAM required is ∼ 133.3 KB of BRAM.

I. P7 - Grouping Responses

To compute the final grouping activity, masks must be gen-
erated using a local argmax operator on the border ownership
activity that effectively determines the appropriate objects to
which the edges (i.e. borders) belong to. To compute these
masks, the border ownership responses are transmitted to the
PC (host) and the masks are computed on the host and then
transmitted to the FPGA. After these binary masks are received
by the FPGA (BOMaskLkθ(x, y) and BOMaskRkθ (x, y))
for all pyramid levels, k, and orientations, θ, the grouping
responses for left border ownership and right border own-
ership are computed independently, and in parallel, using
Equations 6 and 7, respectively. The latency is determined
by the convolution operator at the first pyramid level. These
two responses are then summed as seen in Equation 8. The
latency incurred for processing on the FPGA is 1.9M CC and
total additional BRAM required for data transmission and to
store the grouping activity is ∼ 200 KB. Latency incurred in
software for computing the border ownership masks is ∼ 1 ms
for a resolution of 112 × 84 and k = 3 pyramid levels. The
data transfer rate between the host and FPGA totals ∼ 1.3 ms.
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J. Final Normalization and Saliency Map Generation

The final normalization, rescaling, and merging across the
frame pyramid occurs on the host resulting in a conspicuity
map for the channel being processed. The conspicuity maps
computed within each of the 9 channels or normalized and
merged, resulting in the saliency map at the current frame.
The latency for this final step involves data transfer latency
and normalization and merging latency. Transferring the final
grouping results for each pyramid level and all 4 orientations
to the host incurs a latency of ∼ 0.6 ms. The latency for the
normalization and merging operation within a single channel
in software (on our CPU) can be estimated as

Final Latency ≈ N1
r ×N1

c ×4.37×10−8+21.59×10−3 (13)

, which results in ∼ 22 ms given a resolution of 112 × 80
and ∼ 35 ms given a resolution of 640× 480.

K. Parallel Channel Computation

For the fastest processing speed, computing grouping activ-
ity within all feature channels in parallel on the FPGA is ideal.
For example, implementing all 9 channel processing on the
FPGA in parallel will result in a ∼ ×9 speedup for grouping
activity processing. The FPGA used in this work had sufficient
resources for computing a single channel for 112× 84 video
frames. However, to verify this parallel processing, input video
frames of resolution 80 × 60 were used and the FPGA had
sufficient resources for processing 3 channels in parallel. Given
that this is a hybrid FPGA implementation, the host parallel
processing is limited to the parallel capabilities of the host (in
our case, the number of CPU cores).

V. EXPERIMENTAL SETUP

First, we validate this novel dynamic visual saliency model
(PODVS) by quantifying the model’s ability to predict human
eye fixations on videos. These results are further compared
with other SOTA bottom-up, dynamic visual saliency models.
Secondly, we validate PODVS-FPGA implementation by also
quantifying the the model’s ability to predict human eye
fixations. Given the PODVS-FPGA implementation receives
a low resolution input, for fair comparison, we validate that
the FPGA implementation output is comparable to the soft-
ware implementation output by using an emulation (PODVS-
FIXED) of the FPGA model, which can ingest any input
resolution.

A. Dataset

The dataset used for this work is the CRCNS (Collaborative
Research in Computational Neuroscience) dataset created by
Itti et al. [64]. It contains a set of 50 videos with 8 subjects’
eye fixation data. The subjects’ fixation locations were used
to validate the saliency maps computed. This dataset was
used both for validating the PODVS model’s ability to predict
human eye fixations and compared with that of other SOTA
models, as well as to validate the similarity between the FPGA
implementation of the model and the analogous software

implementation. The smaller version of this dataset, called
“MTV”, was not used. More details on this dataset can be
found in Ref. [64].

B. Metrics - Comparing with SOTA Models

To validate the saliency models’ output, various saliency
metrics can be used [65]. Here, we use two commonly used
metrics for evaluating a saliency maps’ ability to predict
human eye fixations. The first is the area under the Receiver
Operating Characteristic curve (AUC-ROC) [66]. The second
is the Kullback Leibler Divergence (KLD) [67], [68]. In their
original state, these metrics are sensitive to edge effects due to
the filtering operations of the algorithms [33]. Therefore, these
saliency models may introduce a center bias into the algorithm.
Furthermore, typically, the center of the video is naturally the
viewer’s focus of attention, even more so at the beginning of
a video [69]–[71]. To compensate for these center bias effects
and provide a fair comparison between models, the metrics are
modified to only use saliency values at human fixation points
given that human’s do not typically look near the edges of
images. By using only human fixation points, any center bias
will affect the metrics of each model equally. Additionally,
for all models’ saliency map output, each frame is normalized
between 0 and 1. These metric measurements are similar to
the metrics used in Ref. [14], except here we use dynamic
video rather than static images.

1) Area Under Curve - Receiver Operating Characteristic:
For the AUC-ROC evaluation metric, the saliency map is
treated as a binary classifier. By varying the threshold and
extracting true positives and false positives at each threshold,
an ROC curve can be constructed. Similarly to that used in
Ref. [14], [33], for extracting true positives, ground truth eye
fixation points for the frame being evaluated are used. For
extracting false positives, random eye fixation points from
other videos in the dataset are used. This process is repeated
100 times for each frame and the average score is computed,
and further, the average is computed across all frames to
determine the score for a given video. The final AUC-ROC
score is the average of that over each video in the dataset. A
score of 1 represents perfect prediction, 0.5 represents chance,
and less than 0.5 represents anti-correlation. This score is then
normalized by the AUC-ROC score describing the ability of
human fixations to predict other human fixations [14], [72].

2) Kullback Leibler Divergence: The KLD evaluation met-
ric is effectively the “difference” between two distributions.
The first is a histogram of the saliency values sampled at true
fixation points of the frame being evaluated. The second is
a histogram of saliency values computed at random fixation
points in the same frame. This is modified (similarly to Ref.
[14], [33], [69]) such that the random fixation points are taken
from randomly selected fixation points from other videos in the
dataset. A higher KLD value is better. The same normalization
method used in computing the the AUC-ROC score is used for
normalizing the KLD score for each video and for each model
[72].
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PODVS-FPGA*: Our PODVS Hybrid FPGA implementation at 112 x 84 resolution. All other columns are at 640 × 480 resolution.

Fig. 4. Comparison of the PODVS and PODVS-FPGA (Hybrid FPGA PODVS implementation) dynamic visual saliency map output with SOTA models. Each
row signifies a single frame from a single video from a unique class from the CRCNS dataset noted by the left/vertical labels. The first column, ”Frame”,
is the frame on which saliency was computed. The second column, ”Fixations”, is the same frame overlaid with colored squares signifying the locations of
subjects’ fixations at that frame. Different colors correspond to different observers. Columns three through nine are the dynamic saliency map outputs at the
frame for our PODVS model (software implementation), our PODVS hybrid FPGA implementation (PODVS-FPGA), the Fang et al. [34], Itti et al. [31],
GBVS [36], SR [30], and SUNDAy [33] models, respectively.

VI. RESULTS AND DISCUSSION

A. PODVS Model Evaluation

We first compare our model, PODVS, with five SOTA
bottom-up, dynamic visual saliency models [30], [31], [33],
[34], [36] previously described using the AUC-ROC and KLD
metrics. For comparison, we selected models, which were
designed to run on video (incorporate motion), are bottom-
up, do not require training, and have publicly available code
in order to run the model on the dataset and metrics. A visual
comparison of the saliency output of the different models can
be seen in Fig. 4. While this shows a qualitative comparison
between the models, a quantitative comparison is necessary.
The comparison of the AUC-ROC and KLD metrics can
be seen in Table II. These results are the average AUC-
ROC and average KLD scores across all 50 videos in the
dataset. The last column shows the p-values after performing
a t-test between the PODVS distribution of scores and the
corresponding model. A p-value less than 10−2 signifies the
result is statistically significant. For the AUC-ROC score, all
models performed better than chance. It can be seen that
our model, PODVS, performed significantly better than all
five other SOTA models for the AUC-ROC metric (AUC-
ROC = 0.6745). It further performed better than all models
except for Fang et al. [34] for the KLD metric. This is most
likely due to the additional texture feature computed in the
Fang et al. model, which is not considered in this model,
but can easily be integrated [19]. Studies have shown texture
plays an important role in early vision and perception [73].
Further, it has been shown that incorporating texture can

improve saliency prediction [19]. The Itti et al. had slightly
lower scores (AUC-ROC = 0.6636, KLD = 0.3457) than our
PODVS model, but higher than the other three models. The
closeness in performance of our PODVS model and the Itti et
al. model may be due to the same normalization operator used
in both models. However, our model computes the notion of
dynamic proto-objects prior to this normalization operator and
performs better, hence, supporting Gestalt psychology and the
hypothesis that attention is object-based, not feature-based.

TABLE II
AVERAGE AUC-ROC AND KLD SCORES ON CRCNS DATASET

Model AUC-ROC p-value KLD p-value
Chance 0.5 − 0 −
PODVS 0.6745 ± 0.07 − 0.3507± 0.08 −
PODVS-FIXED1 0.6676± 0.07 < 10−12 0.3501± 0.08 < 10−12

PODVS-FPGA2 0.6511± 0.08 < 10−12 0.3082± 0.08 < 10−12

Fang et al. [34] 0.6642± 0.07 < 10−12 0.3594 ± 0.08 < 10−12

Itti et al. [31] 0.6636± 0.10 < 10−12 0.3457± 0.10 < 10−8

GBVS [37] 0.5859± 0.11 < 10−12 0.3092± 0.07 < 10−12

SR [30] 0.5595± 0.07 < 10−12 0.2522± 0.07 < 10−12

SUNDAy [33] 0.6080± 0.09 < 10−12 0.3025± 0.10 < 10−12

1PODVS-FPGA software emulation using fixed-point precision (640× 480 input resolution).
2Current FPGA implementation (112× 84 input resolution).

B. PODVS-FPGA Evaluation

1) Accuracy: To verify the accuracy of the hybrid FPGA
implementation, at each step of processing we compared the
FPGA implementation output to that of the original software
based model. The software based model parameters were set
to match those of those used by the FPGA implementation.
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Ideally, the output at each stage should be identical, how-
ever, the software implementation uses floating-point precision
while the FPGA uses fixed-point precision for its computation
due to the digital nature of the FPGA hardware. The output
at each stage matched up to the error due to precision. A
visual comparison between the implementations’ saliency map
output can be seen in Fig. 4. To evaluate the PODVS-FPGA
implementation’s ability to predict human eye fixations, we ran
the PODVS-FPGA model on the same CRCNS dataset scaled
down to 112 × 84 resolution and compute the same metrics,
AUC-ROC and KLD. The PODVS-FPGA model performed
similarly to the PODVS software implementation with a AUC-
ROC score of 0.6511 and KLD score of 0.3082, only slightly
lower due to reduced video resolution and use of fixed-point
precision. To evaluate the PODVS-FPGA implementation at
full resolution (640 × 480), we have implemented a soft-
ware emulation of the PODVS-FPGA model using fixed-point
precision. This fixed-point PODVS implementation, PODVS-
FIXED, directly emulates the FPGA implementation, which
allows for running the model at any resolution. Table II
shows the FPGA-FIXED metrics on the CRCNS dataset at
640 × 480 resolution. With an AUC-ROC score of 0.6676,
and a KLD score of 0.3501, we validate that the FPGA
implementation’s ability to predict eye fixations is comparable
to that of the PODVS floating-point software implementation.
The small reduction in scores is due to its use of fixed-point
precision. Therefore, given an FPGA with sufficient resources,
the PODVS-FPGA implementation at full resolution would
similarly outperform other SOTA models as does the software
floating-point implementation.

2) Resources: The resource utilization by the FPGA for an
input resolution of 112 × 84 can be seen in Table III. The
resources utilized are for processing a single channel. The
limiting resources were the available DSP (Digital Signal Pro-
cessing) slices and BRAM. While external DDR3 memory is
available, memory access latency is longer than that of internal
BRAM, hence we limited memory utilization to BRAM only.
Utilizing an FPGA with sufficient BRAM and DSP blocks,
all 9 channels can be implemented and processed in parallel.
Additionally, Fig. 5 is a plot showing how the total BRAM
resources required scales with the input resolution including
the BRAM allocated to the various processing steps.

TABLE III
RESOURCES USED BY OK XEM7350-160T FPGA FOR PODVS

Resource Available Utilization Utilization %
Slice Registers 202,800 33,911 16%

Slice LUTs 101,400 36,313 35%
BRAM (B18E1) 650 569 87%
DSP48E1 Slices 600 594 99%

3) Speed: At a resolution of 112× 84, processing each of
the 9 channels sequentially, the FPGA-based PODVS model
has a framerate of 2.08Hz for this Opal Kelly FPGA running
on a 100MHz clock. The software version of this model (also
with equally rescaled parameters) has a runtime of ∼ 1.27s on
an Intel Quad-Core i7 PC. This is a 2.64× speedup in compu-
tation time. This is a significant speedup considering it only

processes a single channel in parallel on the FPGA. Given an
FPGA with sufficient resources for computing all 9 channels
in parallel, this FPGA implementation has a 23.77× speedup
(at a framerate of 18.71Hz) with respect to our software im-
plementation. To calculate the amount of sufficient resources,
it is assumed that the resources scales roughly linearly with
the number of channels being processed in parallel. Therefore,
for the 112 × 84 resolution version, the resource utilization
noted in Table III can be multiplied by 9 for estimating the
total amount of resources required for parallel processing of
all 9 channels. A high-end FPGA with more resources would
be sufficient for processing all 9 channels in parallel at either
resolution. This significant speedup in dynamic saliency map
computation and small-size of the FPGA, makes this FPGA
implementation suitable for real-world applications requiring
real-time processing. Table IV summarizes these results. Fig. 5
shows how the framerate varies with respect to input resolution
when processing a single channel in parallel as well as 9
parallel channels. This framerate includes processing steps
occurring on the host (our selected CPU). Having sufficient
resources to process all 9 channels in parallel will result in a
×9 faster framerate. It is assumed a 100 MHz FPGA internal
clock is used.

TABLE IV
HYBRID FPGA VS. SOFTWARE FRAMERATE @ 112× 84

Device Framerate Speedup
Kintex-7 XC7K160T-1FFG676C 2.08 Hz 2.64×
Other FPGA* 18.71 Hz 23.77×

* = FPGA with sufficient resources to process 9 channels in parallel.
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Fig. 5. The left y-axis corresponds with the blue lines, showing how BRAM
utilization for a single parallel channel and ×9 parallel channels implemented
vary with number of input pixels, i.e., input resolution. The black dotted line
signifies the available resources on the Kintex-7 FPGA we used. The right y-
axis corresponds with the green lines, showing framerate for a single parallel
channel and ×9 parallel channels.

C. Towards an End-to-End FPGA Implementation
The objective of this hybrid FPGA implementation is to

demonstrate a speedup in framerate of the PODVS for real-
time applications. This requires a speedup in the computa-
tionally demanding steps of the model, those being the many
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MAC operations. At an input resolution of 112×84, a total of
18.9× 106 MAC operations are required. Given a 640× 480
resolution with full 13 × 13 kernel sizes, 7.16 × 109 MAC
operations are required. It is clear that these MAC operations
are the bottleneck of the model, hence, this hybrid FPGA
implementation implements all MAC implementations on the
FPGA parallel hardware. Ideally, all additional processing
should be implemented on hardware as well to have a complete
end-to-end FPGA solution. We select an FPGA over GPU
because high-end FPGAs have been shown to outperform
high-end GPUs in operations/second (5.4×) as well as op-
erations/Watt (2.3×) [74]. Other work has also shown FPGAs
to outperform GPUs for applications requiring large number
of MAC operations [75], [76]. A full end-to-end FPGA
implementation will allow running the PODVS model in real-
time under low-SWaP specifications. This is advantageous for
applications which can benefit from real-time and low SWaP
saliency computation including image quality assessment [77],
unmanned aerial vehicle navigation and obstacle avoidance
[78], environment exploration for robotics [79], and robot-
assisted surgery for learning where to look [80]. This work
brings us closer to such an end-to-end implementation.

VII. CONCLUSION

In conclusion, we report on two advances. First,we present
a novel dynamic visual saliency model, PODVS, based on
the notion of dynamic proto-objects that exist preattentively
within the scene. This neuromorphic model is feed-forward,
bottom-up, and biologically plausible in its computation, sug-
gesting how dynamic visual saliency is computed in the early
stages of human visual processing. Our neuromorphic model
outperforms other SOTA dynamic visual saliency models in
predicting human fixations on videos and no training on large
datasets is required. Secondly, we present a novel hybrid
FPGA implementation for real-time processing of this PODVS
model to be used for real-world applications. The hybrid
FPGA implementation allows for 18.71 Hz processing, a
∼ 23× speedup compared to that of our current software
implementation, while maintaining high similarity in saliency
map output. Future work involves implementing the less
computationally demanding tasks on hardware as well in
order to achieve a full end-to-end FPGA implementation.
This work may serve as the foundation for future work,
which incorporates dynamic proto-objects computation in the
presence of dynamic visual stimuli for higher-level, top-down
tasks such as image detection, tracking, and classification in
which learning is involved. Furthermore, the biofidelic nature
of this work makes this model suitable for processing on
neuromorphic hardware in a spike-based manner to further
achieve the low SWaP specifications we seek [81], [82].
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