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Abstract—Soft computing gates offer a promising approach
for efficient and parallel processing of probabilistic signals.
These gates are widely used in Bayesian networks and various
machine learning models. However, unlike digital logic gates,
the design and scaling of analog Soft-Gates is challenging due
to analog artifacts, i.e., sensitivity to biasing, mismatch, and
temperature variations. In this paper, we present a systematic
framework for designing analog Soft-Gates that leverage the bias
and temperature scalability of the Margin Propagation principle.
Specifically, the paper proposes an adaptive design strategy
to alleviate mismatch artifacts and to trade-off probabilistic
computational accuracy, area efficiency, and power consump-
tion. We demonstrate the design synthesis of a Soft-Gate and
apply it to error correction decoding and filtering tasks. The
reported Mean Square Error of the Soft-Gate is less than 10−2,
indicating its accuracy in probabilistic computations. For edge
filtering applications, the proposed Soft-Gates can achieve an
average Structural Similarity Index of 0.95. The estimated energy
consumption in 180nm CMOS technology is in the order of pico-
Joules, validating the gate’s energy efficiency.

Index Terms—Analog Soft-Gates, Generalized Margin Propa-
gation, Shape-based Analog Computing, Probabilistic Computa-
tion

I. INTRODUCTION

Probabilistic information processing is crucial for many
applications, including stochastic logical operations [1], error
correction algorithms [2], filtering [3], and machine learn-
ing [4]. To design such applications efficiently, Soft-Gates
can be designed using analog techniques [5] for better energy
efficiency, reduced area, and optimized resource utilization as
it can leverage the continuous nature of analog circuitry. Fig. 1
represents an illustrative comparison between conventional
digital gates (Fig. 1a) and the proposed analog Soft-Gate
(Fig. 1b).

Recent research has focused on exploiting their potential
in synthetic biology, aiming to predict subject behavior in
advance for reducing the cost of wet lab experiments [6], [7].
However, inherent inaccuracies stemming from CMOS process
variations, temperature dependencies, and noise compromise
the reliability of probabilistic signals within the implemented
analog Soft-Gate. Additionally, the non-modularity and non-
scalability of analog designs make their adoption challenging.

In this work, we propose analog soft computing gates based
on a generalization of the Margin Propagation (MP) princi-
ple [8] called Shape-based Analog Computing (S-AC) [3], [9].
Similar to digital logic circuits, MP-based analog circuits have
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Fig. 1. A visual representation showcasing: (a) Traditional CMOS digital
logic gate operating at logic high and logic low; (b) Analog Soft-Gate
design based on the Generalized Margin Propagation [3], illustrating analog
probabilistic inputs (Px & Pc) and output, f(Px, PC) where the logic block
is implemented using modular shape-based analog compute (S-AC) unit.

been shown to be robust to variations in transistor biasing [8]
and variations in temperature [3], hence they are ideal candi-
dates for implementing analog Soft-Gates. Furthermore, in [3],
it was shown that MP-based circuits are scalable across differ-
ent process nodes, which could make the designs scalable and
portable. In this paper, we show that by adjusting the design
parameters, the proposed analog Soft-Gates can be tailored to
balance computational accuracy and resource utilization. We
also demonstrate the design synthesis of a Soft-Gate and its
application in decoding Low-Density Parity Check (LDPC)
codes [10] and edge filtering [11]. The experimental results
showcase the efficacy of our modular framework in achieving
efficient probabilistic computations while maintaining satisfac-
tory levels of accuracy. In comparison to traditional analog
implementations, our soft computing gate exhibits notable
improvements in area and power efficiency, underscoring the
advantages of our proposed design methodology. The key



Fig. 2. Architecture for 2-input S-AC adaptive Soft-Gates and S-AC multiplexer. The input currents are denoted as x and C, while the desired output currents
are represented by S −ACXOR, S −ACOR, S −ACAND , S −ACNOT , S −ACXNOR, S −ACNOR, S −ACNAND , and S −ACMUX .

contributions of this work are as follows:
• Design formulation of analog Soft-Gates based on the

Generalized Margin Propagation (GMP) principle.
• Systematic synthesis for Soft-Gates, covering the step-

by-step process from specification to netlist generation.
• Application of the proposed gates in error correction

algorithms and image processing.
The paper is organized as follows: Section II describes

the background of the GMP framework. Section III presents
the mathematics, design implementation, and results of the
proposed adaptive Soft-Gates. Section IV discusses the Design
Flow Synthesis of the proposed gates. The applications are
presented in Section V and the conclusion in Section VI.

II. OVERVIEW OF GENERALIZED MARGIN PROPAGATION

In this section, we briefly describe the Generalized Mar-
gin Propagation (GMP) framework presented in [3]. This
mathematical framework aimed to create a robust, non-linear
monotonic shape using linear splines. The function creating
this shape is given by∑N

i=1

∑S

j=1
[xi,j − h]+ = C (1)

Here, h(.) is a function of a matrix whose input elements are
xi,j , i = 1, .., N ; j = 1, .., S and C is a design hyperparameter.
N denotes the number of input elements, and S denotes
the number of splines used for approximation. The notation
[·]+ denotes the rectification function. For the special case of
N = 1 and S = 1, (1) reduces to Margin Propagation (MP)
function [8] and can be given as

[x− h]+ = C (2)

The mapping of (1) can also be written in Shape-based Analog
Computing (S-AC) form as∑N

i=1

∑S

j=1
f(xi,j , h) = C, ∀i = 1, .., N,∀j = 1, .., S (3)

TABLE I
NORMALIZED RESPONSE OF S-AC UNITS SHOWN IN FIG. 2

x C h1 h2 h3 h4

0 0 0 1 0 0
0 1 0 0 0 1
1 0 1 0 0 0
1 1 0 0 1 0

∗Boundary conditions where 1 shows the maximum applied current Imax

and 0 shows the minimum applied current Imin.

where the function f(·, ·) models the forward and reverse
currents of the MOSFETS [3]. We have utilized this function
f(·, ·) from (3) for various S values to implement Soft-Gates
in Section III.

III. ADAPTIVE SOFT-COMPUTING GATES

Here, we show the mathematical framework for designing
Soft-Gates along with its circuit implementation and results.
The design methodology is presented for 2-input gates but can
be generalized for multiple inputs and cascaded gates as well.
Table I shows the responses (h1, h2, h3 and h4) of different
S-AC circuit combinations shown in Fig. 2 (where CMOS
implementation of each S-ACS cell is shown in Fig. 1b) for the
four boundary (logic) conditions. Here the inputs to the circuit
(currents) are denoted by Px(1) ∼= x and PC(1) ∼= C. It may
be noted that one or more combinations of h1, h2, h3, and h4

can effectively represent any logic gate. Using this observation,
the detailed construction of each Soft-Gate is explained below.

A. Mathematical Formulation

1) Soft XOR and XNOR Gates: If Px(1) ∼= x and PC(1) ∼=
C are the two inputs, then the sum-of-product (SOP) [12]
form of expression for XOR gate can be used to represent its
probabilistic outcome PXOR as

PXOR(1) = Px(1)PC(0) + Px(0)PC(1) (4)

It can be observed from Table I that the outcome of the XOR
gate can be realized by combining the response of column h1
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Fig. 3. Surface plot for ideal and Soft-Gates implemented with S = 3 illustrated for: (a) XNOR gate implementing (6); (b) NOR gate implementing (8); (c)
AND gate implementing (12); (d) XOR gate implementing (4); (e) OR gate implementing (10); (f) S−ACXNOR gate implementing (7); (g) S−ACNOR

gate implementing (9); (h) S −ACAND gate implementing (13); (i) S −ACXOR gate implementing (5) and, (j) S −ACOR gate implementing (11).

and h4, where h1 and h4 are the responses of the functions
f(x,C) = h1 and f(1 − x, 1 − C) = h4 respectively. It can
hence be concluded that h1 + h4 can represent the equivalent
S −ACXOR gate and can be written as

S −ACXOR
∼= f(x,C) + f(1− x, 1− C) (5)

Similarly, the probabilistic outcome of the XNOR gate is given
by the sum of its min-terms in (6), and its S-AC equivalent is
given by (7).

PXNOR(1) = Px(0)PC(0) + Px(1)PC(1) (6)

S −ACXNOR
∼= f(x, 1− C) + f(1− x,C) (7)

2) Soft NOR and OR Gates: The concept used in XOR can
be extended to the OR and the NOR gates. The probabilistic
NOR gate is true when both the inputs are low and can be
computed by (8).

PNOR(1) = Px(0)PC(0) (8)

The equivalent S-AC based NOR gate from Table I and Fig. 2
can thus be written as in (9).

S −ACNOR = f(1− x,C) (9)

The OR gate is given by (10) as the complement of the
NOR gate and Thus can be constructed using the complement
function explained in a later section.

POR(1) = 1− PNOR(1) (10)

However, Table I and Fig. 2 can be used to construct S-ACOR

without the complement function as expressed below.

S −ACOR = f(1− x, 1− C) + f(x,C) + f(x, 1− C) (11)

3) Soft AND and NAND Gates: The formulation of proba-
bilistic AND is given by (12), and its S-AC equivalent by (13).

PAND(1) = Px(1)PC(1) (12)

S −ACAND = f(x, 1− C) (13)

We can similarly construct the NAND gate as under:

PNAND(1) = 1− PAND(1) (14)

S −ACNAND = f(1− x, 1− C) + f(x,C) + f(1− x,C) (15)

4) Soft NOT Gate: The soft inverter can be constructed by
passing the maximum allowable current as x i.e., x = Imax,
and C as the respective input that needs to be inverted.

5) Soft Multiplexer: 2 : 1 multiplexer based on S-AC can
also be realized as a combination of two S-ACs blocks (Fig. 2)
implementing f(x1, C) and f(x2, 1 − C) where x1 and x2

being two different inputs. If C is utilized as a select line
and C is very small, then x1 is selected. However, if C is
large, then x2 is selected. Thus they are combined to make
the multiplexer.

B. CMOS Circuit Implementation

We use S-ACS (Fig. 1b) blocks for N = 1 and S = 3 in the
design of each gate. We use four different input configurations
as explained in Table I. To represent each pair of input combi-
nations, we require one S-AC block per spline. These blocks
can then be combined to represent the output of the gate. For
instance, as seen in Fig. 2, h1+h4 = f(x,C)+f(1−x, 1−C)
is the output of the S-ACXOR gate while its complementary
output is represented using h2 + h3. Similarly, it is observed
from Table I that f(x, 1−C) is the S-AC operation of AND
gate, which is represented by h3 in Fig. 2. The same applies
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Fig. 4. Effect of varying number of splines S in the implemented design and comparison with ideal, where the characteristics are shown for (a) Ideal
probabilistic XNOR Gate; (b) S-ACXNOR gate for S = 1; (c) S-ACXNOR gate for S = 2, and (d) S-ACXNOR gate for S = 3; (e) Ideal probabilistic AND
Gate; (f) S-ACAND gate for S = 1; (g) S-ACAND gate for S = 2, and (h) S-ACAND gate for S = 3. The figures demonstrate the improvement in accuracy
with the increase in the number of splines (S).

to the other gates. The soft inverter, however, requires the
x input to S-AC as the maximum allowable current, that
is h1 = f(Imax, C) where h1 = C̄. The multiplexer is
represented by h1 +h3 but for different x (viz. x1 and x2) as
they represent different inputs of the 2 : 1 multiplexer.
C. Result

Characteristic surface plot and their comparison with ideal
gates of various implemented Soft-Gate for design parameters
N = 1 and S = 3 are shown in Fig. 3, while their error,
area, and energy metrics are presented in Table II. It must
be noted that although the results have been reported for
S = 3, the value of S can be reduced to fit into power
and area budgets at the cost of accuracy and vice versa.
Fig. 3 reveals a close match with ideal except for minor
artifacts arising from spline tuning points. The spline-induced
artifacts have been summarized in Table II. We report the
Maximum Absolute Error, Mean Square Error, and Mean
Absolute Error of the S-ACXNOR, S-ACAND and S-ACNOR

gates for S = 3 indicating that they can be further tuned for
more accuracy as explained in the next section. It can be noted
that the S-ACNOT plot has negligible deviation as the S-AC
operation essentially performs a subtraction, as is the case for
a probabilistic complement; thus, the errors of the complement
gates can be estimated to be of a similar order. The energies
of S = 3 probabilistic gates can be found to be in the order
of pico-Joules for the given accuracy, as seen in Table II.

D. Adaptive Nature of the S-AC Gates

S-AC Gates can be adapted to cater to the accuracy require-
ments of specific applications. Fig. 4 illustrates the effect of the
number of splines S in the form of multiple line segments in
the contour. Fig. 4a shows the contours of an ideal probabilistic
XNOR gate. Fig. 4b, which is an estimation using only single
segments, is the S = 1 representation of the S-ACXNOR

TABLE II
S-AC SOFT-GATE ERROR ESTIMATION @S = 3

Parameters S-ACXNOR S-ACAND S-ACNOR

Maximum Absolute Error 0.0539 0.1038 0.1054
Mean Square Error 5.73E-04 0.0022 0.0024

Mean Absolute Error 0.0197 0.0383 0.0402
Energy∗ (pJ) 15.9 4.47 4.5
Area† (µm2) 2657.22 116.13 116.13

∗Reported at Strong Inversion for Vsupply = 1.1V .
†Values at 180nm technology node including peripheral circuits.

gate. Fig. 4c-4d, which is an estimation using two and three
segments, are the S = 2 and S = 3 representations of the
S-ACXNOR gate respectively. Similarly, the S = 1, 2, 3 for
S-ACAND gate can be visualized by the contours in Fig. 4f-
4h. It can be clearly observed that as the splines increase, the
plots become more accurate.

IV. DESIGN FLOW SYNTHESIS OF ANALOG SOFT-GATES
This section presents the synthesis flow for the analog Soft-

Gates in brief, covering the entire process from specification to
netlist. All the Soft-Gates illustrated in Fig. 2 rely on the S-
AC compute unit as their fundamental computational block.
These modular analog blocks can be arranged in different
patterns along with any current mirrors to implement the
aforementioned Soft-Gates. The following steps elaborate on
the design steps:
1) Approximation Step: This crucial step in the synthesis

flow involves approximating a given monotonic, non-linear
shape by fitting one or multiple linear splines to represent
the shape. This multi-spline-based approximation of a non-
linear function employs various mathematical techniques to
construct a smooth curve that passes through a set of given
points known as tuning and tangent points and has been
explained in [3]. By optimizing the number of splines and



Fig. 5. Illustration of the step-by-step process for designing and synthesizing Analog Soft-Gates: (1) Approximation Step: Calculates Design Offsets
(Oj ) and Splines using [3]; (2) Design Sizing Step: Involves designing N-Type and P-Type S-AC compute units using the gm

Id
based Look-up Table design

methodology [13] and MATLAB; (3) Interconnection Step: Extracts information from the S-AC Design Configuration File (.dcf) to establish interconnections
between various S-AC based AND Soft-Gate units; (4) Netlist Generation: Generates the SPICE netlist for the computational module of the analog Soft-Gates.

their tuning and tangent points calculated by the Spline-
Offset calculation algorithm, the approximation error can
be minimized, as shown in Step 1 of Fig. 4.

2) S-AC Design Sizing Step: This step employs the MAT-
LAB flow mentioned in [13] for automated sizing of S-AC
units and current mirrors according to the specifications.
The information on splines, offset, and S-AC cells obtained
from the previous step are utilized in the gm

ID
based look-up

table data for the pre-defined technology node to create the
S-AC cells (Step 2 of Fig. 4) for subsequent steps.

3) Interconnection Step: This is followed by interconnecting
S-AC blocks to create a Soft-Gate using the ”S-AC Design
Configuration file (.dcf)”. This file contains information
about how the S-AC blocks interconnection with itself and
current mirrors to implement a particular functional gate.

4) Netlist Generation: The final step is to generate a SPICE
netlist that includes information about the S-AC cells, their
interconnections, and the values of various parameters,
such as transistor sizes, resistance, capacitance values,
and operating frequencies. To generate the netlist, the
parameters of the cells are taken as variables, and the netlist
is constructed by replacing these variables with appropriate
values based on the user-specified requirements. The netlist
can then be used for further simulations and verification to
ensure that the circuit meets the desired specifications.

V. APPLICATION CASE-STUDY

A. Error Correction Decoding of LDPC using S-ACXOR

To analyze the utility of the Soft-Gates, we employ the
S-ACXOR design for decoding Low-Density Parity Check
(LDPC) Codes [10] using the Sum-Product Algorithm [14].
This traditional Algorithm uses complex functions like
log

∏
tanh(·) to analyze the extrinsic reliability (probabil-

ity) of the bit. We reformulate the evaluation of the parity
check constraints in the Sum-Product decoding and replace
log

∏
tanh(·) with the S-ACXOR gate. Fig. 6a and Fig. 6b

represent close compliance of error rates (bits and frame) for
an Additive White Gaussian Noise (AWGN) channel, using
the conventional computation and the proposed gates.
B. Edge Detection using S-ACAND

Edge Detection employs AND operation for the convolution
of the pixel intensities with the kernel. If the intensities are nor-
malized representations, then a soft AND operation is suitable.
We perform the convolution using the Sobel 3× 3 kernel and
compare the results of S-ACAND convolution with the ideal.
In order to quantify our results, we use Structural Similarity
(SSIM) as a metric of the accuracy of the image [15], [16]
on ten randomly chosen images from the MATLAB Image
Processing Toolbox. The Structural Similarity Index (SSIM)
is generally ≥ 0.93 (Fig. 6c). One of the images (Fig. 6d)
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Fig. 6. Applications of S-AC Soft-Gate. Fig. (a)-(b) shows the Bit Error Rate (BER) and the Frame Error rate (FER) using S-ACXOR for (a) (7, 4) Hamming
Code; (b) (32, 8) Regular LDPC Code, computed using the Sum-Product Decoding algorithm through ideal and S-ACXOR computations. Fig. (c)-(f) show
edge Detection using the Sobel horizontal filter using S-ACAND ; (c) Structural Similarity (SSIM) of ten randomly chosen images from the MATLAB
repository along with their average SSIM using the S-ACAND gate; Edge Detection for a single image where (d) is the Original Image; (e) Resultant image
after ideal software computation; (f) Resultant image after S-ACAND Computation.

with the ideal and S-AC outcome is presented in Fig. 6e and
Fig. 6f, respectively.

VI. CONCLUSION & FUTURE WORK

In this work, we presented a modular and systematic
framework for designing analog Soft-Gates based on the GMP
principle [3]. The proposed designs are modular, cascadable,
process, and bias scalable, thereby addressing traditional Soft-
Gate limitations. The proposed Soft-Gates can be tailored
for various applications for varying accuracy and resource
utilization. We validated the approach through synthesis and
applied it in error correction decoding and image processing.
Future research will explore the applicability in biology and
machine learning.
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