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    Abstract- Recent findings in neuroscience, show that rapid 

changes in flight direction of a housefly/blowfly (mainly to track 

objects) are attributable to neural circuits distributed behind its 

photo-receptors. While tracking objects, using its compound eye 

structure, a fly is able to detect changes in the motion of the object 

quickly and changes its own motion accordingly. The working of 

these neural circuits may be modelled as a set of leaky integrate 

and fire neurons connected in a special manner to form a 

competitive feedback control. Based on this knowledge, we present 

a neuromorphic competitive control circuit utilizing an inference 

neuron model to control N actuators and analyze their outputs for 

tracking an object. This model was simulated in software first and 

then implemented on a Xilinx Artix-7 XC7A35T- ICPG236C 

FPGA board using Verilog. The results show an observable 

decoherence phenomenon between the neurons and support the 

working principle of the model. 

 

 Index Terms – Neuromorphic, Competitive Control, Object 

Tracking, LIF Neuron 

 

I.    INTRODUCTION 

Tracking a moving object is an important task and its 

applications lies in all sorts of operations starting from security 

to defense activities. In nature, the housefly may be considered 

as one of the most competent aerobatic pilots. During the 

pursuit of small targets in both, stationary and moving 

environments, a housefly is capable of turning about its vertical 

axis in under 120 ms, at angular velocities up to 4000 deg s-1 

[1]. However, surprisingly, the computational power of fly’s 

neural circuits is even less than that of a toaster [2]. 

Additionally, the speed of signals in a fly’s neural controller is 

well below 100m/s [3]. 

   Apart from these, the neural computation is parallel and 

independent in every circuit corresponding to each receptor. 

With no central processing unit present, speed of information is 

almost similar to that of signal and it moves from receptors(eye) 

to actuators(wings) [4].  

   A conventional digital control circuit for object tracking and 

its control mechanism consumes a lot of power and is 

computationally expensive [5]. Even though control systems in 

nature are analog, replicating such systems using an analog 

computer is significantly complex [6]. Hence, the principles of 

neuromorphic engineering could be applied for the task of 

developing biologically inspired control systems [7], [8], [9]. 

    In this paper, we implement a compound eye model for object 

tracking, using leaky integrate-and-fire (LIF) spiking neurons, 

to build a biologically inspired neuromorphic control system. 

 

II.    COMPOUND EYE 

                The visual system of a fly comprises compound eyes 

and the motion information produced. This visual system helps 

the flies to orient quickly during their flight. Studies 

 
 

Fig. 1. Ideal orientation (center position) of a fly’s compound eye while 

tracking an object. The figure depicts the compound eye structure when a fly’s 

gaze is on the object being tracked. 

 

suggest that the fly’s flight control commands originate from a 

few hundred neurons in its brain. The neural processing 

involved is imperative for flight control and object tracking. 

Each of the fly’s compound eyes is composed of up to 6000 

miniature hexagonal eyes, or ommatidia. Each ommatidium 

measures light intensities within a small solid angle of 1 to 2 

degrees [2]. 

The ommatidium operates in conjunction with its neighbors, 

which together constitutes the elementary motion 

detectors(EMD). Even though each ommatidium sees only a 

little bit of the surroundings, its view is compared with its 

neighbors’, and if the views are different, the fly senses 

movement [2]. 

   In addition, while tracking an object, the fly orients itself in 

such a way that the tracking object is always around the center 

of the compound eye for proper operation as shown in Fig. 1. 

In our model, for the purpose of modelling the compound eye 

made up of 9 ommatidium structures and each ommatidium 

made up of a single sensory neuron unit is assumed and is 

discussed further in the following sections. 
 
 

 



III.   THE LEAKY INTEGRATE-AND-FIRE (LIF) NEURON 

  

The whole operation of the compound eye model is 

designed using Neuromorphic Competitive Control (NCC). 

Inside each individual NCC block, the LIF neuron model is the 

main building block.  

    This LIF neuron can be modelled with one input, one output, 

and one internal signal. Based on the input signal value, the 

internal signal will increase dynamically and in absence of an 

input signal, the internal signal will show leaky behavior with 

some time constant. 

 Whenever, the internal signal reaches a threshold value, the 

output will be 1 (i.e., firing of neuron) and the internal signal 

will be set to 0 again as shown in Fig. 2. 

 

 
Fig. 2. Behavior of the leaky integrate-and-fire (LIF) neuron model 

 

 

IV. WORKING OF THE COMPOUND EYE BASED ON      

NEUROMORPHIC COMPETITIVE CONTROL 
 

The compound eye of a housefly can be modeled as a bunch of 

hexagonal structures (ommatidia). The internal control circuit 

behind each of the individual ommatidium can be realized as a 

competitive control circuit based on the LIF neuron model as 

depicted in Fig. 3A and Fig. 3B. 

This internal circuit as shown in Fig. 3B. consists of three parts. 

The first or central part is mainly the LIF model, which will 

emit a pulse based on the input being fed into it (Fig. 2). The 

second part is the secondary neuron model responsible for 

membrane potential adjustment, and the last one is the inference 

neuron-based feedback circuit. When a particular receptor 

(ommatidium) is not-blocked i.e., no object is present in front 

of it, the corresponding LIF model will emit spikes rigorously. 

However, if the ommatidium is off, the frequency of spike 

generation will be very low and as soon as it becomes turned 

on, frequency will be increased significantly.  

    The secondary neuron block mainly controls ‘input to the 

corresponding LIF (i.e., Membrane Potential)’ and ‘driving 

signal’ for that receptor. Input to this block is the spikes 

generated by the corresponding LIF block and the feedback 

input given by the inference neuron (indicated as ‘U’ in Fig. 

3B.).  

    The feedback loop mainly consists of an inference 

neuron(Fig.4). Spikes generated by each LIF block of all the 

receptors are passed onto the inference neuron based on the 

presence of any obstacles in front of it. After which, logical OR 

operation is performed on the signals. This feedback signal is 

fed into the secondary neuron block of all the receptors 

individually. 

   Hence, multiple number of LIFs are connected, such that the   

 

 
Fig. 3. Model of the compound eye of a housefly, based on neuromorphic 

competitive control. A. Developed sensory block model behind each receptor 
of the compound eye (ommatidium) of a housefly. B. Elaborate model of a 

single sensory block with the LIF and secondary neuron 

 

spike emitted by each is given as negative feedback to the input 

of the rest. Due to this mutual inhibition, few interesting 

organized behaviors such as decoherence and random spreading 

are observed [5]. 

      As indicated in Fig. 3B, the added random noise towards the 

input of the LIF neuron is responsible for random spreading. 

This makes sure that the probability of multiple LIF firing at the 

same time instant is quite low, which in turn gives rise to 

decoherence, an interesting phenomenon from the neuro-

computational point of view. Irrespective of being de-

centralized, this ability of the LIF network to decohere makes it 

possible to effectively sample the network’s external 

environment. 

     When a fly is trying to track an object in front of it, ideally 

it should be blocking the central receptor. Hence, the energy of 

the central circuit will be quite low and the spikes also should 

be of very low frequency. However, if the object moves or 

changes its course, then the central receptor will not be blocked 

anymore and some other receptor which was unblocked 

previously will be blocked. 



 
Fig. 4. Top level block diagram with 9 sensory neurons, with the fifth neuron 

being central. 

 

Hence, the output of this receptor will be similar to that of the 

receptor which is unblocked and spikes will be more frequent. 

By monitoring the spikes of different receptors, the direction in 

which the object has moved and its instantaneous position can 

be estimated. Based on this information, the whole structure 

moves and again aligns itself in such a way that the object 

position comes back to the center of the structure and the central 

receptor gets blocked again.  

V.   RESULTS 

       Based on the functionality of the compound eye as 

described, the variation of the receptors spiking during object 

tracking and the corresponding positioning for obtaining a 

centered response is modelled using MATLAB.  

       The model of the compound eye depicts the movement of 

the elementary motion detectors (EMD) while tracking the 

object. The presence of an object is determined by the reduced 

spiking of the corresponding EMD and corresponding to every 

instantaneous position of the object,the model is aligned to the 

center EMD . In Fig. 5, the red dots denote the 8 neighbouring 

EMD’s and the green star denotes the object being tracked. 

With the movement of the object ,the model is moved as a 

whole and is aligned or centered to the object. The object 

movement is shown as random .The trajectory of the movement 

of the model is depicted through black lines. 

 
Fig. 5.  Displacement of the compound eye model to track a target object. 

 

In the model, the target is moved in a random trajectory and 

hence, the compound eye also moves, thereby tracking the 

object. Fig. 6 shows the overall movement of the object and the 

final position of the model. 

 
Fig. 6. The object tracking mechanism of the model, indicating the final and 

initial position along with detailed trajectory of a target object. 
 

           The working circuit for this model is also implemented 

on FPGA. For the simulation, we assumed that the compound 

eye structure consists of 9 receptors and hence, 9 such 

competitive control circuits (sensory neurons) will be 

associated with it. The neurons are numbered from 1 to 9 with 

‘5’ being the central receptor, as shown in Fig. 4. 

        Here the assumption is that the motion of object is not 

faster than one step of the fly. During simulation, one external 

9-bit input was given, indicating the location of object in front 

of the compound eye. The spikes emitted by the LIF neurons 

and the membrane potential of the secondary neuron for all 9 

blocks are shown in Fig. 7. 

        To understand the operations, the entire time axis is 

divided into 13 regions (A, B, C and so on).  

        As per the neuron alignment, neuron 5 (N5) is the central 

neuron, indicating that for ideally tracking the object, the 

5th receptor should be blocked. However, because of the 

movement or change in course of the object, some other 

neurons might get blocked leaving N5 unblocked. To track it 

properly, the whole structure should be moved in such a 

direction that N5, i.e., the central receptor should be blocked 

again leaving the former neuron as unblocked again. 

    In the beginning (A), the central (5th) receptor was blocked 

and, hence, the spikes corresponding to it were less frequent 

compared to those corresponding to other receptors and its 

membrane potential was also less. 

   However, in ‘B’, due to movement of the object, N1 gets 

blocked and N5 gets unblocked. Hence, the frequency of N5 

spikes increases and that of N1 reduces. Also, the membrane 

potential increases for N5 and decreases for N1. 

   In region C, the structure moves in appropriate direction to 

make N5 blocked again, and the same can be verified from the 

spike and membrane potential curves. 

   Again, in time interval D, N5 gets unblocked and N9 gets 

blocked due to object movement. Thereafter, in E, the central 

neuron becomes blocked again, leaving N9 unblocked. 

   Similarly, in the sub-sequent cases, due to movement of 

objects, neurons 6, 4, 3, 7, 2, and 8 get blocked and then again 
get unblocked, respectively. The frequency of spikes emitted by 

the LIF neurons and membrane potential of  



 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 7. Spikes emitted by the LIF neurons and membrane potential of secondary neurons in the control block. 
 

 

 

secondary neurons corresponding to each one of them describes 

the complete sequence.  

     In the FPGA, the simulation is done with 9 neurons and the 

summary of the utilization report on Xilinx Artix-7 XC7A35T- 

ICPG236C FPGA is given in Table I. The whole circuit is 

utilizing nearly 3.6% of all look up tables and 0.9% of all flip 

flops of the FPGA board.  
TABLE I 

Utilization Report on Xilinx Artix-7 XC7A35T- ICPG236C FPGA 

Resource Utilization Available Utilization % 

LUT 758 20800 3.64 

FF 369 41600 0.89 

 

VI.   CONCLUSION 

     In this paper, we have presented a biologically inspired 

compound eye model for object tracking, which is robust to 

noise and, varying network size based on the neuron model. We 

have demonstrated the functionality of the compound eye 

model and its object tracking mechanism using MATLAB 

simulations and its implementation on an FPGA board. The 

resource utilization of the entire system is very low, which 

favors the implementation in silicon, for real- world 

applications of object tracking in the area of computer vision. 
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