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ABSTRACT

In ultrasound imaging, one typically employs delay-and-sum (DAS)
beamformers for image reconstruction. An apodization window is
typically used to suppress the side-lobes of an array beam pattern.
The application of an apodization window to suppress the side-lobes
typically widens the main-lobe width. We consider a statistical beam-
former and present two variants. The signal of interest is modeled as a
Laplacian-distributed random variable and additive interference com-
ponents as Gaussian distributed. The resultant LASSO formulation is
known to suffer from underestimation of large signal amplitudes due
to the ¢1 norm regularization. In the first variant, we reformulate the
LASSO problem with a minimax-concave penalty (called Sparsity
AMplified (SAM)) to contain the bias, thereby enhancing the beam-
formed image. A closed-form pointwise estimator is obtained for the
optimization problem. In the second variant, we propose Sparsity
AMplified Iteratively-Reweighted (SAMIR) beamforming algorithm,
which leverages the properties of an apodization function. In SAMIR
beamforming, we jointly optimize the cost over the signal-of-interest
and the extrinsic apodization weights. This beamformer results in
high-resolution ultrasound images, especially in the lateral direction.
The proposed methods are compared with the standard DAS and
a recently proposed statistically-modeled beamformer, iMAP, for a
different number of plane-wave insonifications.

Index Terms— ultrasound imaging, beamforming algorithm,
apodization function, non-convex penalty, sparsity amplification.

1. INTRODUCTION

In ultrasound B-mode imaging, typically, a transmission, of either
a focused or an unfocused acoustic beam (through a linear array
transducer), is followed by recording of received signals. In order to
generate the B-mode image, the received signals are time-aligned by
appropriate delays, defined by the array geometry and the angle of
transmission and reception. The delays attempt to isolate the on-axis
echoes originating from a particular point. In conventional delay-and-
sum (DAS) beamforming, the aligned signals are averaged to obtain
the beamformed image. Due to a finite aperture 7', the off-axis echoes
are not entirely suppressed. As a result, the DAS beam pattern is
characterized by a main-lobe and several side lobes, which correspond
to the Fourier transform of a rectangular aperture. To counter these
effects, an apodization window, independent of the received signals,
is applied to reduce the main-lobe width and suppress the side lobes
significantly.
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Fig. 1: [color online &] (a) Plot highlights the amplification of the
signal with SAMIR compared with IR beamforming algorithm. It
can be seen that both beamformers surpasses the conventional DAS,
and the recently proposed iMAP BF algorithm. Optimal apodiza-
tion function in (b) highlights weight of two elements with (c) their
corresponding aperture signals.

The inherent trade-off between the main-lobe width and the side-
lobe level, due to the uncertainty principle, limits the performance of
a beamformer. A sharper main-lobe corresponds to a finer resolution,
and lower side-lobe levels correspond to a higher contrast in the image
domain. A signal-dependent reweighting of the received signals is
considered in Capon’s Minimum Variance (MV) [1] beamformer such
that it maintains unity gain in the desired direction while minimizing
the energy received from the other directions. This method requires
estimation and inversion of a covariance matrix for every pixel in the
image. Due to its sensitivity to estimation errors, additional strategies
such as spatial smoothing and diagonal loading are incorporated to
improve robustness [2-5]. Lorenz and Boyd generalized Capon’s
method (MV) by accounting for the uncertainty in the array response
and/or the imprecise knowledge of the angle of arrival [6].

In literature, several signal-dependent reweighing techniques
such as Wiener beamforming [7], coherence factor (CF) [8], scaled
Wiener postfilter (ScW) [9] have been proposed to improve the image
contrast. The coherence factor assumes coherence of the signal
originating at the focal point over aperture elements in contrast to



the interference [10-13]. The coherence factor is thus defined as
the ratio of coherent to incoherent sums across the detected signals.
Despite the advantages, the resultant images of CF may suffer from
reduced image brightness, especially in low SNR conditions. Nilsen
and Holm in [9] critically analyzed the coherence factor beamforming
in the context of Wiener beamforming. The scaled Wiener postfilter
combines the contrast improvement of CF and robustness of Wiener
filtering.

Recently, Eldar et al. statistically modeled [14] the signal of
interest and the additive interference components in the received time-
aligned signals. They considered the underlying desired signal and
interference components to be uncorrelated Gaussian random vari-
ables. The proposed beamformer, iMAP, is shown to be superior in
terms of contrast-to-noise ratio than other state-of-the-art algorithms
reported in the literature.

In this paper, we model the signal of interest and additive inter-
ference components in the received time-aligned signals as random
variables. In particular, the signal of interest is assumed to follow a
Laplacian p.d.f. and the interference a normal p.d.f., which requires
us to solve a special instance of the LASSO [15] problem and has
a pointwise estimator with a free parameter. It is known in the liter-
ature that an ¢; penalty in the LASSO formulation underestimates
large signal amplitudes [16]. We rectify the bias by reformulating
the LASSO problem with a non-convex penalty [17, 18], and provide
a pointwise estimator with two free parameters. We further extend
these formulations to optimize over the extrinsic apodization weights
given typical constraints on the apodization functions such as taper-
ing, symmetry and non-negative — this approach requires an iterative
solver. An illustration of optimal weights from SAMIR technique is
shown in Figure 1b.

Recently, a class of non-convex penalties has been proposed by
Selesnick that generalizes an #1 norm while maintaining the convexity
of the overall least-squares cost [16]. The proposed minimax-concave
(MC) penalty is the difference between an ¢; norm and a parame-
terized Huber function. It bridges the gap between the ¢; norm and
an ¢, norm (0 < p < 1). The advantage of MC penalty over the
£1 norm is that it provides a more accurate estimation of the large
amplitudes and promotes higher level of sparsity.

2. SIGNAL MODEL

Consider a beamforming framework for an M-element linear ar-
ray transducer. We transmit either a plane wave or a focused beam
(depending on the imaging mode) into the medium, and record the
echoes received at all M elements. The received signal at the m™ ele-
ment, §m (t), is then delayed by applying appropriate delays 7, (¢; 0)
(depending on the array geometry) focusing in the direction 6 to
get aperture data y,, (¢;6). The time-aligned signal y., () has an
underlying signal z(¢) which is of interest to us. Considering that the
beamforming process is identical for every 6, we simplify the notation
by dropping 6 in further discussion. Therefore, for a particular angle
0, the aperture data can be decomposed as

ym(t) = z(t) + (1), (1

where 1., (t) is due to off-axis reflections, multi-path interference
and channel noise. In vector form, at time ¢, equation (1) can be
expressed as

Y. = x¢ Ly + 1y, 2)

where 1/ is an M-length column vector of all ones, and y,,n; €
RM . We also define x = [z1,--- ,zn] € RV
and Y = [y;, -+ ,¥x]" € RYV*M for N time samples.

The goal is to estimate x; from the aperture data y, for a time
t. We assume that entries in n; are Gaussian distributed, n; ~
N(0,021), where T is the M x M identity matrix and o2 is the
noise variance.

If the signal of interest x; is deterministic, then the ML estimate
is given by

ITML,t = arg maxp(yt;x)7

Z Win Yt (©)

where w,, = 1/M, ¥m € [1, M]. Thus, the Gaussian noise model
and deterministic signal of interest result in the classic delay-and-sum
(DAS) beamforming solution.

1Myt

3. SPARSITY AMPLIFIED BEAMFORMING

We assume that the signal of interest is a random variable with a
Laplacian p.d.f. (uncorrelated with noise), that is, z: ~ £(0, 8s),
where [ is the signal scale. Consider the maximum a posteriori
(MAP) estimate of x;:

TMAP,t = arg mgxp(yt|x)p(x)7

M

= arg max > logp(yn,([o)p(x),
T om=1
= arg mlnz ymztg _~_|§7|7
n S
M
—argmin Y 5 (me— @) +Alal, @)
m=1

where \ = 0',21 / Bs. We now impose an apodization function w,, as
follows
M
IMAP,t — arg mln E

m= 1

(Ym,t Wm — :c)2 + Alz|. 5)

Here, we consider w,, to be constant and summing up to 1 for all

m € [1, M]. Rewriting (5) in vector form using matrix-vector
notations results in
1 2
Xmap = arg min o [[Yw —x|[2 + Allx[l1, (6)
J(x)

which is a standard problem of LASSO [15]. We note here that the
¢1-penalty is separable in z. The minimizer of J(x) is given by a
simple formula:

XMAP = ST>\ (YW) y (7)

where ST, is the element-wise soft-thresholding operator [19] defined
as
STk (z) = max (0, |z| — k) sign(z).

Following the time separability in (5), we thus have a pointwise
MAP estimate xmap for every time t. The problem of LASSO is
known to suffer from underestimation of large signal amplitudes
due to the /; penalty (and its corresponding proximal operator) [16].
The underestimation of signal amplitudes is evident in Figure 4,



comparing ST with DAS and iMAP estimates. Next, we reformulate
the LASSO problem to contain and address the underestimation issue.

Consider the following optimization problem consisting of a
quasiconvex minimax-concave penalty (MC), ¢, (x):

1
XsaM = arg mxlnaHYw—XH% + X (x), (8)
G(x)
where
R
|"Ij G x S My
ou(z) = M 2p )
57 |l'| 2 l’[‘v

Since the penalty ¢, (x) is a separable in z, it can be applied element-
wise. Even though the penalty ¢, (x) is non-convex in general, the
overall cost function G (x) is convex for g > A [16]. The minimizer
is given by

xsam = F,u (YW), (10)

where F) ,, is the element-wise firm-thresholding operator

0, FESY
Fplz) = %mgn(a, A< JHl<p (D
z, |z = p.

The SAM estimate in (10) rectifies the underestimation of large
signal amplitudes as seen in Figure 4. The SAM estimate in large
amplitude regions is now comparable to the DAS and iMAP2 solu-
tions while attenuating the spurious amplitudes (as seen in DAS and
iMAP2). Also, this reformulation provides pointwise estimates as the
MAP estimate.

4. SPARSITY AMPLIFIED ITERATIVELY-REWEIGHTED
(SAMIR) BEAMFORMING

In the previous section, we chose the apodization weights to be
constant, normalized to unity. Typically, an apodization window
is tapering, symmetric, and non-negative. Some examples include
the rectangular window, Hamming window, and Hann window. We
now optimize over apodization weights, w, the ST-associated cost
function J(w).

To determine the optimal apodization weights w satisfying the
properties listed above, one must solve the following optimization
problem:

{Xr, Wir } = arg min J(x, SW), (12)
X, W
subject to 1,T\4w =1,
w =0,
w = Sw,

where S = [I, P]" € {0, 1}*/2) for imposing symmetry on w,
with I being the identity matrix, and P being the permutation matrix,
and = denotes componentwise inequality.

The constraints are incorporated using an augmented Lagrangian
L,]Z

L(I(X,W,f) = J(X,W) + <£71-1r\4w7 1> + g”l-]l\./fwf 1”37
13)

Algorithm 1 Sparsity AMplified Iteratively-Reweighted (SAMIR)
Beamformer.

Require: Y - Aperture data
Initialize: A, u, &o, p, €
xXg < 0
Wo < ﬁ 1 M
1+ 0
repeat

Update x;:
Xit+1 < .7:)\7“ (YW»L)
Update w;:

~ T
Wit1 < [(YTY =+ lel}r\/j) S]

[Yxit1 — (& — p) 1]
\7Vi+1 — RGLU(W¢+1)
Wiyl < S‘i’i+1
Dual ascent:
Civ1 &+ p(Lywir1 — 1)
i 1+1
until convergence: ||x; — X;—1]]2/||Xi—1]]2 < €
XSAMIR < X;

WSAMIR — W

where ¢ is the Lagrange multiplier. The solution to (12) is found at
the saddle point of the augmented Lagrangian L ;(x,w, &), and is
solved using the augmented Lagrangian method (ALM) [20].

As seen before, the ¢;-penalty-based formulation suffers from
underestimation of large signal amplitudes, so will an estimate Xir
with optimal weights wir in previous section. We now optimize over
the apodization weights, w, the SAM-associated cost G(x) in (8). In
particular, we solve the following optimization problem:

{XSAMIR7 WSAMIR} = arg min G(X7 SW), (14)
X, W
subject to ﬂww =1,
w =0,
w = Sw.

The solution to (14) is found by solving the sub-optimization rou-
tines over the variables (x,w,¢), for the augmented Lagrangian
L¢(x,w,£), using an ALM as described in Algorithm 1. We use
Rectified Linear Units (ReLU) to impose the non-negativity con-
straint. To solve (12), we replace F),, with the ST operator.

5. SIMULATION RESULTS

In this work, we would like to highlight the amplitude enhancement
and the high-resolution capability of the SAMIR beamforming al-
gorithm. To demonstrate, we use pre-beamformed data from the
PICMUS dataset [21]. The raw data is acquired using the Field-II ul-
trasound simulation software with a 128-element transducer of center
frequency 5.208 MHz, sampled at 20.832 MHz.

The raw data is acquired for different number of plane wave (PW)
insonifications. To test the high-resolution capability of the SAMIR
beamforming (BF) algorithm, we use a point-reflector phantom from
the PICMUS dataset. In addition, we simulate the directivity pattern
of an array with lower side lobes by applying a Hann window with an
f-number of 1.75 on reception. As a consequence, the contrast of an
image is improved at the expense of a wider main-lobe, thereby affect-
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Fig. 2: Simulation results for 1 plane wave (1* row), 11 plane wave
(2" row), 75 plane wave (3" row) insonifications; Dynamic range of
all images is 60 dB.
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Fig. 3: [color online &] Point reflector comparison between SAM
(blue) and SAMIR (red) BF algorithm; Dynamic range of all images
is 60 dB.

ing its resolution in the image domain. In the case of a Hann window,
its main-lobe width is given by 87 /T, where T is the window size,
whereas the rectangular window has a width of 47 /7. In contrast,
the peak side-lobe level for Hann window is —31.5dB, whereas a
rectangular window has —13.3 dB.

In Figure 4, we first highlight the rectification of the underes-
timation of signal amplitudes using the proposed reformulation of
the LASSO problem in (8). The pointwise estimate Xsam restores
the signal strength compared with the ST estimate Xmap, and is com-
parable to DAS and iMAP2 estimates. Here, iMAP2 refers to two
iterations of the iMAP beamforming algorithm. Furthermore, the
SAM estimate prevents spurious magnitude regions as seen around
the axial location of 15 and 25 mm (of DAS and iMAP) in Figure 4.

We further present the optimal apodization function wsamir in
Figure 1b, highlighting two weights and their corresponding aperture
signals in Figure 1c. The optimal apodization functions wir and
wsamir lead to high-resolution images as evident from the measured
lateral resolutions of IR and SAMIR BF algorithm in Table 1 as
compared to SAM and other beamforming techniques. The axial and
lateral resolutions are evaluated as an average over all point reflectors
within the image. The resolution in each direction is computed as the
full width at half maximum (FWHM) of the Point Spread Function
(PSF). The axial resolution of the proposed techniques (SAM and
SAMIR) is comparable to that of others.

Table 1: A Comparison of the Measured Axial and Lateral Resolution
(in mm) for Various Beamforming Algorithms.

1 plane wave 11 plane waves 75 plane waves

Measure
Axial res.| Lat. res.| Axial res.| Lat. res.| Axial res.| Lat. res.
DAS 0.40 1.17 0.40 0.60 0.40 0.63
iMAP2 0.39 1.08 0.40 0.59 0.40 0.63
SAM 0.36 1.10 0.36 0.54 0.36 0.57
IR 0.37 0.59 0.38 0.47 0.40 0.59
SAMIR 0.37 0.45 0.38 0.40 0.40 0.58
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Fig. 4: [color online é&] Plot highlights the underestimation of signal
amplitudes with ¢;-based ST (eq. 7) and its rectification with MC
penalty-based SAM (eq. 10) beamforming algorithm.

The simulation results with different number of plane wave in-
sonifications are shown in Figure 2. The point reflectors estimated
using IR and SAMIR BF algorithm have a similar resolution, except
for the underestimation of amplitudes in IR. The SAM recovers the
amplitudes but lacks the high-resolution capability of SAMIR as
highlighted in Figure 3.

In conclusion, the joint optimization (in IR and SAMIR beam-
forming) over the signal of interest, and the extrinsic apodization
weights lead to high-resolution imaging, whereas the sparsity ampli-
fication assists SAMIR enhance the signal amplitudes as well. The
proposed beamforming algorithm, SAMIR, is compared to the classic
DAS and the recently proposed iMAP beamformer in Figure 1a.

6. CONCLUSION

In this paper, we considered a statistical beamformer with Laplacian
distributed signal prior, and a Gaussian interference. The resulting
formulation (i.e., LASSO) is known to suffer from the amplitude
underestimation. To ameliorate the bias, we proposed a formulation
based on the non-convex minimax-concave penalty. We demonstrated
its efficacy in rectifying the amplitude bias, and suppression of the
spurious amplitudes resulting in sharp point-reflectors of the phantom.
We further incorporate the properties of the apodization function into
a constrainted optimization problem to get high-resolution images.
The joint optimization, with respect to the signal of interest and the
apodization weights, resulted in finely resolved images, especially in
lateral direction. We integrated the high-resolution formulation with
the sparsity-enhancing minimax-concave penalty resulting in the en-
hanced high-resolution ultrasound images. The proposed beamformer,
SAMIR, shows superior lateral resolution and amplitude-enhanced
image compared to the classic DAS and a recently proposed statistical
beamformer called iMAP. We note that further extensive analysis is
needed in choosing the regularization parameters and its impact on
the overall image reconstruction. Also, validation on other phantoms
is required for facilitating its use in real-world applications.
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