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Low-latency machine learning FPGA accelerator for
multi-qubit-state discrimination

Pradeep Kumar Gautam, Shantharam Kalipatnapu, Shankaranarayanan H, Ujjawal Singhal, Benjamin Lienhard,
Vibhor Singh and Chetan Singh Thakur

Abstract—Measuring a qubit state is a fundamental yet error-
prone operation in quantum computing. These errors can arise
from various sources, such as crosstalk, spontaneous state tran-
sitions, and excitations caused by the readout pulse. Here, we
utilize an integrated approach to deploy neural networks onto
field-programmable gate arrays (FPGA). We demonstrate that
implementing a fully connected neural network accelerator for
multi-qubit readout is advantageous, balancing computational
complexity with low latency requirements without significant
loss in accuracy. The neural network is implemented by quan-
tizing weights, activation functions, and inputs. The hardware
accelerator performs frequency-multiplexed readout of five su-
perconducting qubits in less than 50 ns on a radio frequency
system on chip (RFSoC) ZCU111 FPGA, marking the advent
of RFSoC-based low-latency multi-qubit readout using neural
networks. These modules can be implemented and integrated
into existing quantum control and readout platforms, making
the RFSoC ZCU111 ready for experimental deployment.

Index Terms—Quantum computing, superconducting qubits,
multi-qubit readout, FPGA, RFSoC, machine learning, neural
networks

I. INTRODUCTION

QUANTUM processors are expected to solve specific
computational tasks significantly more efficiently than

their classical counterparts [1]–[5]. However, errors are in-
evitable during the operation of quantum processors due to the
inherent instabilities of qubits and the challenges in controlling
and reading out their quantum states, especially as quantum
processors scale up in the number of qubits [6].
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Quantum error correction (QEC) schemes address errors by
redundantly encoding quantum information and performing
repeated measurements to detect and correct errors during
computation [7]. The successful execution of QEC algorithms
relies on constantly monitoring a group of qubits and swiftly
invoking corrective action [8]. To reduce resource require-
ments, especially from a readout perspective, multi-qubit
readout is often achieved using frequency-division multiplex-
ing [9]. Various methods, including matched filters, support
vector machines (SVM), and neural networks (NN), have
been used to process these frequency-multiplexed signals for
inferring qubit states [10]–[14].

When implementing such methods, minimizing latency in
post-processing for qubit-state inference is crucial for enabling
on-the-fly corrective actions in QEC schemes. NN-based state
discriminators outperform traditional signal processing tech-
niques in post-processing readout signals, as demonstrated
on various qubit platforms [13], [15]–[17]. Additionally, NN-
based discriminators scale efficiently, as they do not require
qubit-specific processing, such as digital demodulation, for
each qubit [13].

Scalable field-programmable gate array (FPGA) systems,
particularly radio frequency system on chip (RFSoC) solutions
for controlling and reading out individual qubits in quantum
computing, have recently gained significant attention [18]–
[21]. In this context, NN-based state discriminators could
significantly improve traditional signal processing solutions on
FPGAs for frequency-multiplexed readout, enhancing through-
put and reducing latency for real-time applications. However,
a significant challenge is the substantial resource require-
ments for implementing NNs on hardware platforms like
FPGAs [14].

Overcoming these challenges can enhance readout signal
post-processing, allow for additional error correction cycles in
QEC protocols, and facilitate the integration of reinforcement
learning agents into more complex systems [22]. Quantization
effectively reduces a model’s storage and computational de-
mands by representing parameters in low-precision fixed-point
formats [23], [24]. Quantization-aware training (QAT) has
been an effective method to quantize down model parameters
to binary precision [25], [26].

In this work, we tackle the aforementioned challenges and
demonstrate that we can design ultra-low latency NN-based
qubit-state discriminators by employing QAT and automated
flows for mapping NN onto an FPGA, we can design ultra-low
latency, NN-based qubit-state discriminators. We present an
integrated approach for an NN-based qubit-state discriminator
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Fig. 1: Block diagram of a superconducting quantum processor interfacing with an FPGA system for qubit control and readout.
The FPGA is part of the ZCU111 RFSoC evaluation kit. The quantum processor, which contains five superconducting qubits,
is housed in a dilution refrigerator (for more details on the quantum processor and experimental setup, consult Ref. [13]). RF
digital-to-analog converter (RF-DAC) process control signals for the qubits. The readout signal combines all five readout tones
and is transmitted through a single feedline. This signal is first amplified by, among others, a traveling-wave parametric amplifier
(TWPA) and then digitized by an RF analog-to-digital converter (RF-ADC). The RF-ADC converts the frequency-multiplexed
readout signal into in-phase (I) and quadrature (Q) components. A machine learning accelerator for qubit-state discrimination
subsequently processes these components. Based on the inferred qubit states, a feedback signal may be generated to drive the
subsequent control pulse generation logic.

design, covering everything from training to FPGA implemen-
tation, using tools such as Brevitas [27] and FINN-R [25]. This
approach enables qubit-state inference with latencies ranging
from 24.03 ns to 47.12 ns, significantly reducing the signal
processing delays that have previously limited the number of
QEC cycle repetitions.

The article is organized as follows: Section II covers the
preliminaries. Section III details the design methodology and
implementation of NN-based qubit-state discriminators. Sec-
tion IV presents the results and compares them with state-of-
the-art methods. Finally, Section V provides the conclusion of
the work.

II. SUPERCONDUCTING QUBIT READOUT

A typical schematic of the experimental setup used to inter-
face with a quantum processor comprising superconducting
qubits is shown in Fig. 1. The setup includes a dilution
refrigerator maintained at a temperature of around 20mK
housing a five-qubit quantum processor and an RFSoC board
at room temperature used to generate microwave pulses for
qubit control and readout and post-process readout signals.
Specifically, the readout probe pulse is passed through a radio
frequency (RF) digital-to-analog converter (RF-DAC) and,
after interacting with the quantum processor to acquire a qubit-
state-specific signal characteristic, is fed into a high-speed RF
analog-to-digital converter (RF-ADC). The RF-ADC and RF-
DAC form the interface between the analog signals to and
from the quantum processor and the digital RFSoC processing
elements.

We use the SQ-CARS architecture developed on the Xil-
inx RFSoC ZCU111 [21]. The RFSoC device XCZU28DR

includes eight high-precision, low-power RF-DACs and RF-
ADCs with maximum sampling rates of 6.554 GSPS and
4.096 GSPS, respectively. These data converters are config-
urable and integrated with the programmable logic resources
of the RFSoC via AXI interfaces, which are standard for
exchanging data between connected components.

The superconducting transmon qubits studied here have
frequencies between 4.3GHz to 5.2GHz and energy relax-
ation times from 7 µs to 40 µs. Detailed characterization of the
device can be found in Ref. [13].

For the readout of all qubits, a frequency-multiplexed
pulse with a duration of around 1 µs, consisting of superim-
posed signals at intermediate frequencies (IF) of 64.729MHz,
25.366MHz, 24.79MHz, 70.269MHz, and 127.282MHz, is
upconverted to the readout resonators’ frequencies in the
GHz-range using a local oscillator frequency of 7.127GHz.
The same local oscillator is used for down-conversion of the
readout pulse after acquiring a qubit-state-specific phase shift
for further digitization at a sampling rate of 500MHz and
post-processing, such as qubit-state discrimination.

The performance metric used to analyze the multi-qubit-
state discrimination performance is FGM, the geometric mean
fidelity of the five qubits. The fidelity for the i-th qubit, Fi,
and FGM are defined as:

Fi = 1− [P (0i|πi) + P (1i|∅i)]
2

(1)

FGM = 5
√
F1F2F3F4F5, (2)

where P (0i|πi) and P (1i|∅i) represent the conditional proba-
bilities of assigning the ground (excited) state with label 0 (1)
to qubit i when it is prepared in the excited (ground) state.
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Fig. 2: Characteristics of qubit-specific single-shot readout traces. Panels (a-e) show the state discrimination of integrated
single-shot traces for all five superconducting qubits, with red (blue) markers indicating the inferred ground (excited) state of
each qubit. Panel (f) presents the cross-fidelity matrix, calculated using matched filters to infer the qubit states.

Multi-qubit processors often face the challenge of crosstalk,
where signals—for control and readout—interfere with one
another. Cross-fidelity is a key metric for assessing the per-
formance of multi-qubit state discriminators amidst crosstalk,
which quantifies the correlation between the assignment fideli-
ties of individual qubits [28]. The cross-fidelity between two
qubits is defined as:

FCF
ij = 1− [P (1i|∅j) + P (0i|πj)], (3)

where P (1i|∅j) (P (0i|πj)) represents the preparation of qubit
j in the ground (excited) state and subsequent detection of
qubit i in the excited (ground) state. Positive (negative) off-
diagonal elements represent a correlation (anti-correlation)
between qubits. Here, in the experimental data, the observed
correlations are primarily caused by readout crosstalk [13].

Fig. 2(a)-(e) displays the results of integrated single-shot
measurements in the IQ-plane for all five superconducting
qubits. The cross-fidelity based on the matched filter state
discriminator is shown in Fig. 2(f). The off-diagonal colored
cells indicate the correlation strength.

III. LOW-LATENCY NEURAL NETWORK STATE
DISCRIMINATOR

NN-based qubit-state discriminators have proven effective
in mitigating readout crosstalk in multi-qubit systems [13].
However, their integration onto dedicated hardware, such as
RFSoCs, has not been accomplished yet due to the excessive
storage and computational demands associated with these
discriminators [14].

Quantization effectively reduces the storage and compu-
tational demands of models by representing parameters in
low-precision fixed-point formats, often with minimal impact
on accuracy [23], [24]. When employing QAT, low-precision

quantized models, including those with binary precision, gen-
erally maintain high accuracy [25], [26]. We utilize Brevitas’
QAT [27] to leverage arbitrary bit-width and mixed precision
within the PyTorch framework [29].

A. Neural Network Model Optimization and Quantization

The potential for mixed-precision quantization of inputs,
weights, and activations down to one bit within a large NN
design necessitates careful architectural choices. To streamline
design exploration, we adopted a strategy similar to that in
Ref. [30] and started with a base model presented in Ref. [13].
This model has an input size of 1000, which includes 500
samples of each of the in-phase (I) and quadrature (Q)
components corresponding to 1 µs of measurement time. The
model features three hidden layers with 1000, 500, and 250
nodes, respectively, and an output layer with 32 nodes.

Initially, we adjusted the input feature size and the number
of nodes in each hidden layer to the nearest powers of two.
We then systematically reduced the input size and the number
of nodes in the hidden layers. The number of output nodes is
kept equal to the number of qubits rather than the total number
of possible state combinations. This approach exponentially
reduces the size of the output layer, using only five nodes
(one for each qubit) instead of 32 nodes, representing the
2N possible state combinations [13], [14]. The training was
conducted for 50 epochs with a linearly decaying learning rate
starting at 10−3.

The various model archetypes are represented as NI ×
NH1

× · · · ×NHk
×NO, where NI , NHi

, and NO denote the
number of nodes in the input layer, ith hidden layer (i ∈ Z+),
and output layer, respectively.

Each hidden layer includes a linear transformation followed
by batch normalization, a dropout layer, and a rectified linear
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unit (ReLU). The model inputs are derived from boxcar
operations on I and Q samples by reducing the input feature
size from 1024 to 512. We also examined the effect of model
size on fidelity. Different architectures were trained using
complete floating-point precision.

Fig. 3(a) illustrates the combined effects of model size
variation and input feature size on the geometric mean fidelity,
FGM. It appears that reducing the input feature size has a
minimal impact on fidelity, a maximum of 0.3%. Similarly,
decreasing the number of hidden layers to 2 and a reduction
in nodes composing the hidden layers only marginally affect
FGM. These results suggest that the model size can be care-
fully reduced without a significant readout fidelity loss. We
selected the configuration 512 × 64 × 5, as further reduction
in model size leads to a rapid decline in FGM.

We perform quantization of the models to identify the
optimal representation for input, weights, and activations. The
training is conducted using the same hyperparameters as the
earlier approach. We vary the bit-widths of input, weights,
and activations from 8-bit to 2-bit and examine their effect on
the FGM, as shown in Fig. 3(b) for the model configuration
512 × 64 × 5. The results indicate that FGM degrades for
input quantization below 4-bit. Specifically, FGM drops to
approximately 0.7 for 2-bit input quantization. This suggests
that at least 4-bit representation is necessary for accurate state
discrimination in a five-qubit system. Additionally, the fidelity
does not significantly vary with changes in input bit-width
when activation and weight bit-widths are kept equal.

Fig. 3(c) displays the variation in FGM for mixed precision
quantization of weights and activations, ranging from 8-bit
to 2-bit. The results indicate that mixed precision does not
significantly impact fidelity, consistent with the trend observed
in Fig. 3(b). However, a model with binary quantization shows
a notable decrease in accuracy, with fidelity dropping by 4-
21%, as illustrated in Fig. 3(d).

Fig. 3(e) explores the effect of network parameter count on
FGM across different hidden layer sizes. It reveals that the
fidelity remains relatively stable regardless of the hidden layer
configuration when the number of parameters exceeds 104.
Therefore, networks with fewer hidden layers are advisable
to achieve lower latency while maintaining a high readout
fidelity.

Based on the above-reported studies, we choose a quantiza-
tion scheme of 4-bit for the input and 2-bit for both weights
and activations. The resulting cross-fidelity matrix is computed
and displayed in Fig. 3(f). This matrix indicates that the
quantized neural network (QNN) significantly outperforms the
matched filter discriminator and reduces crosstalk.

B. FPGA Acceleration

Low-latency readout is a primary requirement for mid-
circuit measurements and is essential to QEC. To achieve low-
latency readout, the dataflow architecture-based framework of
FINN-R [25] stands out. FINN-R accepts models in the open
NN exchange (ONNX) format with embedded FINN-specific
metadata, which can be exported using the Brevitas library
in the PyTorch environment. The model is then transformed

into a streaming dataflow graph, with each node represented as
a Xilinx high-level synthesis (HLS) callable function. Nodes
without equivalent HLS functions would need to run on the
processing system of the FPGA, resulting in increased latency.

FINN-R implements quantization and matrix multiplica-
tion of low-precision data using multi-vector threshold units
(MVTU), with one such unit used for each layer of the
QNN. Each unit consists of several processing elements with
multiple input lanes, similar to a single instruction multiple
data architecture. The Appendix A provides more details on
the FINN-R flow.

Trained and quantized models are adapted for varying levels
of parallelization, constrained by resource availability, HLS
conversion capabilities, and AXI-stream connection width.
Layers that exceed a single MVTU unit are time-multiplexed,
which impacts computation latency. A significant hurdle in
achieving complete parallelism for moderate-size models is
the limitation imposed by the connection width of the AXI-
stream interconnect [31].

To address this constraint, we have designed a novel ar-
chitecture to maximize the inherent parallelism of FPGAs.
The modified hardware architecture is based on a NN with
a configuration of 512× 64× 5 as described earlier. The first
hidden layer of the model, consisting of 64 nodes, is divided
into eight equal segments, each containing eight nodes. The
512 nodes of the input layer are connected to all segments,
effectively maintaining 64 nodes in the first hidden layer.
These segmented nodes can operate in parallel on the FPGA,
eliminating the need for time-multiplexing and reducing total
latency. As a result, the connection requirement for the first
hidden layer decreases from 32, 768 to just 4, 096 per segment.
The outputs of these segments are concatenated using a Concat
layer. The model architecture is illustrated in Fig. 4(a).

However, the generated ONNX model cannot be fully
converted to a streaming dataflow-compliant representation
using the default FINN-R flow due to the presence of the
Concat layer and non-uniform multiplication nodes preceding
it. To achieve a fully dataflow-convertible model, we inserted
uniform QuantIdentity layers before the Concat layer and
introduced additional model graph modification steps within
the default transformation process of the FINN-R flow. This
novel architecture fully parallelizes the FPGA implementation
of the model and reduces the latency by eliminating the
need for time multiplexing. This approach effectively achieves
ultra-low latency on FPGAs when working with large neural
networks. Fig. 4(b) displays the modified NN design generated
by FINN-R.

As an alternative approach to attain low latency, we have
also implemented a deeper NN that processes the input in
a piecewise manner [22]. In this configuration, only the last
layer contributes to the latency of qubit-state discrimination,
allowing for a deeper network with small hidden layers. The
architecture for the model with a size of 256 × 128 × 128 ×
128× 128× 5 is displayed in Fig. 4(c).
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Fig. 3: Effects of neural network (NN) architecture parameters on readout fidelity. (a) Fidelity for various NN architectures
with input feature sizes of 1024 and 512. The horizontal axis represents the dimensions of the hidden layers. (b) Impact on
geometric mean fidelity FGM with varying input bit quantization sizes. The labels ‘w#a#’ indicate the quantization of weights
and activations where # indicates the number of bits used for quantization. (c) Effects of mixed quantization of weights and
activations on fidelity. (d) Impact of mixed quantization of weights and activations with binarized input. The blue (red) curve
shows fidelity variation with activation (weight) bit width for weights quantized to a single bit. (e) Effect of model parameters
and depth on readout fidelity. The input, weights, and activations are quantized to 4, 2, and 2 bits, respectively. (f) Cross-fidelity
matrix for the quantized NN. For panels (b), (c), (d), and (f), the NN architecture is 512× 64× 5.
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 (a) (b)

(c)

Fig. 4: Quantized neural network (QNN) archetypes. (a) Software model of the QNN ((512× 8)× 8× 5) for achieving
maximum parallelism. The first hidden layer consists of 8 equal segments (Seg 1 to Seg 8), each containing eight nodes in
the Linear layer, followed by batch normalization (BN) and rectified linear units (ReLU). The output of each segment (1× 8)
is concatenated using the Concat layer, resulting in a size of 1 × 64. (b) Fully parallel hardware architecture of the QNN.
Each segment of the model shown in panel (a) is implemented as a multi-vector threshold unit, which runs in parallel on
hardware. A processing element, consisting of various computation blocks, is shown in the inset. (c) Piecewise layered QNN
architecture 256× 128× 128× 128× 128× 5. Each layer processes a segment of the input signal along with the output from
the previous layer. The input size for the first layer of the model is 1 × 256, and subsequent layers receive an input size of
1× 128, composed of 1× 64 from the previous layer and 1× 64 from the input segment. The last section of the input signal
is only fed to the last layer, meaning only the last layer contributes to the latency of the network.

IV. RESULTS AND DISCUSSION

A. Performance and Resource Utilization
To demonstrate the effectiveness of our approach, we imple-

mented the NN model described in Ref. [13]. This network
architecture consists of an input dimension of 1, 000 nodes,
three hidden layers with 1, 000, 500, and 250 nodes, and 32
output nodes for each possible state. The total number of
learnable parameters sums up to 1, 634, 782, each requiring 4
bytes of storage in floating-point representation. This translates
to 50MB of storage just for the weights and biases. Using this
standard floating-point approach, the implementation exceeds
the resource limits of most available FPGA devices, as re-
ported in Ref. [14].

To address this challenge, we adopted the methodology
described in the previous section to implement the model
in Brevitas and convert it to a dataflow graph using FINN-

R. The input, weight, and activation quantization used are 4,
2, and 2 bits, respectively. The model achieves a geometric
mean fidelity of 0.904, which is only 0.9% below the one
reported in Ref. [13]. This reduction is within the acceptable
range reported by other quantized implementations of standard
models [25].

Latency and resource utilization comparisons for various
NN model architectures and quantizations are presented in
Tab. I. Reducing input size and hidden layers have a significant
impact on resource usage and drastically improve latency with
a minimal drop in fidelity.

The resource utilization of the base model (Arch-1) on
the RFSoC XCZU28DR is only 39%, still leaving enough
room for implementing other logic. Arch-4 to Arch-9 have
almost the same parameters but vary in architecture and show a
similar pattern in resource utilization, except for the binarized
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TABLE I: Resource utilization and latency comparison of neural network archetypes.

Resource
Model Arch # of

Parameters
Quantization

(IN/W/A) FGM LUT
(% util)

FF
(% util)

Max Freq
(MHz)

Latency
(Cycles)

Latency
(ns)

1000× 1000× 500× 250× 32
(Arch-1) 1, 634, 782 4/2/2 90.40

167054
(39.28)

135088
(15.88)

243 924 3802.26

1024× 512× 256× 5
(Arch-2) 657, 413 4/2/2 90.39

58336
(13.72)

46654
(5.48)

275 336 1219.68

512× 128× 32× 5
(Arch-3) 69, 957 4/2/2 89.85

38689
(9.10)

33358
(3.92)

261 51 195.33

512× 64× 32× 5
(Arch-4) 35077 4/2/2 90.11

38087
(8.96)

46064
(5.41)

350 40 114.4

512× 64× 5
(Arch-5) 33217 4/2/2 89.91

43959
(10.37)

53252
(6.26)

260 33 127.05

512× 64× 5
(Arch-6) 33217 4/1/1 80.1

18302
(4.30)

15197
(1.78)

440 17 38.59

((512× 8)× 8)× 5
(Arch-7) 33295 4/2/2 89.72

107026
(25.16)

60696
(7.13)

403 19 47.12

256× 128× 128× 128× 128× 5
(Arch-8) 42124 4/2/4 89.78

110351
(25.94)

123514
(14.52)

341 11 32.23

256× 128× 128× 128× 128× 5
(Arch-9) 42124 4/1/4 89.07

104527
(24.58)

95945
(11.28)

374 9 24.03

TABLE II: Latency comparison of discriminator using neural networks with the state-of-the-art.

Discriminator # of Parameters NN Latency
(ns)

Resources
(LUTs) Readout Type

Reuer et al. [22] 8-point Boxcar Filter + NN 1891 48 Not Reported Single

Satvik et al. [14] Demodulation +
Matched Filter + NN 1112 Not Reported 17917 Multiplexed

This Work
2 point Boxcar Filter + NN

(Arch-7) 33295 49.6 107026 Multiplexed

2 Point Boxcar Filter + NN
(Arch-9) 42124 26.7 104527 Multiplexed

model of Arch-6, which uses less than about 5% of the
look-up tables (LUT)—programmable logic blocks in FPGAs.
Arch-7, Arch-8, and Arch-9 exhibit higher utilization as these
architectures have been optimized for higher performance.

The novel approach of splitting the first hidden layer of
Arch-5 (512 × 64 × 5) into eight parallel segments results
in Arch-7, reducing latency from 33 cycles to 19 cycles, an
improvement of 42%. However, this comes with a significant
increase in resource consumption, likely due to the additional
QuantIdentity layers introduced before the Concat layer and
the heightened level of parallelism. This architecture effec-
tively balances complexity and performance. While binarized
models are fast, they yield a significantly reduced fidelity. It
is challenging to identify patterns in the maximum operable
frequency of the design based on model architecture alone,
as this is largely influenced by the Xilinx Vivado tool, which
offers limited control over the outcome.

Additionally, we have implemented an ultra-low latency
SVM-based state discriminator on FPGA, which is particularly
useful for single-qubit state discrimination. This method offers
an improved decision boundary compared to a matched filter
while maintaining an ultra-light hardware footprint. Further
details on the SVM implementation can be found in the
Appendix B.

B. Comparison

As an alternative to traditional signal processing, recent
work has utilized NNs for their robustness to signal pertur-
bations and their capability for multi-qubit state discrimina-

tion [13], [14]. Maurya et al. [14] implemented a deep NN
(DNN)-based discriminator for frequency-multiplexed qubit
readout. Their approach uses a matched filter for dimension-
ality reduction before processing the data with a lightweight
DNN. However, this approach introduces the additional re-
quirement of qubit-specific demodulation and signal process-
ing, which limits the solution’s scalability. The latency for this
approach is not reported and has 1, 112 learnable parameters.

Furthermore, Reuer et al. [22] describes a feed-forward
NN designed for a reinforcement learning agent and state
discriminator. This network features 7 hidden layers, each with
20 neurons, and is designed explicitly for single-qubit appli-
cations, generating decisions based on readout measurements.
The approach has a latency of 48 ns and a total number of
learnable parameters of 1, 891.

Tab. II summarizes our networks’ latency, resource usage,
and number of learnable parameters compared to the state-of-
the-art. Our NN qubit-state discriminator, based on Arch-7,
Arch-8, and Arch-9 implemented on FPGA, has latencies of
20 cycles, 12 cycles, and 10 cycles, respectively, including 1
cycle for the boxcar operation to provide input to the NN.
Consequently, Arch-7, Arch-8, and Arch-9 achieve latencies
(including boxcar operation) of 49.6 ns, 35.16 ns, and 26.7 ns,
respectively, which are comparable to or better than the state-
of-the-art. Meanwhile, the presented approach has 18 to 29
times more learnable parameters, making it more robust and
versatile for complex readout scenarios.

In Refs. [14] and [13], the number of output nodes cor-
responds to the total number of possible state combinations
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for N qubits, 2N . However, using BCEWithLogitsLoss as the
loss function, the number of output nodes can be reduced to
N . This reduction makes scaling the proposed NN qubit-state
discriminator scalable in the number of qubits.

Our methodology is scalable and can support the implemen-
tation of large DNNs, as demonstrated by our implementation
of the model reported in Ref. [13] with 1.6 million parameters.
By employing QAT, we have shown that even with 2-bit
quantization, the model experiences only a minimal drop in
fidelity while achieving ultra-low latency state discrimination,
which is crucial for realizing quantum error correction (QEC),
as evidenced by Arch-7, Arch-8, and Arch-9.

While Arch-7 effectively balances complexity and latency,
some scenarios may require deeper networks. In such cases,
Arch-8 and Arch-9 can achieve better latency, regardless of
the network depth.

V. CONCLUSION

We present NN accelerators for state discrimination of
frequency-multiplexed qubit readout traces of a superconduct-
ing multi-qubit processor. Our integrated approach deploys
scalable NNs onto FPGAs, offering flexibility, automation, and
faster design turnaround times. Adopting this methodology, we
proposed ultra-low-latency architectures with latencies below
50 ns. The demonstrated substantial reduction in latency while
maintaining qubit-state discrimination fidelity enables the im-
plementation of QEC protocols with more error correction
cycles, thereby significantly improving the performance of
quantum processors. This marks the advent of low-latency
NN architectures on FPGAs that do not require qubit-specific
signal processing and can be scaled up as the number of qubits
increases.

APPENDIX A
NN-ACCELERATOR DESIGN METHODOLOGY

All models were trained and quantized using PyTorch
1.12.1 and Brevitas 0.9.1. The activation function employed
is the rectified linear unit (ReLU). We utilized the Adam [32]
optimizer with a weight decay of 10−3, a learning rate of
10−3, and a batch size of 1024. During quantization-aware
training (QAT), Linear and ReLU layers were replaced with
their quantized equivalents, QuantLinear and QuantReLU,
respectively.

A. FINN-R Flow

The conventional methods for implementing NNs on FP-
GAs typically involve either a hand-crafted custom architec-
ture [22] or high-level synthesis (HLS) [14]. Both approaches
restrict flexibility in selecting the NN’s architecture and size.
Additionally, custom architectures often entail long design
turnaround times. Therefore, there is a need for an integrated
approach that provides both automation and flexibility in
implementing quantized neural networks (QNNs) on FPGAs.

Vitis-AI and FINN-R are leading automation frameworks
for mapping QNNs onto FPGAs [33]. Both frameworks use
QNNs and fixed-point arithmetic to generate hardware designs,
but they differ in their implementation strategies. Vitis-AI

Fig. 5: Flowchart illustrating the end-to-end process of FINN-
R. The double-bordered rectangles indicate modifications
made to the default FINN-R flow.

employs an overlay-based approach, which is highly scalable
due to its use of off-chip memory for model parameter storage.
However, this approach may not achieve the same performance
levels as dataflow-based architectures. In contrast, FINN-R
utilizes a dataflow architecture and relies on on-chip memory,
resulting in lower latencies than overlay-based implemen-
tations. Given the critical need for low-latency readout in
quantum technologies, the dataflow framework provided by
FINN-R is the preferred choice for our work. The end-to-end
flow of FINN-R is illustrated in Fig. 5.

FINN-R processes models provided in open NN exchange
format with FINN-specific metadata, which can be exported
using the Brevitas library in a PyTorch environment. The
framework transforms the model into a streaming dataflow
graph and represents it in an intermediate representation.
Nodes in the graph are then replaced with HLS-callable
functions, and parallelism is either user-defined or derived
based on throughput targets.

Quantization and matrix multiplication of low-precision data
are handled by multi-vector threshold units (MVTU), with one
unit per layer of the QNN. Each MVTU comprises multiple
processing elements that operate similarly to single instruc-
tion multiple data architectures. Computation can be time-
multiplexed to optimize hardware resource usage or dedicated
processing elements and single instruction multiple data lanes
can be employed for faster performance at the expense of
higher hardware resource consumption. This flexibility allows
for a balance between hardware resource usage and latency
performance.

The final design is processed using the Xilinx Vivado back-
end, which generates Verilog code for the targeted FPGA de-
vice. The design is exported as intellectual property, enabling
the modification and integration into other designs based on
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specific requirements. The hardware architectures discussed
are implemented on the Xilinx RFSoC ZCU111, with Xilinx
Vivado 2022.2 used for design implementation. The synthesis
strategy was optimized for high performance, with the primary
goal of achieving low latency.

APPENDIX B
SVM-BASED QUBIT-STATE DISCRIMINATOR

Common single-qubit state discriminators include the box-
car [34] and matched filter [35]–[37] with subsequent thresh-
olding. Both methods are widely used for superconducting
qubit platforms. A matched filter is generally preferred over
a boxcar filter because it maximizes the signal-to-noise ratio.
Moreover, boxcar filters are susceptible to additive station-
ary noise. Support vector machines (SVM) provide superior
decision boundaries compared to boxcar or matched filters.
Particularly, SVMs are more effective for state discrimination
in single-qubit systems and frequency-division multiplexed
readout, even when qubit-specific processing is involved [11],
[13].

The incoming stream of I and Q data from the RF-ADC
is digitally demodulated at each qubit-specific intermediate
frequency (IF) over the readout integration time. The training
dataset consisted of 1, 000 random samples from each of 32
possible combinations, with a vector size of 512 for both IQ-
data, corresponding to a 1 µs readout trace duration.

The linear support vector classification (LinearSVC) pack-
age [38] was utilized to implement the SVM. After training,
we derived floating-point weights and biases, which were
applied to the test data. The floating-point SVMs outperformed
their matched filter counterparts, improving qubit fidelity and
achieving a 1.53% increase in the overall geometric mean
fidelity of the five qubits.

TABLE III: Geometric mean readout fidelities FGM of all five
qubits using matched filters and SVM discriminators.

FGM

Matched Filter (Float) 0.8846
SVM (Float) 0.8982

SVM (2 multiplier + 8-bit quant) 0.8980
SVM (1 multiplier + 8-bit quant) 0.8985

The weights, along with the input and demodulation param-
eters, were quantized to eight bits. In the quantized implemen-
tation, we have two variants: one uses separate multipliers for
demodulation and weight multiplication. At the same time,
the other employs a standard multiplier that processes pre-
computed fused values of weights and demodulation coeffi-
cients, reducing the number of multipliers by one per qubit.
Tab. III compares the readout fidelities of this implementation
with those of matched filters and various SVM approaches.

The hardware implementation of the SVM is illustrated in
Fig. 6. The quantized SVM implementation, which optimizes
weight and computation efficiency, outperforms other state-of-
the-art traditional signal processing discriminators regarding
latency and resource utilization. Tab. IV details a comparison
with other leading methods.

Salathe et al. [40] proposed a method using demodulation
and thresholding, achieving a core processing latency of 30 ns.

Fig. 6: Signal processing for SVM-based qubit-state discrim-
inator. The hardware architecture is designed to handle the
incoming eight-bit I and Q inputs from the RF-ADC. It per-
forms multiply-accumulate operations throughout the readout
integration time. The resulting processing latency corresponds
to the time required to process the final input sample. The
architecture includes five SVM modules, one dedicated to each
qubit.

Tholen et al. [20] presented an integrated RFSoC solution
with a matched filter state discriminator that uses pre-stored
samples, resulting in a readout latency of 10 ns. Guo et
al. [42] demonstrated demodulation and matched filtering with
a readout latency of 24 ns. In contrast, our quantized SVM on
FPGA achieves a discriminator latency of 5.74 ns and utilizes
only 1675 LUTs for the five-qubit system, demonstrating
significant performance and resource efficiency improvements.

ACKNOWLEDGMENT

Ujjawal Singhal acknowledges the support received through
the Prime Minister’s Research Fellowship (PMRF), GoI.
Pradeep Kumar Gautam thanks Ankita Nandi and Vignesh
Ramanathan for valuable suggestions on the manuscript.

REFERENCES

[1] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding,
Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing
quantum supremacy in near-term devices,” Nature Physics, vol. 14, no. 6,
pp. 595–600, 2018.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[3] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[4] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum
machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185,
2015.

[5] P. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean,
R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding et al., “Scalable
quantum simulation of molecular energies,” Physical Review X, vol. 6,
no. 3, p. 031007, 2016.

[6] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C.
White, J. Mutus, A. G. Fowler, B. Campbell et al., “Superconducting
quantum circuits at the surface code threshold for fault tolerance,”
Nature, vol. 508, no. 7497, pp. 500–503, 2014.

[7] D. A. Lidar and T. A. Brun, Quantum error correction. Cambridge
university press, 2013.

[8] G. Q. AI, “Exponential suppression of bit or phase errors with cyclic
error correction,” Nature, vol. 595, no. 7867, pp. 383–387, 2021.



10

TABLE IV: Latency comparison of SVM-based discriminator with the state-of-the-art.

Discriminator
Procesing Latency

Multi-cycle
(ns)

Procesing Latency
Single-cycle

(ns)
# LUTs Readout type

Xiang et al. [39] Demodulation + Boxcar Filter 32 Not reported Not Reported Single
Salathe et al. [40] Demodulation + Boxcar Filter 30 5.3 509 Single
Yang et al. [41] Demodulation + Boxcar Filter 20 Not Reported Not Reported Single
Guo et al. [42] Demodulation + Matched Filter 24 Not Reported Not Reported Single

Tholén et al. [20] Demodulation + Matched Filter 10 Not Reported Not Reported Single
This work Demodulation + SVM 5.74 3.67 1675 Multiplexed

[9] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Physical
Review A, vol. 86, no. 3, p. 032324, 2012.

[10] C. A. Ryan, B. R. Johnson, J. M. Gambetta, J. M. Chow,
M. P. da Silva, O. E. Dial, and T. A. Ohki, “Tomography
via correlation of noisy measurement records,” Physical Review
A, vol. 91, no. 2, p. 022118, 2015. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.91.022118

[11] E. Magesan, J. M. Gambetta, A. D. Córcoles, and J. M. Chow, “Ma-
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