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ABSTRACT

Typically a 1-2MP CCTV camera generates around 7-12GB
of data per day. Frame-by-frame processing of such an
enormous amount of data requires hefty computational re-
sources. In recent years, compressive sensing approaches
have shown impressive compression results by reducing the
sampling bandwidth. Different sampling mechanisms were
developed to incorporate compressive sensing in image and
video acquisition. Though all-CMOS [1, 2] sensor cam-
eras that perform compressive sensing can help save a lot of
bandwidth on sampling and minimize the memory required
to store videos, the traditional signal processing, and deep
learning models can realize operations only on the recon-
structed data. To realize the original uncompressed domain,
most reconstruction techniques are computationally expen-
sive and time-consuming. To bridge this gap, we propose a
novel task of detection and localization of objects directly
on the compressed frames. Thereby mitigating the need to
reconstruct the frames and reducing the search rate up to
20× (compression rate). We achieved an accuracy of 46.27%
mAP with the proposed model on a GeForce GTX 1080 Ti.
We were also able to show real-time inference on an NVIDIA
TX2 embedded board with 45.11% mAP, thereby achieving
the best balance between the accuracy, inference time, and
memory constraints.

Index Terms— Object Detection and Localization, Deep
learning, Compressive Sensing

1. INTRODUCTION

In signal processing, compressive sensing(CS) [3, 4] is a pow-
erful sensing paradigm to sample sparse signals with much
fewer samples than demanded by the Shannon-Nyquist sam-
pling theorem. The Nyquist theorem mandates that the num-
ber of data samples be at least as high as the dimensionality
of the sampled signal. Inherent redundancy present in the real
signals like images and videos allows significant compres-
sion of data. Compressive sensing exploits this inherent re-
dundancy and enables the sampling to happen at sub-Nyquist
rates. As generic video acquisition systems face a trade-off
between spatial and temporal resolution due to communica-

tion bandwidth, systems that can give higher spatial resolu-
tion without compromising temporal resolution are in high
demand. This makes compressive sensing extremely useful
for capturing images and videos in systems that cannot afford
high data bandwidth. The number of samples needed for the
same video duration is much lower than that of generic imag-
ing systems. Pixel-wise coding [3] is one among many ways
of compressive sensing. To reconstruct the original frames
from a CS frame, one needs to learn an over-complete dic-
tionary or use existing dictionaries such as a 3D DCT dictio-
nary to represent the videos in a sparse domain [5]. A patch is
taken from the CS frame and the corresponding video patch in
the sparse domain of the dictionaries is estimated using algo-
rithms like Orthogonal Matching Pursuit (OMP). Typically a
100 FPS video can be reconstructed from a 5 FPS video using
pixel-wise coded exposure. To overcome this issue, we pro-
pose a new approach by eliminating the need to reconstruct
the original frames for object detection and localization by
performing it directly on the compressed frame. For the first
time in literature, we introduce the novel task of detection and
localization directly on the compressed videos. Towards this,
we first explore the traditional off-the-shelf detectors (for un-
compressed videos) and aim to adapt them to the compressed
domain. We further propose a novel object detector frame-
work for compressed data that achieves the best balance be-
tween accuracy, runtime, and storage. To summarize the con-
tributions: (i) We develop a compression framework that acts
as a CS camera simulator. This framework can compress any
video from a frame-based camera to a compressed frame (ii)
We also explore the traditional off-the-shelf object detectors
(for uncompressed videos) and aim to adapt them to the com-
pressed domain. We further propose a novel object detection
framework for the compressed data. (iii) To further corrob-
orate the utility of our proposed model from a deployability
perspective, we show that the model is capable of computing
for real-time inference on an embedded board.

2. RELATED WORK

Advanced Video Coding (AVC): [6, 7, 8, 9] have shown
object detection using AVC compressed videos, here the
compression uses spatial compression/resolution reduction



Fig. 1. Pipeline for Real-Time Object detection in CS frames

for each frame in a clip. However, we perform compres-
sion along the temporal dimension, thus reducing a manifold
amount of data. Our model can perform object detection
directly on this tremendously reduced dimension. Recon-
struction of CS frames: Iliadis [10] and Xu [11] have even
succeeded in reconstructing original frames from CS frames
using deep learning. Though this line of work is still in
progress, reconstruction of the CS frames takes a consid-
erable amount of time, making it unsuitable for real-time
processing.

3. PROPOSED METHOD

3.1. Compression Framework

3.1.1. Pixel-wise coded exposure

In conventional cameras, there is a global exposure time Te

(shutter speed) for which all the pixels in the sensor are ex-
posed, and an image is read out from the sensor. We get 1/Te

frame rate from such sensors. In contrast to this, in pixel-wise
coded exposure (PCE) cameras, each pixel is exposed at a
random time for a ’single-on’ fixed duration Tb(> Te) within
the time Tv . But, only one image is read out at the end of Tv .
If Tv is set to C × Te, we get a compression of C times and
a frame rate of 1/Tv . For a clip V (M ×N × T ), a sensing
matrix S(M ×N × T ) holds the exposure control values for
each pixel in the sensor. The sensing matrix S is binary, i.e.,
S ∈ {1, 0}. The value of S is 1 for each pixel for the frames
for which it is on or exposed, and 0 for the rest of the frames.
There is only one bump in the Tv time. The dimension T
represents the compression rate (Tcr). The position of 1s in S
is randomly decided based on a Gaussian normal distribution,
which is exposed for Tb (Bump Time) number of frames. The
acquired coded image I(M ×N) can be denoted by the Eq.1
as represented in Fig.2.

Fig. 2. Pixel-wise coded exposure

I(m,n) =

T∑
t=1

S(m,n, t).V (m,n, t) (1)

3.1.2. Enveloped Boundary Boxes for Object labeling on
Compressed Image

We can observe from Fig.2 that manual labeling of the CS
frames is difficult as the edges of moving objects are often
indeterminable even to the human eye. Conventional Local-
ization labeling would involve marking the bounding boxes
in one individual frame. In a CS frame, the bounding box
would have to enclose all the individual bounding boxes of
the original constituent frames. Hence, we merge the bound-
ing boxes of each object across the constituent frames. We
used the VATIC [12] annotation module, where each frame
was manually labeled for the boundary boxes to fit the object
more compactly. Then with these boundary box coordinates,
we find the minimum and maximum of its X and Y coordi-
nates of the entire set of Tcr number of frames and envelope
into a single boundary box for the CS frame. This dataset is
now openly available to the community [13].



4. DATASET

For training, we used a subset of Youtube 8M [14], raw video
clips were considered over artificially edited ones because,
during compression, the localization of the object would be
lost during the transition effects produced by the alteration of
the video during editing. To incorporate more motion and ob-
ject variance, we collected more videos on our own for more
training data to incorporate more motion and object variance.
We captured videos on multiple days and during different
parts of the day and tried to maintain as much variance as
possible. This dataset comprises a combination of motion,
both with respect to the camera and the object, thus covering
almost all the scene dynamics that can occur in the original
domain (Fig.2). These carefully selected clips were tempo-
rally compressed labeled using the compression framework,
as shown in Fig.2. Here Tcr was set to 13, while Tb was set to
3. Hence, for every Tcr frames in the original video, a single
compressed frame is generated using Equation 1. The random
sensing matrix has been varied for each set of Tcr number of
frames, to generalize compressed sensed frames and not fit
over a particular sensing matrix. Testing our model’s perfor-
mance is essential for evaluating the model’s generalizing ca-
pability. Hence for validation and experimentation of our net-
work, we choose KITTI Multi-Object Tracking dataset [15].
We used the ground truth labels and generated the enveloped
boundary boxes as discussed in the compression framework
in Sec. 3.1. The dataset comprises of ≈180K samples (com-
pressed frames and corresponding boundary boxes of objects
in the compressed domain) for the classes Cars and Person.

5. MODEL AND TRAINING

The input to the network is a M ×N frame which is actually
temporally compressed from a M×N×T dimensional video
segment (T denotes the temporal depth for compression). The
input segment is passed to a fully convolutional network that
learns space-time features. The dimensions of the output fea-
tures are M

T ×
N
T ×5, here the 5D associates the variables that

represent the objects presence and localization information
namely (p, w, h, x, y). The spatial resolution is reduced by
a factor of T, while the existence of the objects along the tem-
poral dimension is preserved. Our network is largely based on
Yolo. There is three major difference between our model and
the original Yolo model: (i) We employ residual connection
in our model, which has been shown to preserve the low-level
features (ii) We used resnet blocks as opposed to the original
Yolo’s vanilla convolutions, which has shown to preserve the
low-level features in the model. The training converges within
25 epochs, using Adam optimizer for parameter updates with
learning rate = 1e-5, beta 1 = 0.9, beta 2 = 0.999, and ep-
silon = 1e-08. The mini-batch size was 16 for the training.
We trained this network on the dataset with a train and test
split ratio of 7:3. Our model is trained using mean-squared

Model mAP% Inference
Time(ms)

Model
Size(MB)Pre-Trained only Fine Tuned on

CS Dataset
YOLOv3 320[16] 8.53 41.66 22 237
Tiny YOLO [17] 2.74 10.12 25 92
YOLOv2 608x608
[18]

5.01 34.47 40 169

SSD300 [19] 3.22 33.22 61 208
SNIPER [20] 7.61 49.16 66 536
SSD512 [19] 5.59 36.75 156 208
Proposed Model
(Trained-CS Dataset)

46.27 28 241.9

Table 1. Comparative study of accuracy and performance, as
obtained by different state-of-the-art object detection meth-
ods(both pretrained only on uncompressed data and after fine-
tuning on CS dataset)

error on (w, h, x, y) and a multi-class cross-entropy loss on
for classification probability (p).

6. EVALUATION

6.1. Mean Average Precision

We have followed the COCO dataset [21] method of evalu-
ating the Mean Average Precision (mAP), by averaging the
Average Precision (AP) over multiple IOU (Intersection over
Union ratio over predicted box and ground truth) thresholds
from 0.50 to 0.95. The ’Car’ and ’Person’ classes got an mAP
of 42.42% and 50.12%, respectively. Comparison of mAP
values of existing object detection models in comparison to
our model Table 1. The mAP of our proposed model suggests
that it performs far better with that of the generic models that
work on the original domain, even though the boundaries and
texture of the objects are not so well defined in the CS do-
main. The proposed model could detect and localize all the
classes it has been trained in the compressed domain.

7. EXPERIMENTS

Compression rates and bump times play a vital role that ex-
plains how well the model has learned to detect objects in the
compressed domain. The AP values at different IOUs for dif-
ferent bump times and compression rates are shown in Fig.4.
The results plotted by the mean mAP (black color-coded),
show no conclusive proof of any trend of decline or ascent
in the mAP with respect to the bump time or the compression
unless they are the extremes. This shows that our model is
generalized and can work with other compression rates and
bump times. Our model was able to detect other compression
standards is because CS frames have high variance in the ap-
pearance of the objects, based on the amount of motion in the
constituent frames.
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Fig. 3. Results on CS Frames. (a),(f) Both object and camera in motion; (b),(e) Object in motion and Stationary camera; (c),(d)
Stationary object and camera in motion. (b) Multiple objects detected in a CS frame. Highlighted with bounding boxes in Red,
Cyan for class ’CAR’ and ’PERSON’ respectively.

Fig. 4. Average Precision (AP) at Different IOU and mAP
with change in Compression Rates Tcr and Bump Time Tb

8. RESULTS AND DISCUSSION

We compared with a few state-of-the-art object detectors on
the compressed frames, which are listed in Table 1. It is ob-
served that our model displays relatively superior results. We
can observe that our proposed method achieves substantially
better performance from our above ablation study (%mAP
with fine-tuning) than all other SOTA competitors performed
on the CS dataset except SNIPER with a negligible difference
of 2.9%. However, considering the real-time deployment as-
pect, SNIPER being a heavier architecture consuming 536MB
makes it resource intensive compared to our proposed model,
which only consumes 242MB. We can observe the same by
comparing inference time for the efficacy between these two
models. Hence, our solution offers the best of both worlds,
which allows an efficient real-time framework on a low-power
device like TX2 and a respectable performing architecture.
Most of the state of art architectures failed to detect even the
presence of an object in the compressed domain, as shown

in Table.1 (%mAP without fine-tuning). We also observed
that the model was capable of detection with different combi-
nations of background and foreground movements Fig.3. Ba-
raunink explains the connection between compressive sensing
and Johnson-Lindenstrauss lemma [22]. The preservation of
distances between the higher-dimensional space to the lower-
dimensional spaces can be why object detection in CS frames
is possible using convolutional neural networks. The model
was also deployed on NVIDIA TX2 and inferred using Ten-
sorRT with a run time of 34ms with mAP of 45.11, 0.025%
loss from the original model. We can observe that the com-
pressed frame contains hazy information, due to which the
privacy concerns raising due to surveillance can be mitigated.
The compressed frame preserves all the information intact re-
quired for the reconstruction of the frames while protecting
privacy. This proves that our model has learned an essential
latent representation of the objects in the compressed domain
rather than to over-fit onto the hazy information on the com-
pressed domain. On the contrary, the model’s performance
cannot be evaluated on the original domain as it is not the
claim made in this paper.

9. CONCLUSION

In this work, we show that object detection and localization
are possible directly at the compressed frame level in pixel-
wise coded images in real-time. We also show that our model
generalizes and works with varying Tcr and Tb. Thus gener-
alizing over the entire natural set of the compressed domain.
This in turn helps to reduce the time of object searching in a
video by order of up to 20x(Tcr). We envisage that this will be
the beginning of object detection and other computer vision
tasks in the CS domain, making a significant improvement in
surveillance as it embraces privacy at its core.
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