Instructor:
Shayan Srinivasa Garani,
[Thursday, Friday 6:00 pm – 7:30 pm, LH9]
Course Syllabus:
- Introduction to neural networks: Neuron models motivated by biology, feedback and other network architectures, Knowledge representation and artificial intelligence.
- Learning Process: memory-based learning, error-correction based learning, Hebbian learning, competition learning, Boltzmann Learning, Supervised and unsupervised learning methods, memory and adaptation, Statistical nature of the learning processes.
- Multilayer Perceptron: Perceptron, Perceptron convergence theorem, back propagation algorithm and Applications, XOR problem, functional approximation and curse of dimensionality.
- Radial Basis Function networks: Cover’s Theorem for separability of Patterns, regularization theory and networks, approximation properties of RBFs, kernel regression and Learning strategies, applications.
- Support Vector Machines: Optimal hyperplane for linear separable patterns and non- separable patterns, SVMS or pattern recognition, epsilon-insensitive loss function, SVMs or nonlinear regression, applications.
- Committee Machines: Associative Gaussian mixture model, hierarchical mixture of experts (HME) model, EM algorithm, Application of EM algorithm to HME.
- Principal Component Analysis: Eigen structure of PCA, Hebbian based maximum Eigen filter, Hebbian based PCA adaptive PCA using lateral inhibitions (APEX), PCA based on neural networks: reestimation and decorrelating algorithms, Kernel PCA applications.
Reference Books:
- Neural Networks: A Comprehensive foundation by Simon Haykin, Prentice Hall of India. (required)
- Machine Learning: Probabilistic Perspective. Kevin Murphy, MIT Press. (optional)
- Class notes
Grading Policy:
Homeworks: 50%
Project: 25%
Final exam: 25%
Homeworks:
- Homework #1 Solution #1
- Homework #2 Solution #2
- Homework #3 Solution #3
- Homework #4 Solution #4
- Homework #5 Solution #5
Exams:
Project:
Course announcements
- Project report due date: 7th May 2017.
- Project presentations and demos : 9th May 2017.
- Final exam: 11th May 2017.