[et_pb_section fb_built=”1″ admin_label=”section” _builder_version=”4.16″ global_colors_info=”{}”][et_pb_row admin_label=”row” _builder_version=”4.16″ background_size=”initial” background_position=”top_left” background_repeat=”repeat” global_colors_info=”{}”][et_pb_column type=”4_4″ _builder_version=”4.16″ custom_padding=”|||” hover_enabled=”0″ global_colors_info=”{}” custom_padding__hover=”|||” sticky_enabled=”0″][et_pb_text admin_label=”Text” _builder_version=”4.19.5″ background_size=”initial” background_position=”top_left” background_repeat=”repeat” custom_padding=”||1px|||” hover_enabled=”0″ global_colors_info=”{}” sticky_enabled=”0″]
ARYABHAT: Introduction:
ARYABHAT-1 is a next-generation analog computing chipset designed to target Artificial-Intelligence (AI) and Machine Learning (ML) applications at the edge. Presently, such computations are achieved by application-specific digital accelerators, which utilize spatial arrays of parallel processing elements to significantly improve performance and energy efficiency compared to general-purpose platforms. This work focuses on building the first-of-its-kind technology scalable reconfigurable analog processor that can be fully scaled down to sub-nanometer process nodes.
Demo:
Paper references:
1. P. Kumar, A. Nandi, S. Chakrabartty and C. S. Thakur, “Process, Bias, and Temperature Scalable CMOS Analog Computing Circuits for Machine Learning,” in IEEE Transactions on Circuits and Systems I: Regular Papers, 2022
2. P. Kumar, A. Nandi, S. Chakrabartty and C. S. Thakur, “Bias-Scalable Near-Memory CMOS Analog Processor for Machine Learning,” in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, doi: 10.1109/JETCAS.2023.3234570.
3. Gu, M. and Chakrabartty, S., 2011. Synthesis of bias-scalable CMOS analog computational circuits using margin propagation. IEEE TCAS I: Regular Papers, 59(2), pp.243-254.
For more details, please click here.
[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]