Solutions to midter 2

Prepared by

Sudhik Klemare Scho.

Pooblem-1 1 Let 14) ABC be a topavile system of the firm 14/ARC = 1/2 (1000) - [1111). Pac = (4) <4) = 1/2 [1000) (200) + 1000) <611 |
+ (111) (200) + (111) (111) To 2 fac? - 1, hence, Pasc es a pure State Sv, H(P) = 0Egelm A . from Lets evaluete purely after tozzing out the friggstite State. fac = top } 14)noc < 41noc } H(BC), = - To } Soc ley Soc } = -1/2 179 1/2 - 1/2 179 1/2 = 12 = 1 H (BC) = 1.

Sec
$$\frac{1}{4}$$
 or $\frac{1}{2}$ or

3	Powe	hat	monohnais	of to	nece d	shace	d fid	eliy
	unden	gnenh	un Chenna	el ach	<i>N</i> .			
Pon	<u> </u>							
	We have	to Shi						
			N(3) -	4(a)	 	9-01	1	
A	guerhe	m ch	const con					aretoi
evo	olum ad	vis on 1	langer	Hilbert	space,	Such	as	
			(p (g) 10)	(a E)				
	We knn	met	- toace	tistace	il lance	nat u	nder (so	neloc
	evolutiv	ms						
	115	-01	= 1 0) 10) CA E	- 00	5 10>69		
					CAR 1	Y® W ¬	- 0 ∞w1	
							= 111-0	11
	_	10 (5	10/61 JU	- U	(0010)	col) UT		
							distance	(2)
								+ unden
NI.		CAAL	he environ	mental	Subays	ROME m, u	taic evu	lum
110	10, 10000	V			, f , f			ENTH
	>		T8 & UL	P 60 10> <	1)0'	- U(of €0 (c) <	
	7		(I) - M					
		"						

Similarly, we have to show that, F(8,0) & F(N18), N16)) Consider, F (Po) - F (UPUT, UFUT) enterin = F (V(80 11) (1)) V(00 10) (1) Vis operating on BE So, F (B,0) = F (B810/01,001001) = # (B) # (10) <01, 10 <01) Su, F(P,0) & F (60 E (U(P @ 10)(01)) Uf) , tr = (u (0 0 10) (01)) = IF ((1)) N(0)) Show that entenglement fidelity is convex center quentum chand Porof: !-

Posblem - 2 1) For an ensamble &= \{ \mathbb{R}(1), \mathbb{V}, \mathbb{Show hat $H(s) \leq H(x)$ $P_{i^{\circ}} \equiv P_{\lambda}(x)$, $|Y_{n}\rangle\langle Y_{n}| \equiv f_{i^{\circ}}$ minhore = Epp fo = Epp Pa(n) (th) POODS: Let us begin wima pure State fr = 14x/<4x1. Let Be states of eystem of. Introduce anchan System R win ostronomal basis 12) corresponding a vider n over Ra(2). Define |AR) = = V PA(n) |4n) |A). As IAR) is a pure state, we evaluate von Neuman entropy as $S(4) = S(R) = S\left(\sum_{n \in X} |R_n(n)| |K|/\langle K| \right) = S(R)$ Let us pension projectie messirements en systm R on m) basis. Post measurements, the state of the system p R = = Bx(x) |2×21.

Refer Theorem: 11.9 (Nelson Chung Brook), Projeche measurement encheases entropy. Hence, $S(P) = S(R) \leq S(R) = H(IR(P))$ Note that $S(P) \leq H(P_{x}) + \sum_{k} P_{k}(n) S(P_{k})$ where Ins are pure states. Farmer more, the above result halds when I way are orchoginal to each other. Consider a more state given by Pa = = P(1) 14) (10), over orminarel decomposition of for , hence, $\mathcal{J} = \frac{1}{2 \epsilon^{x}, 3 \epsilon^{y}} \left(\frac{x}{3} \right) \left(\frac{x}{3} \right$ We know that The such nex.

Hence, we have $S(P) \leftarrow -\frac{1}{n \in \mathbb{N}}, y \in \mathbb{N}$ $R(P) = \frac{1}{n \in \mathbb{N}}, y \in \mathbb{N}$ $R(P) = \frac{1}{n \in \mathbb{N}}, y \in \mathbb{N}$ $R(P) = \frac{1}{n \in \mathbb{N}}, y \in \mathbb{N}$ $\frac{1}{2} \frac{1}{2} \frac{1}$ Appendia: A (Projectie measurement increases entoupy) Let IIn be a complète cet of orthogod projective, and P is the density operations. We need to Ship het P = TapTa after measurements is at least greaten from the original entropy. S(r') > S(r) Ponof. We know precious entropy S (8'115) > 0
& (8'118) = -S(8) - tr (8138') $\Rightarrow -s(f) - ts(f'3f') > 0$

If we show het
$$-ts$$
 ($S18S^3$) = $S(S^3)$, we can prove above theorem.

As $= Ta = T$ de $Ta = Taz$,

 $-ts & S18S^3$
 $= -ts & Taz S18S^3$
 $= -ts & Taz$

Any quentum operation en the same Hilbert space can be visualised as a unimy evolum denoted by U. Assume that we have a noisey quentum state Paris E C. We want to pusity. in the same Hilbert space (2" by penforming quentem oporation (USmin UT) = Smi huse puring p = To 2 Jan 2 ei C2 Affer evolum P2 = To E (USmin Ut) 2 3 = To 3 UPmin UTU from UT? = To S USin UT G Purshy of the state sensing some for any quantum openain en the same Hilbert Space. Geometrical interpolitation! - Consider a mixed state on (uput) Smx C, Pensiming a quartern operain on a mixed State en the same Hilbert space is equivalent perhanga unitary evolution.

Apply	אריכ	centh	m 0	penahi	on	an	J Æ	3loch	Ve	ehrs	లు	CZ	only
									1 L	هام د			
Todal	fes m	e ve	2hr8	es fr	e BI	rh s	phone	· ra	ther	وم	rcessi	s eff	(ergth.
			- any)		<u>a</u>	-	me	· '	1			ď
Hen	ce, p	e1 fm	my L	miten	j op	enalm	on	ے م	ane	Hill	pent s	spale	ynu
			2 0		J						<i>Q</i> ₋ 0		
not 1	in cree	use.	pusyh) of a	give	4 1	nisy	90	conten	v ·	2 KIC		
		, , , , , , , , , , , , , , , , , , ,											
Pusi	ficali	, c	sun	be a	ture	לק	تحريفوم	i ~	ທ	a	Know) re	ference
0 1	2.	0 6	11.00	000	1 110	d in	0 - (2)-(2)	T.		ALD -	+1/16	ent	Space
State S	10 q	25 10	(ŋ u	(00.7 6	4 12	CITA		7	ין	ון סנט	1 11 11.		-,-,-
State S				we	Navo	2 a	set	eres	v~00	pr	re		e as
b. N. 12	X		2		Cara	19		1		1. 1		6	(2) 410
$ \Psi\rangle = C $	7A	en	<u> </u>	•	Ung	ider	a	70 Me	n	SIM		*/A =	(0) TIVA
													12
Son	10 D ()												
Sola) 017	· S'E	te 1		nes								
/ / /	<u> </u>		A)		10	0700	+ 1	1070					
			AR	-	<u> </u>	/ 1014		-		•			1. F
						^	2						(P) (1)
	A .											0 ()	V
	Apply	gins (a CN	UT _	gate		[4/A	-				1 (10)	+ 111/AR
	•				Ť		1.5						ME
							10/2				_		J.
													Ψ ₇
						,	-71	Jf	,7			`	-/-
CALC	0 9	tet	PA	=	Ton	3 1	P'	(P'	14				
		J `	0 (8						4	1	1		
) +11)		2001	4 <11							
		-	V2_		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2							
		0			6 1.			/11/	200	~	111) <11		
	7		1007	001	10	11> (4		111/	00			, -	= =
	13	8,						2					2
					-	1						,	,

Revensibility of fractions operation is impossible thence, to constant a Bell State form a mixed is impussible. However, adding archae form all steam sycom denoted by R, we can township a mixed State MilBell State. (3°), (4)) < F(3°), (4)) + (13°)-3°)||, Poss Consider a projector T = 10/09 wo know that $\| S^{(1)} - S^{(2)} \|_{1} = \max_{0 \le n \le 1} \| S - S^{(1)} - S^{(2)} \|_{2}^{2}$ Now, To & TI (9(1) - 9(2))} = (1 9(1) - 9(2)[1, [As I may not be a maximizing => T8 { T (3")} } = T8 { TT (8")} + 119" - 9(2)|| => To { 10) < 10 } < To { 10) < 1 } (1) } + ||P(1) - P(1)|| \Rightarrow $\mathbb{F}(S^{(1)}, |\phi\rangle) \leq \mathbb{F}(S^{(2)}, |\phi\rangle) + \|S^{(1)} - S^{(2)}\|_{L^{\infty}}$

UA-AC m topenhie State 2) Consider the action of isometry

(4) SRA by produce (4) SASC. Show that $= I \left(R_{i}B \right) + I \left(R_{i}SE \right)_{i}$ $\mathbb{I}(R;A)_{(\psi)} \dashv \mathbb{I}(R;S)_{(\psi)}$ Solution 14) be a pure state. We know that H(SRA) = 0 H(S) = H(RA) H(R) = H(SA) H(A) = H(SR), By applies Brashite cuts. $\mathbf{I}(R,9) = H(R) + H(R9)$ = H(R) + H(A) - H(B) -0 [(R;S) = H(R) TH(S) - H(RS) = H(R) TH(S) - H(A) Adding O & E), we set I (R;4) -1 (R'S) = 24(B) +4(B) -4(B) +4(B) -4(B) -4(B)

RHS: I (RISE) = H(R) + H(B) - H(RB) TH(R) PH(E) - H (RSE) - 3) Let 10) SRBC be a pure State post isometry oven A. Applying bi parofile cuts over the system SRBE, we 8et H (RSE) = M(B) 7 H(RB) = H(SE) 5 MIR) + MIR) - M (SE) - M(R) + M(R) - M(B) = 24(8) = 445. So, the action of isometry U an toppostite state 14) SRA to produce 10 SR36 > yields I (R'3) (4) TI (R'S) (4) TI (R'SE) (4)