Solutions to midterm 2

Prepared by
Sudhir fiumar Scho

Problem-1
(1) Let $|\Psi\rangle_{A B C}$ be a triparite systion of the fum

$$
\begin{aligned}
& |\mu\rangle_{A B C}=1 / \sqrt{2}(|00 c\rangle+|i I\rangle) . \\
& \left.P_{\text {ACC }}=|\Delta\rangle\right\rangle\langle\psi|=1 / 2[|00 c\rangle\langle 000|+|000\rangle\langle i 11| \\
& +|I I\rangle\langle\text { ovo }|+|I I|\langle i n \mid\rangle
\end{aligned}
$$

$\operatorname{Tr}\left\{f_{A B C}^{2}\right\}=$ 1. hence, $P_{A B C}$ is a pure
State
So, $\quad H(\rho)=0$.
Let's evalucle purilyafion tracengont Baston A fiom the fripartite stze.

$$
\begin{aligned}
\rho_{B C}= & \operatorname{tr} A_{A}\left\{|\Psi\rangle_{\operatorname{ACC}}\left\langle\left.\Psi\right|_{\operatorname{ABC}}\right\}\right. \\
= & 1 / 2| | 00\rangle\langle 00|+1 / 2| ||1\rangle\langle 1|=\left[\begin{array}{cccc}
1 / 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 / 2
\end{array}\right] \\
(B C)_{\rho}= & -\operatorname{Tr}\left\{\rho_{B C} \log \rho_{B C}\right\} \\
= & -1 / 2 \log 1 / 2-1 / 2 \log 1 / 2 \\
= & 1 / 2+1 / 2=1 \\
H(B C)_{\rho}= & 1 .
\end{aligned}
$$

Evaluatio piwity: $\quad P=T r\left\{\rho_{B C}{ }^{2}\right\}$

$$
\begin{aligned}
& \rho_{B C}^{2}=1 / 4[|00\rangle\langle 00|+|11\rangle\langle 11|] \\
& T_{r}\left\{\rho_{B C}^{2}\right\}=1 / 2 ; \text { hence, } \operatorname{Tr}\left\{\rho_{B C}^{2}\right\}<1 \Rightarrow \rho_{B C} \text { is }
\end{aligned}
$$

a mixed state.
Simicaly $f r$

The

$$
|\varphi\rangle_{A B C}=1 / \sqrt{3}(|100\rangle+|010\rangle+|001\rangle)
$$

$$
\begin{aligned}
& { }_{4} \text { densiy mamix } \rho_{\text {toc }}=1 / 3(|100\rangle+|010\rangle+|001\rangle) \\
& (<1001+\langle 0101+\langle 001|)
\end{aligned}
$$

$$
\begin{aligned}
f_{B C} & =T_{A}\left\{\rho_{B B C}\right\} \\
& =1 / 3\left[\begin{array}{ccc}
V 00\rangle\langle 00|+ & |10\rangle\langle 10|+|10\rangle\langle 01|+|01\rangle\langle 10|+|01\rangle\langle 01|] \\
|11\rangle & 111\rangle & |10\rangle \\
111\rangle
\end{array}\right. \\
& =\left[\begin{array}{cccc}
1 / 3 & 0 & 0 & 0 \\
0 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
f_{B C}^{2}=1 / q\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Tr $\left\{f_{B C}{ }^{2}\right\}=5 / 9 \Rightarrow f_{B C}$ is a mixed sk.
To evaluate entropy of BC System, we need th obtain its spectral from. Hence, eve need h evaluate the agon values of $f_{B C}$. The eigenvalues are computed urns the chanactanstic eq.n

$$
\begin{aligned}
&\left|S_{B C}-\lambda \mathbb{I}\right|=0 \\
& \Rightarrow\left|\begin{array}{cccc}
1 / 3-\lambda & 0 & 0 & 0 \\
0 & 1 / 3-\lambda & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3-1 & 0 \\
0 & 0 & 0 & -\lambda
\end{array}\right|=0 \Rightarrow \lambda(\lambda-1 / 3)\left[(1 / 3-\lambda)^{2}-1 / 9\right]=0 \\
& \Rightarrow \lambda=0,0,1 / 3,2 / 3
\end{aligned}
$$

$$
f_{B C}^{2}=1 / 9\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], T \gamma\left\{\rho_{B C}^{2}\right\}=\$ / 9 \Rightarrow P_{B C} \text { is a mixed ski. }
$$

$$
\text { So, } H(B C)_{\rho}=-1 / 3 \lg 1 / 3-2 / 3 \log 2 / 3
$$

$$
=1 / 3 \log 3+2 / 3 \log 3 / 2
$$

$$
=0.918
$$

(2) Powre that monoluncity of trace distance of fideling usden quentum chennel acti N.

Poort:-
We have to shiw -

$$
\|N(\rho)-N(\sigma)\|_{1} \leq\|\rho-\sigma\|_{1}
$$

A quernem chornel can be expressed as a iso metri evolution actu's on a angen Hilbent space, such as

$$
\left(\rho^{s} \otimes|c\rangle\left\langle\left. 0\right|^{\epsilon}\right)\right.
$$

We knnw trat trace distance is invenant unter iso retré evolutions

$$
\left.\begin{array}{rl}
\|\rho-\sigma\|_{1}=\| \rho^{s} \otimes|0\rangle\left\langle\left.\right|^{\epsilon}-\sigma \otimes \mid 0\right\rangle\left\langle\left. a\right|^{\epsilon} \|_{1}\right. \\
& {\left[\text { As }\|\rho \otimes \omega-\sigma \otimes \omega\|_{1}\right.} \\
& =\|p-\sigma\|_{1}
\end{array}\right]
$$

CTrace distrace is esvariat unden Ŕsomemic evulumi]
Now, treecin out the eqvironmental subsyston, we have

$$
\begin{aligned}
& \geqslant\left\|T \gamma _ { E } \sum U \left(\rho \otimes|0\rangle\left\langle\left.\right|^{t}\right) u^{f}-U\left(\sigma \otimes|c\rangle\left\langle\left. 0\right|^{t}\right) u^{f} \|_{1}\right.\right.\right. \\
& =\|N(\rho)-N(\sigma)\|_{1} \text { I介 }
\end{aligned}
$$

Similarly, we hove ho show that,

$$
\begin{aligned}
& \mathbb{A}(\rho, \sigma) \leq \mathbb{F}(N(\rho), N(\sigma)) \\
\text { Considen, } & \mathbb{F}(\rho, \sigma)=\mathbb{F}\left(U \rho U^{\dagger}, u \sigma U^{+}\right)
\end{aligned} \quad\left[\begin{array}{l}
\left.U^{A \rightarrow B E} \begin{array}{l}
\text { be an } \\
\text { isometric } \\
\text { extec in }
\end{array}\right] \\
=
\end{array}\right.
$$

[U is operating on $B E$]

$$
\text { So, } \begin{aligned}
\mathbb{F}(\rho, \sigma) & =\mathbb{F}(\rho \otimes|0\rangle\langle 0|, \sigma \otimes|0\rangle\langle 0|) \\
& =\mathbb{F}(\rho, \sigma) \mathbb{F}(|0\rangle\langle 0|,|0\rangle\langle 0|)
\end{aligned}
$$

So, $\mathbb{F}(\rho, \sigma) \leq \mathbb{F}\left(\mathbb{f}_{E}\left(u(\rho \otimes|1\rangle\langle 0|) u^{+}\right)\right.$

$$
\begin{align*}
& \left.\quad, \operatorname{tr}_{E}\left(u(\sigma \otimes c\rangle\langle 01) u^{\dagger}\right)\right) \\
& =\operatorname{IF}(V(\rho), N(\sigma)) \tag{团}
\end{align*}
$$

Show that entanglement fidelity is convex center quernem chard N

Proof:-:

We have 10 show that

$$
\begin{aligned}
& \mathbb{F e}\left(\lambda \rho_{1}+(1-\lambda) P_{2}, \gamma\right) \\
& \quad \leq \lambda \mathbb{F}_{e}\left(\rho_{1}, v\right)+\left((1-\lambda) \mathbb{F e}\left(\rho_{2}, \nu\right)\right.
\end{aligned}
$$

Form the trecarm trught eis the cices, ve knais_{1} a that quanken chansel of win Kreus openatrss Aow, the eitanglement fideling is given by

$$
\begin{equation*}
\mathbb{F}_{c}(\rho, v)=\sum_{m}\left|T_{t}\left\{\rho^{A} A_{m}\right\}\right|^{2} \tag{1}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
& \operatorname{Fe}\left(\lambda \rho_{1}+(1-\lambda) \rho_{2}, N\right) \\
= & \sum_{m}\left|\operatorname{Tr}\left\{\left(\lambda \rho_{1}+(1-\lambda) \rho_{2}\right)^{A} A_{m}\right\}\right|^{2} . \\
= & \sum_{m}\left|\operatorname{Tr}\left\{\left(\lambda \rho_{1}\right)^{A} A_{m}+\left((1-\lambda) \rho_{2}\right)^{A} A_{m}\right\}\right|^{2} \\
= & \sum_{m}\left|\operatorname{Tr}\left\{\left(\lambda \rho_{1}\right)^{A} A_{m}\right\}+\operatorname{Tr}\left\{\left((1-\lambda) \rho_{2}\right)^{A} A_{m}\right\}\right|^{2} . \\
= & \sum_{m}\left|\lambda \operatorname{Tr}\left\{\rho_{1} A_{m}\right\}+(1-\lambda) \operatorname{Tr}\left\{\rho_{2} A_{m}\right\}\right|^{2 .} \\
\leqslant & \sum_{m} \lambda\left|\operatorname{Tr}\left\{\rho_{p} A_{m}\right\}\right|^{2}+(1-\lambda)\left|\operatorname{Tr}\left\{\rho_{2} A_{m}\right\}\right|^{2} .
\end{aligned}
$$

[Thes enequalin hilds for comenily of 2]

Hence,

$$
\begin{aligned}
& \mathrm{Fe}_{1} \\
& \mathbb{F}_{e}\left(\lambda \rho_{1}+(1-\lambda) \rho_{2}, N\right) \leqslant \lambda \mathbb{F} \operatorname{Fe}(\rho, N) \\
& f(1-\lambda) \mathbb{F e}\left(\rho_{2}, N\right)
\end{aligned}
$$

Problem -2
(1) For an ensample $\varepsilon_{0}=\left\{\mathbb{R}_{x}(n),\left|\psi_{x}\right\rangle\right\}$, Show hat

$$
\begin{gathered}
H(\rho) \leq H(x), \\
p_{i}=\mathbb{P}_{x}(x), \quad\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| \equiv \rho_{i} \\
\text { mixhre }=\sum_{i} p_{i} \rho_{L_{0}} \equiv \sum_{x \in x} \mathbb{P}_{x}(x)\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|
\end{gathered}
$$

Proof:
Let us begin win pure state $\rho_{x}=\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|$.
Let P_{x} be states of system A. Introduce anctren Boston \mathbb{R} win ortromomal basis $|x\rangle$ correspunaring to index x over : $\quad \mathbb{P}_{\lambda}(x)$.

Define $|A R\rangle=\sum_{x \in \lambda} \sqrt{\mathbb{P}_{x}(x)}\left|\psi_{x}\right\rangle|x\rangle$.
As $|A R\rangle$ is a pure state, we evaluate voe Neumom entropy as $S(A)=S(R)=S\left(\sum_{x \in x} \mathbb{R}_{\lambda}(n)\left|\psi_{n}\right\rangle\left\langle\psi_{i}\right|\right)=S(\beta)$

Let us penfom projective measurements on system \mathbb{R} on
mi) basis. Post measurements, the stale of the system R is $\quad \rho^{\prime}=\sum_{x \in x} \mathbb{R}_{x}(x)|x\rangle\langle x|$.

Refer Theoren: 11.9 (Ne/sin Chuary Busk), Projeene meesurement éncreases entropy.
Hence, $\quad S(\rho)=S(R) \leqslant S\left(f^{\prime}\right)=H\left(\mathbb{P}_{x}(x)\right)$

Note that

$$
S(\rho) \leq H\left(P_{x}\right)+\sum_{x} P_{x}(x) S\left(\rho_{x}\right)
$$

whene ρ_{x} s are pure states.
Fartrenmore, the above result hilds when $|\psi x\rangle$ are orthoginal to eech othen.

Considen a mixed skie given by

$$
\rho_{x}=\sum_{y_{\in r}} \mathbb{R}_{r}(y)_{x}|y\rangle_{x}\left\langle\left. y\right|_{x}\right. \text {, over orinmomel }
$$

decompusing of Bx_{x}; hence,

$$
\rho=\sum_{x \in x, y \in Y} P_{x}(x) P_{r}(y)|y\rangle_{x}^{x}\left\langle\left. y\right|_{x} .\right.
$$

We know thet $\sum_{3} \mathbb{R}_{Y}(y)=1$ for ach $x \in X$.

Hence, we have

$$
\begin{aligned}
& S(\rho) \leqslant-\sum_{x \in x, y \in Y} \mathbb{P}_{x}(x) \mathbb{P}_{Y}(y)_{x} \log \left\{\mathbb{P}_{x}(\eta) \mathbb{P}_{y}(\omega)_{x}\right\} \\
& =-\sum_{x \in x} P_{x}(x) \lg P_{x}(x)-\sum_{x \in x} B_{x}(x) \sum_{y \in r} P_{r}(y)_{x} \log P_{r}()_{x} \\
& =H\left(P_{x}(n)\right)+\sum_{x \in x} P_{x}(x) S\left(p_{x}\right) \text {. }
\end{aligned}
$$

TC

Appendia:- A (Projeenie measurement encreeses entropy)
Poorf:
Let π_{n} be a complete setif ortinegral projectrs, and ρ is the density openatro. We need to Shiw thet

$$
\rho^{\prime}=\sum_{x} \pi_{x} \rho \pi_{x} \quad \text { aften }
$$

meesurements is at leest greaten tran the onsinal entropy.

$$
S\left(\rho^{\prime}\right) \geqslant S(\rho)
$$

Proof:-
We krom trat relative entropy $S\left(\rho^{\prime} \| \rho\right) \geqslant 0$

$$
\begin{aligned}
& \& \\
& s\left(\rho^{\prime} \| \rho\right)=1 \\
& \Rightarrow \quad-s(\rho)-\operatorname{tr}\left(\rho \lg \rho^{\prime}\right) \\
& \Rightarrow-\operatorname{tr}\left(\rho \log \rho^{\prime}\right) \geqslant 0
\end{aligned}
$$

$$
\Rightarrow \quad s(s) \leq-\operatorname{tr}\left(s \operatorname{lig} \rho^{\prime}\right)
$$

If we Show hat $-\operatorname{tr}\left(\rho \log s^{\prime}\right)=s\left(s^{\prime}\right)$, we can prove the above theorem.
As

$$
\begin{aligned}
& \bar{A} \pi_{x}=I \& \pi_{x}^{2}=\pi_{x}, \\
& \\
& -\operatorname{tr}\left\{\rho \operatorname{lrg} \rho^{\prime}\right\} \\
& =-\operatorname{tr}\left\{\sum_{x} \pi_{x} \rho \log \rho^{\prime}\right\} \\
& =-\operatorname{tr}\left\{\sum_{x} \pi_{x}^{2} \rho \log \rho^{\prime}\right\}\left(\pi_{x}=\pi_{x}^{2}\right) \\
& = \\
& -\operatorname{tr}\left\{\sum_{x} \pi_{x} \rho \log \rho^{\prime} \pi_{x}\right\}\binom{\text { cyclic propaig}}{\text { of traci }}
\end{aligned}
$$

As $\rho^{\prime}=\sum_{x} \pi_{x} \rho \pi_{x}$

$$
\Rightarrow \rho^{\prime} \pi_{x}^{x}=\sum_{x} \pi_{x} \rho \pi_{z}^{2}=\pi_{x} \rho^{\prime}
$$

$$
\Rightarrow \quad\left[\pi x, \rho^{\prime}\right]_{0}=0 \Rightarrow\left[\pi x, \log \rho^{\prime}\right]=0
$$

π_{x} commuirs win $\rho^{\prime} \Rightarrow \pi_{x}$ also commutes win $\log \rho \hat{\rho}$

$$
\begin{aligned}
\Rightarrow \quad-\operatorname{tr}\left\{\rho \log \rho^{\prime}\right\} & =-\operatorname{tr}\left\{\sum_{x} \pi_{x} \rho \pi_{x} \log \rho^{\prime}\right\} \\
& -\operatorname{tr}\left\{\rho^{\prime} \log \rho^{\prime}\right\}=S\left(\rho^{\prime}\right)
\end{aligned}
$$

(2)

Ary querkem openelin in the same Hilbent space can be visnalised as a Uniting evoluti denofed by U.
Assume that we have a ooisy querkem state $P_{\text {oix }} \in \mathbb{C}^{2}$ a. We want to purit. in the sare Hilbent space \mathbb{T}^{2} by penforning quentem oporatin $\left(U \rho_{m i x} U^{+}\right)=\rho_{m t}$
hets pusity $p_{1}=\pi \delta\left\{\rho_{\text {mix }}^{2}\right\}$ in \mathbb{T}^{2}

$$
\begin{aligned}
& =\operatorname{Tr}\left\{U \rho_{\min } U^{\top} U \rho_{\max } U^{+\}}\right. \\
& =\operatorname{Tr}\left\{U \rho_{\operatorname{six}}^{2} U^{+}\right\} \\
& =\operatorname{Tr}\left\{\rho_{\operatorname{six}}^{2} \cdot\right\}=P_{1}
\end{aligned}
$$

Punity of the stzte revains the same for any quenken openelin in the same Hilbent space

Geometrical inten pritam!-
Consider a mixed state en

Penfuming a quantem operatin on a mixed to pertaniga unitory evoluti.

Applying ceniting openati on any $\mathbb{B l o c h}$ vaetro is \mathbb{C}^{2} anly rotates the veetrer is the Blich sphene. rather fran eicreasing ét leogith.
Hence, perfining any Unitory openatin on the same Hilbent space will not iricncase the purith of a giver nolsy quartem state.
Purificetin can be dore by brossing in a known refenence State so as to increase the dinension of joint tilbent space. we have a refeneence pure shate as
$|4\rangle_{R}=\mid \phi_{q,}$ in \mathbb{C}^{2}. Consider arotran stare $|\phi\rangle_{A}=\frac{\left.(0)_{A}+1\right\rangle_{A}}{\sqrt{2}}$
So, jure joit state becomes

$$
|\phi\rangle_{A R}=\frac{|00\rangle_{A R}+|10\rangle_{A R}}{\sqrt{2}}
$$

Applyins a CNUT gate:-

we get $\rho_{A}=F_{\gamma_{R}}\left\{\left|\Phi^{\top}\right\rangle\left\langle\phi^{+}\right|\right\}$.

$$
\begin{aligned}
& \left(\frac{100\rangle+111}{\sqrt{2}}\right)\left(\frac{\langle 00|+\langle 11}{\sqrt{2}}\right) \\
\operatorname{Tr}_{\gamma_{1}} & {\left[\frac{|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|}{2}=\frac{\pi}{2}\right.}
\end{aligned}
$$

Revensibity of tracons opereati is inpussible. Hence, to construct a
Bell state form a muxed state is inp fom a differant systm dencted by R, we ceen transform a mioed state N_{1} |Bell state.

$$
\text { (5) } \mathbb{F}\left(\rho^{(1)},|\psi\rangle\right) \leq \mathbb{F}\left(\rho^{(2)},|\psi\rangle\right)+\left\|\rho^{(1)}-\rho^{(2)}\right\|_{1}
$$

Prool:-
Consider a projeeror $\pi=|\phi\rangle\langle\phi|$
we know that

$$
\left\|\rho^{(1)}-\rho^{(2)}\right\|_{1}=\max _{0 \leqslant n \leqslant \mathbb{I}} \operatorname{Tr}\left\{\Lambda\left(\rho^{(1)}-\rho^{(2)}\right)\right\}
$$

Now, $\operatorname{tr}\left\{\pi\left(\rho^{(1)}-\rho^{(2)}\right)\right\} \leq\left\|\rho^{(1)}-\rho^{(2)}\right\|_{1}$
[is π may nat be a maximizis

$$
\begin{aligned}
& \Rightarrow \operatorname{Tr}\left\{\pi\left(\rho^{(1)}\right)\right\} \leq \operatorname{Tr}\left\{\pi\left(\rho^{(2)}\right)\right\}+\left\|\rho^{(1)}-\rho^{(2)}\right\|_{1} \\
& \Rightarrow \operatorname{Tr}\left\{|\varphi\rangle\langle\phi| \rho^{(1)}\right\} \leq \operatorname{Tr}\left\{|\varphi\rangle\langle\phi| \rho^{(2)}\right\}+\left\|\rho^{(1)}-\rho^{(2)}\right\|_{1} \\
& \Rightarrow \operatorname{Tr}\left\{\langle\varphi| \rho^{(1)}|\varphi\rangle\right\} \leq \operatorname{Tr}\left\{\langle\phi| \rho^{(0)}|\varphi\rangle\right\}+\left\|\rho^{(1)}-\rho^{(2)}\right\|_{1} \\
& \Rightarrow \mathbb{F}\left(\rho^{(1)},|\phi\rangle\right) \leq \mathbb{F}\left(\rho^{(2)},|\varphi\rangle\right)+\left\|\rho^{(1)}-\rho^{(2)}\right\|_{\|}
\end{aligned}
$$

(3) (1) Hrove that $\mathbb{I}(A, B) \leq 2 \mathrm{~min}\left(\log \left(t_{A}\right), \log \left(d_{B}\right)\right)$

Whene d_{A}, d_{B} are dimenson of quertem systm $A \& B$ respeenly.
Solumi:
we konw that $\left.\left.I(A, B)_{\rho}=H(A)_{\rho}+H \mid B\right)_{\rho}-H \mid A B\right)_{\rho}$

$$
\begin{aligned}
& =H(A)_{\rho}-H(A \mid B)_{\rho} \\
\text { trat } & \left.=H(A)_{\rho}-H(B) A\right)_{\rho}
\end{aligned}
$$

we knus $H(A / B) \leq H(A)$

$$
\begin{aligned}
\leq \log d_{A} & \Rightarrow|H(A \mid A)| \leq \operatorname{lgg} d_{A} \\
& \Rightarrow \quad-H|A| B) \leq \lg d_{A} .
\end{aligned}
$$

Sinilarly, $H(B / A) \leq H(B)$

$$
\begin{aligned}
\leq \lg g_{2} d_{3} & \Rightarrow \mid H(B) A) \mid \leq \log d_{3} \\
& \Rightarrow-H\left(B A_{A}\right) \leq \log d_{3}
\end{aligned}
$$

So,

$$
\begin{align*}
\mathbb{I}(A, B) & =\pi / a)_{\rho}-\pi(A / B)_{\rho} \\
& \leq \log d_{7}+\left(r_{8} d_{A}\right. \\
& \leq 2 \log d_{\lambda} \tag{1}
\end{align*}
$$

Funtmen,

$$
\begin{align*}
I(A, B) & =H(B)-H(B \mid A) \\
& \leq 2 \lg d_{B} . \tag{2}
\end{align*}
$$

So, combrs (1) \& (2)

$$
\mathbb{I}(A ; B) \leq 2 \min \left(\cos d_{A}, \cos d_{3}\right) .
$$

(2) Consitien the actin of isometrly $U^{A \rightarrow B E}$ in tripartitu state |4) SRA t prortuce $\left|\Phi^{\text {SASE }}\right\rangle$. Show that

$$
\left.\mathbb{I}(R ; A)_{|\Psi\rangle}+\mathbb{I}(R ; S)_{|\psi\rangle}^{\prime}=\mathbb{I}(R ; B)_{|\varphi\rangle}+\mathbb{I}(R ; S E)_{\phi\rangle}\right\rangle
$$

Soluti:-
Let $|\Psi\rangle$ bht be a pure state. We know thet

$$
\left.\left.\begin{array}{rl}
H(S R A) & =0 \\
H(S)=H(R A) \\
H(R)=H(S A) \\
H(A)=H(S R)
\end{array}\right\} \quad B y \text { apping Biparhtite } \begin{array}{rl}
\text { cuts: }
\end{array}\right\} \begin{aligned}
I(R ; T)= & H(R)+H(A)-H(R A) \\
= & H(R)+H(A)-H(S)-(1) \\
\mathbb{I}(R ; S)= & H(R)+H(S)-H(R S) \\
= & H(R)+H(S)-H(A) \quad \text { (2) }
\end{aligned}
$$

Adding (1) \& (2), we get

$$
\begin{aligned}
& I(R ; A)+I(R \prime S) \\
= & H(R)+H(A)-H(S)+H(R)+H(S)-H(P) \\
= & 2 H(R)
\end{aligned}
$$

RUS:- II $(R ; B) \quad \mid I(R ; S E)$.

$$
\begin{align*}
=H(R) & +H(B)-H(R B) \\
& +H(R)+H(S E)-H(R S E) . \tag{3}
\end{align*}
$$

Let $|D\rangle^{\text {SRBE }}$ be a pure state post isometry oven A.
Applying bipartite cuts oven the syston SRBE, we
get

$$
\left.\begin{array}{l}
H(R S E)=H(B) \\
H(R B)=H(S E)
\end{array}\right\}
$$

$$
H(R)+H(B)-H\left(g^{(}\right)=H(R)+H\left(s^{2}\right)-H(B) \text {. }
$$

$$
=2 H(R)=\text { LHS } .
$$

So, the action of isuretry $U^{A \rightarrow B E \text { the }}$ $|4\rangle^{\text {SRA }}$ to produce $\left|Q^{\text {SR BE }}\right\rangle$ yields

$$
\mathbb{I}(R ; A)|\varphi\rangle+I(R ; S)_{|\varphi\rangle}=\mathbb{I}(R ; B\rangle|\varphi\rangle+\mathbb{I}(R ; S E)_{|Q\rangle}
$$

