# Mid-term exam solution key

## Prayag

Neural networks and learning systems-I

May 21, 2019

#### Problem 1.

Solution. 1. Consider the update equation

$$\overline{W}(n+1) = \overline{W}(n) - \eta \Delta \overline{W} \tag{1}$$

where  $\overline{W}(n)$  is the weight vector at time n,  $\eta$  is the learning rate, and  $\Delta \overline{W}$  is the gradient of the cost function with respect to the weight vector  $\overline{W}(n)$ .

- (a) The learning rate must be increased when the derivative of the cost function with respect to a weight vector has the same algebraic sign to accelerate the convergence of the algorithm.
- (b) The learning rate must be decreased when the algebraic sign of the derivative of cost function alternates with consecutive iterations. This reduces the oscillations during the convergence fo the algorithm.
- 2. This follows from the composition of linear maps. Consider a affine linear map g(x) = ax + b where a and b are non-zero constants. Similarly f(x) = a'x + b' with a' and b' being non-zero constants. Consider the composition f(g(x)) = cx + d where c = aa' and d = a'b + d which is again a affine linear map.
- 3. Linear regression:  $Y = \sigma_0 + \sigma_1 X + \epsilon$ , Quartic regression:  $Y = \sigma_0 + \sigma_1 X + \sigma_2 X^2 + \sigma_3 X^3 + \sigma_4 X^4 \epsilon$ , LRSS: training residual sum of squares for linear regression, and QRSS: training residual sum of squares for quartic regression.

Case 1: Let  $\epsilon \neq 0$  and  $\mathbb{E} = 0$ . In the case of linear regression,  $Y = f(x) + \epsilon$  we have

$$\mathbb{E}\left((y-\hat{y})^{2}\right) = \mathbb{E}\left(f(x) + \epsilon - \hat{f}(x)\right)^{2}$$

$$= \mathbb{E}\left(f(x) - \hat{f}(x)\right)^{2} + \mathbb{E}(\epsilon^{2}) + 2\mathbb{E}(\epsilon)\mathbb{E}\left(f(x) - \hat{f}(x)\right)$$

$$= \mathbb{E}\left(f(x) - \hat{f}(x)\right)^{2} + \underbrace{\operatorname{Var}(x)}_{\text{can be minimized}}$$
(2)

Since Var(x) cannot be minimized using linear regression and on the other hand the quartic regression is more flexible and can even fit the points with noise, therefore



Figure 1: A  $3 \times 3$  image.

 $QRSS \leq LRSS$ .

Case 2: With  $\epsilon = 0$ , the relationship is truly linear i.e.,  $Y = \sigma_0 + \sigma_1 X$ . In such cases, LRSS and QRSS will be equal since both of the models can fit the data exactly.

4. Consider a  $3 \times 3$  image as shown in Figure 1 and a  $2 \times 2$  kernel as shown in Figure 2. Moving the kernel over the  $3 \times 3$  image we get 4 outputs which is given by



Figure 2: A  $2 \times 2$  kernel.

$$a_1 = x_1k_1 + x_2k_2 + x_4k_3 + x_5k_4$$

$$a_2 = x_2k_1 + x_3k_2 + x_5k_3 + x_6k_4$$

$$a_3 = x_4k_1 + x_5k_2 + x_7k_3 + x_8k_4$$

$$a_4 = x_5k_1 + x_6k_2 + x_8k_3 + x_9k_4.$$

Graphical illustration of all the connections is shown in Figure 3



Figure 3

## Problem 2.

Solution. The intermediate variables in the network shown in Figure 4 is given by

$$v_{1} = x_{1} + x_{2} + x_{3} - 0.5$$

$$v_{2} = x_{1} + x_{2} + x_{3} - 1.5$$

$$v_{3} = x_{1} + x_{2} + x_{3} - 2.5$$

$$y_{1} = \phi(v_{1})$$

$$y_{2} = \phi(v_{2})$$

$$y_{3} = \phi(v_{3})$$
(3)

where

$$\begin{cases} 1 & x \ge 0 \\ 0 & \text{Otherwise} \end{cases} \tag{4}$$

3



Figure 4: 3-bit XOR network.



Figure 5: n-bit XOR network.

Table 1: Intermediate variables in the network

| $x_1$ | $ x_2 $ | $ x_3 $ | $ v_1 $ | $v_2$ | $ v_3 y_1$ | $y_2 \mid y_3$ | $ z  \phi(z)$ | z) |
|-------|---------|---------|---------|-------|------------|----------------|---------------|----|
| 0     | 0       | 0       | -0.5    | -1.5  | -2.5   0   | 0 0            | -0.5   0      |    |
| 0     | 0       | 1       | 0.5     | -0.5  | -1.5   1   | 0 0            | 0.5   1       |    |
| 0     | 1       | 0       | 0.5     | -0.5  | -1.5   1   | 0 0            | 0.5   1       |    |
| 0     | 1       | 1       | 1.5     | 0.5   | -0.5   1   | 1   0          | -0.5   0      |    |
| 1     | 0       | 0       | 0.5     | -1.5  | -1.5   1   | 0 0            | 0.5   1       |    |
| 1     | 0       | 1       | 1.5     | 0.5   | -0.5   1   | 1   0          | -0.5   0      |    |
| 1     | 1       | 0       | 1.5     | 0.5   | -0.5   1   | 1 0            | -0.5   0      |    |
| 1     | 1       | 1       | 2.5     | 1.5   | 0.5   1    | 1   1          | 0.5   1       |    |

## Problem 3.

Solution. The cost function is given by

$$J(\overline{W}) = \sum_{x \in \mathscr{H}} \left( -\overline{W}^{\mathrm{T}} x \right) \tag{5}$$

where  $\mathcal{H}$  is the of misclassified inputs. Differentiating  $J(\overline{W})$  with respect to  $\overline{W}(n)$  we get

$$\nabla_{\overline{W}}J(\overline{W}) = \sum_{x \in \mathscr{H}} -x \tag{6}$$

The weight vector is updated as follows:

$$\overline{W}(n+1) = \overline{W}(n) - \eta(n)\nabla_{\overline{W}}J(\overline{W})$$

$$= \overline{W}(n) + \eta \sum_{x \in \mathscr{H}} x$$
(7)

where  $\eta$  is assumed to remain same for all n, say  $\eta=1$ . Let the initial weight vector be  $\overline{W}(0)=\overline{0}$ . Consider  $\overline{W}^{\mathrm{T}}\overline{x}\leq 0$  and  $\overline{x}(n)\in\mathscr{H}$  is the set of misclassified samples. We know that

$$\overline{W}(n+1) = \overline{W}(n) + \sum_{\overline{x} \in \mathscr{H}} \overline{x}$$

$$= \sum_{\overline{x} \in \mathscr{H}_0} \overline{x} + \dots + \sum_{\overline{x} \in \mathscr{H}_n} \overline{x}$$
(8)

let us consider a  $\overline{W}_0$  such that  $\overline{W}_0^T \overline{x} > 0$  for all  $\overline{x}(n)$  belongs to class 1. Pre-multiplying the above equation by  $\overline{W}_0^T$  we get

$$\overline{W}_0^{\mathrm{T}} \overline{W}(n+1) = \sum_{\overline{x} \in \mathscr{H}_0} \overline{W}_0^{\mathrm{T}} \overline{x} + \dots + \sum_{\overline{x} \in \mathscr{H}_n} \overline{W}_0^{\mathrm{T}} \overline{x}. \tag{9}$$

Let  $\alpha = \min_{\overline{x} \in \mathscr{H}} \overline{W}_0^{\mathrm{T}} \overline{x}$ . Using Cauchy-Schwartz inequality we get

$$\|\overline{W}_{0}\|^{2} \|\overline{W}_{n+1}\|^{2} \ge (n+1)^{2} \alpha^{2}$$

$$\|\overline{W}_{n+1}\|^{2} \ge \frac{(n+1)^{2} \alpha^{2}}{\|\overline{W}_{0}\|^{2}}$$
(10)

We know that,

$$\overline{W}(n+1) = \overline{W}(n) + \sum_{\overline{x} \in \mathcal{H}_n} \overline{x}$$

$$\|\overline{W}(n+1)\|^2 = \|\overline{W}(n)\|^2 + \|\sum_{\overline{x} \in \mathcal{H}_n} \overline{x}\|^2 + 2\overline{W}^{\mathrm{T}}(n) \sum_{\overline{x} \in \mathcal{H}_n} \overline{x}$$

$$\|\overline{W}(n+1)\|^2 \leq \|\overline{W}(n)\|^2 + \|\sum_{\overline{x} \in \mathcal{H}_n} \overline{x}\|^2$$

$$\leq \sum_{1}^{n} \|\sum_{\overline{x} \in \mathcal{H}_n} \overline{x}\|^2$$

$$\leq (n+1)\beta$$
(11)

where  $\beta = \max_i \|\sum_{\overline{x} \in \mathscr{H}_i} \overline{x}\|^2$ . Using equations (10) and (11) we get

$$n_{\text{max}} = \left(\frac{\beta}{\alpha^2} \|\overline{W}_0\|^2\right) - 1. \tag{12}$$

Therefore the batch perceptron algorithm converges after  $n_{\text{max}}$  epochs.

### Problem 4.

Solution. Consider through the Taylor series expansion

$$E_{\text{avg}}\left(\overline{W}(n) + \Delta \overline{W}(n)\right) = E_{\text{avg}}\left(\overline{W}(n)\right) + \overline{g}^{\text{T}}(n)\Delta \overline{W}(n) + \frac{1}{2}\Delta \overline{W}(n)^{\text{T}}\mathbf{H}(n)\Delta \overline{W}(n) + \text{h.o.t} \quad (13)$$
and neglecting the h.o.t we get

$$E_{\text{avg}}\left(\overline{W}(n) + \Delta \overline{W}(n)\right) = E_{\text{avg}}\left(\overline{W}(n)\right) + \overline{g}^{\text{T}}(n)\Delta \overline{W}(n) + \frac{1}{2}\Delta \overline{W}(n)^{\text{T}}\mathbf{H}(n)\Delta \overline{W}(n). \tag{14}$$

Differentiating the above equation with respect to  $\Delta \overline{W}(n)^{\mathrm{T}}$  we get

$$\frac{\partial E_{\text{avg}} \left( \overline{W}(n) + \Delta \overline{W}(n) \right)}{\partial \Delta \overline{W}(n)^{\text{T}}} = 0$$

$$\mathbf{H}(n) \Delta \overline{W}(n) = -\overline{g}(n)$$

$$\Delta \overline{W}(n)^{\text{T}} = -\mathbf{H}^{-1}(n)\overline{g}(n)$$
(15)

provided  $\mathbf{H}^{-1}(n)$  exists. One can also get a pseudo-inverse of  $\mathbf{H}$  in case of singularity. The advantages of Hessian are as follows:

- 1. Accelerated convergence.
- 2. Possibly low rank approximations over  ${\bf H}$  to obtain low complexity algorithms (i.e., there is control on complexity).