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PROBLEM 1: This problem has 3 parts.
Let Vn be the spaces generated from the Haar scaling function φ(2nt− k), where k is any integer.

(1) What are the dimensions of Vn andWn over the interval t ∈ [0, 1)? (5 pts.)

(2) With the usual notations as followed in the class, we have Vn = V0
n−1⊕
k=0

Wk. Obtain the dimensions

in V0 and {Wk}n−1
k=0 and use this to evaluate your answer for the dimension of Vn. How does it

compare to your result in sub part 1 of Problem 1? (10 pts.)
(3) Expand the signal s(t) = 1− t2 over the interval t ∈ [−1, 1] using the Haar wavelet. (10 pts.)

Solution
Part 1: The wavelets in Vn andWn have support over non-overlapping intervals of length 2−n.

Therefore, the dimensions of Vn and Wn over the interval t ∈ [0, 1) is 2n.

dim(Vn) = 2n = dim(Wn).

Part 2: V0,W0,W1,......... are all orthogonal spaces. Therefore,

Vn = V0

n−1⊕
k=0

Wk

=⇒ dim(Vn) = dim(V0) +

n−1∑
k=0

dim(WK)

= 1 +

n−1∑
k=0

2k = 1 + (2n − 1) = 2n.

The result agrees with part 1.
Part 3:

-1 +1 t

S(t)=1-t2

+1

Since the support of s(t) is [−1, 1], the wavelet representation corresponding to Wn will have
2n+1coefficients.

s(t) = a
(0)
−1φ(t+ 1) + a

(0)
0 φ(t) +

∞∑
n=0

2n−1∑
k=−2n

bnkψ(2
nt− k)

The coefficients a(0)−1, a
(0)
0 , {b(n)k } can be obtained by projecting s(t) on to orthogonal basis.

〈φ (t+ 1) , s (t)〉 = a
(0)
−1 〈φ (t+ 1) , φ (t+ 1)〉

=⇒ a
(0)
−1 = 〈φ (t+ 1) , s (t)〉 =

∫ 0

−1
(1− t2)dt = 2

3
=⇒ a

(0)
−1 =

2

3
.

Similarly,

a
(0)
0 =

2

3



ψ(2nt− k) =


1, k

2n ≤ t ≤ k
2n + 1

2n+1

−1, k
2n + 1

2n+1 ≤ t ≤ k+1
2n

0, otherwise.

〈ψ(2nt− k), ψ(2nt− k)〉 = 1

2n

=⇒ bnk = 2n 〈s(t), ψ(2nt− k)〉

= 2n
∫ k

2n+ 1

2n+1

k
2n

(1− t2)dt−
∫ k+1

2n

k
2n+ 1

2n+1

(1− t2)dt

= 2n[
2k + 1

2n+1
− 1

3
(
2k + 1

2n+1
)3 − k

2n
+

1

3

(
k

2n

)3

= (2k + 1)2−2n−2.

∴ s(t) =
2

3
φ(t+ 1) +

2

3
φ(t) +

∞∑
n=0

2n−1∑
k=−2n

(2k + 1)2−2n−2ψ(2nt− k)
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PROBLEM 2: The following points (2, 0)T , (3,−1)T , (2,−2)T and (1,−1)T occur with probabilities 1/8,
1/8, 3/8 and 3/8 respectively.

(1) Obtain the KL representation of the points. (8 pts.)
(2) If you were to reduce the points to 1D, how would you optimally represent them? Sketch the new

1D points carefully. (6 pts.)
(3) What fraction of the energy is lost by doing a dimensionality reduction in the previous step? (5 pts.)
(4) Suppose these four points correspond to four different classes, sketch the linear decision boundaries

to separate the original set of points in 2D as well as in 1D after dimensionality reduction. Write
down the equations of the boundaries explicitly. Are the linear decision boundaries unique? (6 pts.)

Solution

Part 1: µ = 1
8

[
2
0

]
+ 1

8

[
3
−1

]
+ 3

8

[
2
−2

]
+ 3

8

[
1
−1

]
=

[
7
4−5
4

]

C + µµ> =

[
7
2

−9
4−9

4 2

]
=⇒ C =

[
7
2

−9
4−9

4 2

]
−
[

7
4−5
4

] [
7
4

−5
4

]
=

1

16

[
7 −1
−1 7

]
.

The eigen decomposition of the covariance matrix is:

C =
1

16

[
7 −1
−1 7

]
=

[
1√
2

1√
2−1√

2
1√
2

] [
1
2 0
0 3

8

][ 1√
2

−1√
2

1√
2

1√
2

]
.

The eigen values are λ1 = 1
2 , λ2 = 3

8 .

Therefore KL representation of the point
[
x
y

]
is

[
1√
2

−1√
2

1√
2

1√
2

] [
x
y

]
= 1√

2

[
x− y
x+ y

]
.[

2
0

]
↔
[ √

2√
2

]
;
[

3
−1

]
↔
[

2
√
2√
2

]
;
[

2
−2

]
↔
[

2
√
2

0
√
2

]
;
[

1
−1

]
↔
[ √

2
0

]
Part 2: If the points are reduced to 1D, we take the first coordinate in the KL representation

so that maximum energy is retained. The new points are
a′′ =

√
2, b′′ = 2

√
2, c′′ = 2

√
2, d′′ =

√
2.

a′ = (
√
2, 0)

b = (2,−2)

c = (3,−1)

d = (2, 0)

a = (1,−1)

KL Transform

Y

X

Y ′

X ′

b′ = (2
√
2, 0)

d′ = (
√
2,
√
2)

c′ = (2
√
2,
√
2)

a′′ = d′′ =
√
2

b′′ = c′′ = 2
√
2Dimensionality

reduction

X ′′

Part 3: Fraction of energy lost with dimensionality reduction = λ2

λ1+λ2
=

3
8

1
2+

3
8

= 3
7 .

Part 4:
Since there is no noise, we can choose any decision boundaries that separate the four points.

We choose following boundaries
x = 1.5; y = −1.5.

The boundaries are not unique. A different choice of boundary is

x = 1.25; y = −1.25.



(2
√
2,
√
2)

(2
√
2, 0)

(
√
2,
√
2)

(
√
2, 0)

Y’

X’

In the case of 1D, the four points cannot be classified without confusion because a′′ = d′′ and
b′′ = c′′. The two points can be classified by the boundary x = t for any t ∈ (

√
2, 2
√
2).
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PROBLEM 3: Two students claimed to design a 3-channel perfect reconstruction filterbank. In one case, the
student had a bank of analysis filters followed by down sampling rates of 3 in each branch. In another case,
the down sampling rates were chosen to be 2, 3 and 6 in each of the three branches following the analysis
filters. Justify if their claims are correct. Suppose a third student decided to go with a wavelet 3-channel
filter bank using the Haar basis towards perfect reconstruction, what would you expect the down sampling
rates to be at the analysis stage? Justify. (25 pts.)

Solution

𝐻0(𝑧)

𝐻1(𝑧)

↓ 𝐿1

𝐻2(𝑧) ↓ 𝐿3

↓ 𝐿2

↓ 𝐿1

↓ 𝐿2

↓ 𝐿3 𝐹2(𝑧)

𝐹1(𝑧)

𝐹0(𝑧)
x[n]

y[n]

U0[n]

U1[n]

U2[n]

V0[n]

V1[n]

V2[n]

W0[n]

W1[n]

W2[n]

If f3is the sampling rate of x[n], then the number of samples/sec at the output of analysis bank
is,

Fs
L1

+ Fs
L2

+ Fs
L3

There should be no sample rate loss to be able to reconstruct perfectly. This gives us a necessary
condition on the decimation rates:

Fs
L1

+
Fs
L2

+
Fs
L3
≥ Fs

=⇒ 1

L1
+

1

L2
+

1

L3
≥ 1.

In both the cases (L1,L2, L3) = (3, 3, 3) and (2, 3, 6), we have 1
L1

+ 1
L2

+ 1
L3

= 1.
First student:
(L1,L2, L3) = (3, 3, 3) is already studied in the class and is known to be feasible for perfect

reconstruction.
Second student:

Ui (z) = X (z)Hi (z) , i = 0, 1, 2.

V0 (z) =
1

2

1∑
i=0

U0

(
zωi2
)
=

1

2

1∑
i=0

X
(
zωi2
)
H0

(
zωi2
)
, ω2 = ejπ

V1 (z) =
1

3

2∑
i=0

U1

(
zωi3
)
=

1

3

2∑
i=0

X
(
zωi3
)
H1

(
zωi3
)
, ω3 = ej

2π
3

V2 (z) =
1

6

5∑
i=0

U2

(
zωi6
)
=

1

6

5∑
i=0

X
(
zωi6
)
H2

(
zωi6
)
, ω6 = ej

2π
6 .

Wi (z) = Vi (z)Fi (z) , i = 0, 1, 2.

Y (z) =

2∑
i=0

Wi (z) .

=
1

2
F0 (z)

1∑
i=0

X
(
zωi2
)
H0

(
zωi2
)

+
1

3
F1 (z)

2∑
i=0

X
(
zωi3
)
H1

(
zωi2
)

+
1

6
F2 (z)

3∑
i=0

X
(
zωi6
)
H2

(
zωi2
)
.



We have ω3 = ω2
6 and ω2 = ω3

6 . We can write Y (z) using X (z) and alias components{
X
(
zωk6

)}
k=1···5 as

Y (z) =

5∑
i=0

Yi (z)X
(
zωi6
)
,

where 
Y0 (z)
Y1 (z)
Y2 (z)
Y3 (z)
Y4 (z)
Y5 (z)

 =



1
2H0 (z)

1
3H1 (z)

1
6H2 (z)

0 0 1
6H2 (zω6)

0 1
3H1

(
zω2

6

)
1
6H2

(
zω2

6

)
1
2H0

(
zω3

6

)
0 1

6H2

(
zω3

6

)
0 1

3H1

(
zω4

6

)
1
6H2

(
zω4

6

)
0 0 1

6H2

(
zω5

6

)


F0 (z)
F1 (z)
F2 (z)

 (1)

For perfect reconstruction, we require Yi (z) = 0, i = 1, 2, 3, 4, 5 and Y0 (z) = 1.

Y1 (z) = 0 =⇒ F2 (z)×
1

6
H2 (zω6) = 0 =⇒ F2 (z) = 0.

Y2 (z) = 0 =⇒ 1

3
F1 (z)H1

(
zω2

6

)
+

1

6
F2 (z)H2

(
zω2

6

)
= 0 =⇒ F1 (z) = 0

Y3 (z) = 0 =⇒ 1

2
F0 (z)H0

(
zω3

6

)
+

1

6
F3 (z)H2

(
zω3

6

)
= 0 =⇒ F0 (z) = 0.

However, this results in Y0 (z) = 1. Therefore, the set of equations in (1) are inconsistent.
Therefore, decimation rates of (3, 3, 3) is feasible while (2, 3, 6) is not feasible for perfect recon-

struction.
Third student:
Wavelet 3-channel analysis bank is

𝐻0(𝑧)

𝐻1(𝑧) 𝐻0(𝑧)

𝐻1(𝑧)

↓ 2

↓ 2

↓ 2

↓ 2

𝐻0(𝑧)

𝐻1(𝑧)𝐻0(𝑧
2) ↓ 4

↓ 2

𝐻1(𝑧)𝐻1(𝑧
2) ↓ 4

≡

H0(z) =
1−z−1
√
2

H1(z) =
1+z√

2
The down sampling rates are 2,4,4.
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PROBLEM 4: Consider a rectangular pulse p(t) of amplitude A starting at the origin having a duration of T
seconds. Treating time and frequency as random variables, compute the mean in time µt and in frequency
µω using a measure of the induced norm of the signal as a distribution. Justify if µt ≤ µω is true or false.
(25 pts.)

Solution

A

0 T t

p(t)

Given

p (t) =

{
A, 0 ≤ t ≤ T
0, otherwise.

Fourier transform of a rectangular pulse is a sinc pulse.

r (t) =

{
1, − 1

2 ≤ t ≤ 1
2

0, otherwise
=⇒ p (t) = Ar

(
t

T
− 1

2

)
.

F [r (t)] = sinc (ω)

=⇒ F
[
r

(
t− 1

2

)]
= ej

ω
2 sinc (ω)

=⇒ F
[
Ar

(
t

T
− 1

2

)]
= Aej

ωT
2 sinc (ωT )

Therefore, Fourier transform of p (t) is

P (ω) = Ae−jω
T
2 sinc(ωT )

p.d.f in time domain is obtained by normalizing the time-domain signal p (t) as given by

ft(t) =
1

AT
p(t) =

{
1
T , 0 ≤ t ≤ T,
0, otherwise.

=⇒ µt =

T∫
0

1

T
tdt =

T

2
.

Similarly, p.d.f distribution in frequency domain is

fω(ω) = k | Asinc(ωT ) |=
{
k
∣∣∣A sin(ωT )

ωT

∣∣∣ , ω 6= 0,

k |A| , ω = 0



for some constant k such that
∫∞
−∞ fω (ω) dω = 0.

Since fω(−ω) = fω(ω), fω (ω)ω is an odd function. Therefore the mean of frequency is,

µω =

∫ ∞
−∞

fω (ω)ωdω = 0.

Therefore µt > µω.


