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Problem 1. The noise-free signal is

y [n] = nau [n− 1] ,

where a is an integer and u [n] is unit step function. Let Y (z) denote the z-transform of the signal. The signal
is causal and hence the region of convergence of Y (z) is |z| ≥ 1.

Case a ≥ 0:
The z-transform of unit step function is

∞∑

n=−∞
u [n] z−n =

1

1− z−1 =
z

z − 1
.

Differentiating w.r.t, z on both sides we have,

∞∑

n=−∞
nu [n] z−n−1 =

1

(z − 1)
2 ,

=⇒
∞∑

n=−∞
nu [n− 1] z−n =

z

(z − 1)
2 .

Repeating the differentiation a− 1 more times, we get

Y (z) =

∞∑

n=−∞
nau [n] z−n =

f (z)

(z − 1)
a+1 ,

for some polynomial f (z).
Therefore z = 1 is (a+ 1)

th order pole i.e., 1 is (a+ 1)
th order mode for the system.

Case a ≤ −2:
We have

Y (z) =

∞∑

n=1

naz−n

≤
∞∑

n=1

na |z|−n

≤
∞∑

n=1

na (|z| ≥ 1)

≤
∞∑

n=1

n−2 (a ≤ −2)

=
π

6
.

Therefore, Y (z) <∞∀ |z| ≥ 1. Hence there are no poles.
Case a = −1:
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We have

Y (z) =

∞∑

n=1

1

n
z−n.

=⇒ Y (1) =

∞∑

n=1

1

n
=∞.

Therefore z = 1 is a pole.

Problem 2. 1.4.16 We have

x [t+ 1] = Ax [t] + bf [t] ,

y [t] = cTx [t] + df [t] .

Taking z-Transform, we have

X (z) = (zI−A)−1bF (z) ,

Y (z) = cTX (z) + dF (z) .

The system transfer function is given by

H (z) =
Y (z)

F (z)
= cT (zI−A)−1b+ d.

Similarly, for 1.22, we have the system transfer function given by,

H (z) =
Y (z)

F (z)
= cT (zI−A)−1b+ d.

Substituting A = T−1AT, b = T−1b, c = TT c, d = d in this equation,

H (z) = cTT
(
zI−T−1AT

)−1
T−1b+ d,

= cT
(
T
(
zI−T−1AT

)
T−1

)−1
b+ d

= cT (zI−A)−1b+ d

H (z) = H (z) .

Therefore the system transfer functions are same. A and A have same eigen values.
1.4.17 (Part 1) From state-space equations, we have

x [t+ 1] = Ax [t] + bf [t] . (1)

To prove,

x [t] = Atx [0] +

t−1∑

k=0

Akbf [t− 1− k] . (2)

Step 1: For t = 1, (2) true from the state-space equation (1).
Step 2: Assume true for t = n, i.e.,

x [n] = Anx [0] +

n−1∑

k=0

Akbf [n− 1− k] .

We need to prove that the equation (2) is true for t = n+ 1.



From state space equations, we have

x [n+ 1] = Ax [n] + bf [n]

= An+1x [0] +A

n−1∑

k=0

Akbf [n− 1− k] + bf [n] (use l = k + 1)

= An+1x [0] +

(n+1)−1∑

l=1

Albf [(n+ 1)− 1− l] + bf [n]

= An+1x [0] +

(n+1)−1∑

l=0

Albf [(n+ 1)− 1− l] .

i.e., the equation (2) is true for t = n+ 1.
This proves the equation (2) by induction.
(b) For time varying case,

x [t] = A [t− 1]x [t− 1] + b [t− 1] f [t− 1]

= A [t− 1]A [t− 2]x [t− 2] +A [t− 1]b [t− 2] f [t− 2] + b [t− 1] f [t− 1]

=

j∏

i=0

A [t− 1− i]x [t− 1− j] +
j∑

k=0

(
k∏

i=0

A [t− 1− i]
)
b [t− 1− k] f [t− 1− k] (j = 1)

...

x [t] =

t−1∏

i=0

A [t− 1− i]x [0] +

j∑

k=0

(
k∏

i=0

A [t− 1− i]
)
b [t− 1− k] f [t− 1− k] .

Problem 3. Note the following relations between ceil and floor functions,

c (x) = −f (−x) , (3)

c (x)− f (x) =
{
0 if x is an integer
1 otherwise.

(4)

Since X is a continuous random variable,

Pr [X is an integer] = 0 (5)

Let µc and µf be the means of c (x) and f (x) respectively. Let σ2
c and σ2

f be the respective variances.
From (3),

µc = −E [f (−X)]

= −
∞̂

−∞

f (−x) 1√
2πσ2

exp

{
− x2

2σ2

}
dx

= −
∞̂

−∞

f (y)
1√
2πσ2

exp

{
− y2

2σ2

}
dy (using y = −x)

µc = −µf (6)

From (4) and (5),

µc − µf = 0× Pr [X is an integer] + 1× Pr [X is not an integer]
µc − µf = 1. (7)

From (6) and (7),

µc = 0.5,

µf = −0.5.
From (4) and (5),



E
[
(c (X))

2
]

= E
[
(1 + f (X))

2
]

= 1 + 2E [f (X)] + E
[
(f (X))

2
]

E
[
(c (X))

2
]

= E
[
(f (X))

2
]
.

Therefore, the variances are related as

σ2
c = E

[
(c (X))

2
]
− µ2

c

= E
[
(f (X))

2
]
− µ2

f

σ2
c = σ2

f .

There is no closed form expression for the variance. The variance can be computed using the p.m.fs of the ceil
and floor given by

Pr [c (X) = n] = Pr [n− 1 < X ≤ n] ,
P r [f (X) = n] = Pr [n ≤ X < n+ 1] .

Following MATLAB code computes the mean and variances of ceil and floor functions. When σ2 = 1, σ2
c = σ2

f ≈
0.5834.

1 x_range = −100:100;
2 pmf_ceil = 0 . 5∗ ( e r f ( x_range ) − e r f ( x_range − 1) ) ;
3 pmf_floor = 0 . 5∗ ( e r f ( x_range+1) − e r f ( x_range ) ) ;
4 mean_ceil = x_range∗pmf_ceil ’
5 mean_floor = x_range∗pmf_floor ’
6 var_ce i l = ( x_range .^2) ∗pmf_ceil ’ − mean_ceil^2
7 var_f loor = ( x_range .^2) ∗pmf_floor ’ − mean_floor^2

Problem 4. 2.10.52 Sufficient to prove that V⊥ forms a closed group under addition and scalar multiplication.
Since, for each x ∈ V, x ∈ S also holds true, and hence the remaining properties will hold true.

(1) If x, y ∈ V⊥, then 〈x, v〉 =
〈
y, v
〉
= 0∀v ∈ V. =⇒

〈
x+ y, v

〉
= 0 =⇒ x+ y ∈ V⊥.

(2) 〈0, v〉 = 0∀V. Therefore 0 ∈ V⊥. 0 + x = x+ x = x∀x ∈ V⊥ is trivially satisfied since x ∈ S.
(3) Let x ∈ V⊥. Since x ∈ S, ∃ y ∈ S such that x+y = 0. =⇒

〈
y, v
〉
= −〈x, v〉 = 0∀v ∈ V⊥. Therefore y ∈ V⊥.

(4) For x, y, z ∈ V⊥, x+
(
y + z

)
=
(
x+ y

)
+ z is trivially satisfied since x, y, z ∈ S.

(5) If x ∈ V⊥ and a is a scalar, then 〈ax, v〉 = a 〈x, v〉 = 0∀v ∈ V. Therefore ax ∈ V⊥
2.12.57 Sufficient to prove that V ∩W forms a closed group under addition and scalar multiplication. Since, for

each x ∈ V ∩W, x ∈ S also holds true, and hence the remaining properties will hold true.
(1) Let x, y ∈ V ∩W. Then x+ y ∈ V and x+ y ∈ W. Hence, x+ y ∈ V ∩W.
(2) 0 ∈ V and 0 ∈ W and hence 0 ∈ V ∩W.
(3) Let x ∈ V ∩ W. Its additive inverse y ∈ S is unique. Since V and W are subspaces, y ∈ V and y ∈ W.

Therefore ∃ y ∈ V ∩W such that x+ y = 0.
(4) For x, y, z ∈ V ∩W, x+

(
y + z

)
=
(
x+ y

)
+ z is trivially satisfied since x, y, z ∈ S.

(5) Let x ∈ V ∩W and a be a scalar. Since V and W are subspaces, ax ∈ V and ax ∈ W. Therefore ax ∈ V ∩W.
2.12.63 Let Bv be an orthonormal basis for V. Let B = {v ∈ Bv | ∃w ∈ W such that 〈v, w〉 6= 0}.
Hence, we can chose an orthonormal basis Bw for W such that B ⊂ Bw.
Note that B forms orthonormal basis for V ∩W and Bv ∪ Bw forms an orthonormal basis for V +W.
Therefore,

dim (V +W) = |V +W| ,
= |V|+ |W| − |V ∩W| ,

dim (V +W) = dim (V) + dim (W)− dim (V ∩W) ,

where |A| represents the number of elements in the set A.



We have,

V ⊕W = (V ⊕ {0}) + ({0} ⊕ V) ,
dim (V ⊕ {0}) = dim (V) ,
dim (W ⊕ {0}) = dim (W) ,

(V ⊕ {0}) ∩ ({0} ⊕ V) = {0⊕ 0} .
Therefore,

dim (V ⊕W) = dim (V) + dim (W) .

Problem 5. (Part 1) Computing the inner products and norms of the signals, we have

〈f1 (t) , f2 (t)〉 =
5

48
T,

〈f2 (t) , f3 (t)〉 =
5

48
T,

〈f1 (t) , f3 (t)〉 = 0,

‖f1 (t)‖2 = ‖f2 (t)‖2 = ‖f3 (t)‖2 =
T

6
.

The distance between the vectors a and b is given by ‖a− b‖ =
√
‖a‖2 + ‖b‖2 − 2 〈a, b〉. The distance between

the signals are

‖f1 (t)− f2 (t)‖ =

√
T

6
+
T

6
− 5T

24
=

√
T

8
,

‖f2 (t)− f3 (t)‖ =

√
T

6
+
T

6
− 5T

24
=

√
T

8
,

‖f1 (t)− f3 (t)‖ =

√
T

6
+
T

6
− 0 =

√
T

3
.

The angle between vectors a and b is given by cos−1
(
〈a,b〉
‖a‖‖b‖

)
.

Therefore, the angles between the signals are given by

θ12 = cos−1
(
5

8

)
,

θ23 = cos−1
(
5

8

)
,

θ13 =
π

2
.

An orthonormal basis can be derived using Gram-Schmidt ortho-normalization procedure. Since f1 (t) and f3 (t)
are orthogonal, normalizing them gives two of the basis. Let v1 (t), v2 (t) and v3 (t) be orthonormal basis of the
signal space.

v1 (t) =
f1 (t)

‖f1 (t)‖
=

√
6

T
f1 (t) ,

v2 (t) =
f3 (t)

‖f3 (t)‖
=

√
6

T
f3 (t) ,

v3 (t) =
f2 (t)− 〈f2 (t) , v1 (t)〉 v1 (t)− 〈f2 (t) , v2 (t)〉 v2 (t)
‖f2 (t)− 〈f2 (t) , v1 (t)〉 v1 (t)− 〈f2 (t) , v2 (t)〉 v2 (t)‖

=
f2 (t)− 5

8f1 (t)− 5
8f3 (t)∥∥f2 (t)− 5

8f1 (t)− 5
8f3 (t)

∥∥

v3 (t) =

√
3

7T
(8f2 (t)− 5f1 (t)− 5f3 (t)) .



In the signal space with v1 (t) , v2 (t) and v3 (t) as the orthonormal basis, the signals f1 (t) , f2 (t) and f3 (t) are
represented by the following vectors as shown in Figure 1.

f
1

=

(√
T

6
, 0, 0

)
,

f
2

=

(
5

48

√
6T ,

5

48

√
6T ,

√
21T

24

)
,

f
3

=

(
0,

√
T

6
, 0

)
.

v1(t)

v2(t)

v3(t)

f
1
= (

√
T
6 , 0, 0)

f
2
= ( 5

48

√
6T , 5

48

√
6T ,

√
21T
24 )

f
3
= (0,

√
T
6 , 0)

5
48

√
6T

√
21T
24

5
48

√
6T

Figure 1. Signals f1 (t) , f2 (t) and f3 (t) are represented in signal space.

(Part 2)Received signal r (t) = fi (t) + δ (t− ti), where ti ∼ U (Supp (fi (t))). The noise signals are shown in
Figure 2.

n1(t) = δ(t− T1) n2(t) = δ(t− T2) n3(t) = δ(t− T3)

T/2 T/4 T/2T T T
t t t0 0 0

X

T1 T2 T3

T1 ∼ U [0, T/2] T2 ∼ U [T/4, 3T/4] T3 ∼ U [T/2, T ]

3T/4

Figure 2. Noise signals corresponding to the input signals f1 (t) , f2 (t) and f3 (t) are shown. The
noise is an impulse that occurs at a random time instant. This random time instant is uniformly
distributed on the support of the corresponding signal.

We have,

〈vi (t) , δ (t− T )〉 = vi (T ) , i = 1, 2, 3.

Therefore, the projection of δ (t− ti) onto the vector space defined by the basis v1 (t) , v2 (t) and v3 (t) is given
by the parameterized curve

{(v1(t), v2(t), v3(t)) | t ∈ Supp (fi (t))} , i = 1, 2, 3.

Hence, when the signal si (t) is transmitted, the received signal lies on the parameterized curve given by

Fi =
{
f
i
+ (v1(t), v2(t), v3(t)) | t ∈ Supp (fi (t))

}
, i = 1, 2, 3.

The received signal lies in the region given by F1 ∪F2 ∪F3. This is shown in Figure 3. Note that the three curves
F1, F2 and F3 do not intersect.
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Figure 3. The signals fi (t) are shown. The regions Fi corresponding to received signal with noise
when a signal fi (t) , i = 1, 2, 3 is transmitted are also shown. The regions are V-shaped parametric
curves and do not intersect.

We have the likelihood probability densities

p (r | si)
{
6= 0, r ∈ Fi

= 0, r /∈ Fi

, i = 1, 2, 3.

Therefore the aposterior probability densities are

p
(
f
i
| r
)
= p

(
r | f

i

) Pr
[
f
i

]

p (r)

{
6= 0, r ∈ Fi

= 0, r /∈ Fi

, i = 1, 2, 3.

Note that the regions F1, F2 and F3 do not intersect. Therefore, if r ∈ Fi, the aposterior probability is maximized
for f

i
.

Therefore the optimal decision as are given by

f̂ (t) =





f1 (t) , r ∈ R1 = Fc
2 ∩ Fc

3

f2 (t) , r ∈ R1 = F2

f3 (t) , r ∈ R1 = F3.

The misclassification error is given by

Pe =
∑

i=1,2,3

Pr [fi (t)]Pr
[
f̂ (t) 6= fi (t) | fi (t)

]

=
∑

i=1,2,3

Pr [fi (t)]Pr [r ∈ Rc
1 | fi (t)]

=
∑

i=1,2,3

Pr [fi (t)]× 0

Pe = 0.

Remark: The orthonormal basis can be different depending on the order of signals used during Gram-Schmidt
ortho-normalization.


