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Problem 1. The noise-free signal is
y[n] =nuln—1],

where @ is an integer and w [n] is unit step function. Let Y (z) denote the z-transform of the signal. The signal
is causal and hence the region of convergence of Y'(z) is |z| > 1.

Case a > 0:

The z-transform of unit step function is

n=—oo

Differentiating w.r.t, z on both sides we have,

= 1
Z nuln]z” "1 = 55
e (z—1)
= z
= nuln—1]z"" = 5
n:z—oo (’Z - 1)
Repeating the differentiation @ — 1 more times, we get
- - f(2)
Y (2) = n“ulnlz™" = ,
@)= 3 atup e

for some polynomial f (z).
Therefore z = 1 is (a + 1)™ order pole i.e., 1 is (a + 1)
Case a < —2:
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B order mode for the system.
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Therefore, Y (z) < ooV |z| > 1. Hence there are no poles.
Case a = —1:
1



We have

1
Y(2) = Z —z7"
n=1 n
= Y1) = i 1 00
- n=1 n - .
Therefore z = 1 is a pole.
Problem 2. 1.4.16 We have
x[t+1] = Ax[t]+bf]t],
ylt] = Tx[t]+df[t].
Taking z-Transform, we have
X(z) = (21—A)"'bF(z),
Y(z2) = X (2)+dF(z2).
The system transfer function is given by
Y(z)

H(z) = ) =cl(zI-A)"'b+d.

Substituting A = T7!AT, b= T"'b, ¢ = T ¢, d = d in this equation,

H(z) = JT(A-TAT) ' T 'b+d,
— S (TGEI-T'AT)T ') 'b+d
= cl(zI-A)"'b+d

Therefore the system transfer functions are same. A and A have same eigen values.
1.4.17 (Part 1) From state-space equations, we have

x[t+1]=Ax[t]+bf[t]. (1)
To prove,
x[t] = Atx[O]—i—z_:A’“bf[t—l—k]. (2)
k=0

Step 1: For t = 1, (2) true from the state-space equation (1).
Step 2: Assume true for ¢t = n, i.e.,

x[n] = A"X[O]+§Akbf[n—1—k].
k=0

We need to prove that the equation (2) is true for t = n + 1.



From state space equations, we have

x[n+1 = Ax[n]+bf[n]
n—1
= A"x[0]+AY A*bfin—1-kl+bfln] (wel=k+1)
k=0
(n+1)—1
= A""x[0]+ > Abf[n+1)—1-1+bf[n]
=1
(n+1)—1
= A™x[0]+ > A'bf[n+1)—1-1.
1=0
i.e., the equation (2) is true for t = n + 1.
This proves the equation (2) by induction.
(b) For time varying case,

x[t] = Aft—1x[t—1]+b[t—1]f[t—1]
= A[t—1A[t—2x[t—2+A[t—1b[t—2]f[t—2]+b[t—1]f[t—1]

J

J k
= HA[t—l—i]x[t—l—j]—i—Z<HA[t—1—i]>b[t—l—k]f[t—l—k] (Gj=1)
k=0 \i=0

=0

k=0

x[t] = Hquﬂ +i<HA%Jﬂ>W—LMﬂFL%]

Problem 3. Note the following relations between ceil and floor functions,

c(x) =—f (=), (3)
0 if z is an integer
C(x)—f(w)={1 | ()
otherwise.
Since X is a continuous random variable,
Pr[X is an integer] = 0 (5)
Let p. and gy be the means of ¢ (z) and f (z) respectively. Let o2 and UJ% be the respective variances.
From (3),
pe = —E[f(=X)]
T 1 x?
= - / f(==z) Wexp{—w}dx
y?
= / fy 271_02 {M} dy (using y = —x)
He = —Hf (6)
From (4) and (5),
pe —py = 0x Pr[X is an integer] + 1 X Pr[X is not an integer]
pe—py = 1 (7)
From (6) and (7),
pe = 0.5,
py = —0.5.

From (4) and (5),



E[c())] = E[0+7x)7
= 14 2B [ (X)) B[ (X))

E[c)?] = E[rx)].
Therefore, the variances are related as
o? = E[(c(x)7]-p2
= E|( (0] ~u}
o2 = UJ%.

There is no closed form expression for the variance. The variance can be computed using the p.m.fs of the ceil
and floor given by

Pric(X)=n] = Prin—-1<X <n],
Prif(X)=n] = Prin<X<n+1].

Following MATLAB code computes the mean and variances of ceil and floor functions. When o = 1, 02 = cr]% R~
0.5834.

X _range = —100:100;

pmf ceil = 0.5x(erf(x_range) — erf(x_range — 1));
pmf floor = 0.5%(erf(x_range+1) — erf(x_range));
mean ceil = x rangesxpmf ceil’

mean floor = x rangexpmf floor’

var_ceil = (x_range.”2)xpmf ceil’ — mean ceil"2
var floor = (x_range.”2)xpmf floor’ — mean floor~2

Problem 4. 2.10.52 Sufficient to prove that V* forms a closed group under addition and scalar multiplication.
Since, for each z € V, z € S also holds true, and hence the remaining properties will hold true.

(1) If z,y € V*, then (z,v) = (y,v) =0Vv € V. = (z+y,v)=0 = z+ye Vi

(2) (0,v) = O¥V. Therefore 0 € V. 04z =z + z = zVx € V* is trivially satisfied since z € S.

(3) Let z € V*. Since z € S, Jy € Ssuch that z+y =0. = <g,g> = —(x,v) = 0Vo € V*+. Therefore y € VL.

(4) For z,y,2 € Y+ oz + (g—i—g) = (g—f—g) + z is trivially satisfied since z,y,z € S.

(5) If z € V* and a is a scalar, then (az,v) = a (z,v) = 0Vu € V. Therefore az € V*+

2.12.57 Sufficient to prove that VN W forms a closed group under addition and scalar multiplication. Since, for
each z € VNW, x € § also holds true, and hence the remaining properties will hold true.

(1) Let z,y e VNW. Thenz +y € V and z +y € W. Hence,z +y € VNW.

(2) 0 €V and 0 € W and hence 0 € VN W.

(3) Let z € YN W. Tts additive inverse y € S is unique. Since V and W are subspaces, y € V and y € W.
Therefore 3y € VN W such that z +y =0. B B

(4) For z,y,z€e VNW, z + (g+§) = (§+g) + 2 is trivially satisfied since z,y,z € S.

(5) Let z € VN'W and a be a scalar. Since V and W are subspaces, az € V and az € W. Therefore az € VNW.

2.12.63 Let B, be an orthonormal basis for V. Let B = {v € B, | 3w € W such that (v, w) # 0}.

Hence, we can chose an orthonormal basis B,, for W such that B C B,,.

Note that B forms orthonormal basis for V N W and B, U B,, forms an orthonormal basis for V + W.

Therefore,

dim(V+W) =V + W],
=VI+Wl=-[ynwl,
dim (V 4+ W) = dim (V) + dim (W) —dim (W N W),

where |A| represents the number of elements in the set A.



We have,
vew=Vae{0})+{o}aV),
dim (V @ {0}) = dim (V) ,
dim (W @ {0}) = dim (W),
Ve{oph)n({oteV)={040}.

Therefore,
dim (V @ W) = dim (V) + dim (W) .

Problem 5. (Part 1) Computing the inner products and norms of the signals, we have

0 f2(0) = T,

(20, fs () = T

(f1(®),fs(t) = 0,
Hﬁ@W=W&@W:wﬂmF:%

The distance between the vectors a and b is given by ||a — b|| = \/||QH2 +||b]I* = 2 (a,b). The distance between

the signals are
Iho-pol - JE I T T
Iho-pol = 2T T T
Iho-pol = 2T 0= /T

An orthonormal basis can be derived using Gram-Schmidt ortho-normalization procedure. Since f; (¢) and f5 (t)
are orthogonal, normalizing them gives two of the basis. Let vy (¢), va (t) and vs (t) be orthonormal basis of the
signal space.

f1(t) 6
v (t) = TAGIE 7)),
f3 () 6
v (t) = TAGIE 73,
o5 (1) f2(8) = (f2(t),v1 () o1 (¢) — (f2 (), v2 (1) v2 ()
[f2 () = (f2 () ;01 () v1 (t) — (f2 (1), v2 (1)) va2 (2]
M) =2H @) -3 f (1)
e -2A0 20



In the signal space with vy (¢), v (t) and vs (t) as the orthonormal basis, the signals fi (), f2 (t) and fs3 (t) are
represented by the following vectors as shown in Figure 1.

()
f2:<fgf FW),
- )

FIGURE 1. Signals fi (t), f2 (t) and f3 (t) are represented in signal space.

(Part 2)Received signal r (t) = f; (t) + d (t — ¢;), where t; ~ U (Supp (fi (t))). The noise signals are shown in
Figure 2.

ni(t) = 6(t —T1) na(t) = 6(t — I») ns(t) = 6(t — T)
X
—t >, % —t> % >
0 N7 T ! 0 T/4 T, 37/a T ! 0 T/2 yop ot
Ty ~ U0, T/2] Ty ~ U[T/4,3T/4] Ty ~U[T/2,T]

FIGURE 2. Noise signals corresponding to the input signals f; (¢), f2 (t) and f3 (¢) are shown. The
noise is an impulse that occurs at a random time instant. This random time instant is uniformly
distributed on the support of the corresponding signal.

We have,

;i (0), 6t —T))=v;(T), 1=1,2,3.
Therefore, the projection of § (¢t — t;) onto the vector space defined by the basis vy (¢),vs () and vs (t) is given
by the parameterized curve

{(v1(t), v2(t), v3(t)) [ T € Supp (fi (1))}, i=1,2,3.
Hence, when the signal s; (¢) is transmitted, the received signal lies on the parameterized curve given by
By = {1+ (01(0), wa(t), es(0) | £ € Supp (f; (1)}, i=1,2.3,

The received signal lies in the region given by F; UF9 UF3. This is shown in Figure 3. Note that the three curves
F1, F5 and F3 do not intersect.
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FIGURE 3. The signals f; (t) are shown. The regions F; corresponding to received signal with noise

when a signal f; (¢), ¢ = 1,2, 3 is transmitted are also shown. The regions are V-shaped parametric
curves and do not intersect.

We have the likelihood probability densities

7&07 ﬂeFi .
. , i=1,2,3.
p(r]s) {Q PR

Therefore the aposterior probability densities are

p(ii|£)=p(z\ii) PT[L} {#0, reF,

p(r) =0, r¢F;’

Note that the regions F1, Fs and F3 do not intersect. Therefore, if r € F;, the aposterior probability is maximized
for f ..
2

Therefore the optimal decision as are given by

i=1,2,3.

fl(t), ﬂGRlengg
fQ(t)7 £ER1:F2
f3(t), reRy =F3.

f(t)
The misclassification error is given by

Poo= Y Prif@IPr[f O£ £ £

i=1,2,3

= > Prifi()) Prir € R | f; (t)]

i=1,2,3
= > Prifi()]x0
i=1,2,3
P. = 0.

Remark: The orthonormal basis can be different depending on the order of signals used during Gram-Schmidt
ortho-normalization.



