Indian Institute of Science

E9-252: Mathematical Methods and Techniques in Signal Processing

Instructor: Shayan G. Srinivasa

Mid Term Exam#1, Fall 2013

Name and SR.No:

Instructions:

- This is an open book, open notes exam. No wireless allowed.
- The time duration is 3 hrs.
- There are five main questions. None of them have negative marking.
- Attempt all of them with careful reasoning and effort.
- Do not panic, do not cheat.
- Good luck!

Question No.	Points scored
1	
2	
3	
4	
5	
Total points	

PROBLEM 1: Examine if the following statements are true or false with correct reasoning. Random guessing or incorrect reasoning fetches zero credit. A statement is true if it is generic for all cases. A counter example is enough to make it false. All sub-parts of this problem carry equal credit.

- (1) Alice and Bob play a game. Each one chooses a random number uniformly within the interval [0, 1]. The probability that sum of the numbers equals one is zero.
- (2) The input to an LTI filter is a WSS random process. The output is always a WSS process.
- (3) The signals $\{\cos(t), \cos(2t)\}\$ over $[0, 2\pi]$ are linearly dependent.
- (4) A causal LTI system is cascaded with another non-causal LTI. The overall system is always non-causal.

(20 pts.)

PROBLEM 2: This problem has two parts.

- (1) A discrete LTI system takes an input x[n] and yields y[n]. Obtain the necessary and sufficient
- (1) If absolute Lift system takes an input w[n] and yields g[n]. Obtain the necessary and sumetime conditions for the impulse response h[n] so that max{|x[n]|} ≥ max{|y[n]|}. (10 pts.)
 (2) Let (A₁, b₁, c₁^T) and (A₂, b₂, c₂^T) denote two systems in state space representation. Obtain the overall system parameters (A, b, c^T) when the two systems are connected in (a) parallel (b) series. (10 pts.)

PROBLEM 3: Consider a binary symmetric channel that we discussed in the class. The source sends '1' with probability p and '0' with probability 1 - p. Due to noise, each bit is received incorrectly with a cross over probability ϵ .

- (1) If we transmit the same information bit n times over the channel such that each transmission is statistically independent, determine the probability p_n that the information bit is '0' given that we observed a string of n zeros at the output. (7 pts.)
- (2) Determine $\lim_{n\to\infty} p_n$. Interpret your solution.
- (3) Suppose an unknown bit is transmitted and the received bit is a '0'. Suppose the 'same' unknown bit is retransmitted again and we receive a '0'. What is the conditional probability that the second bit we received is a '0' given that the first bit received is a '0'? (6 pts.)

(7 pts.)

PROBLEM 4: This problem has 2 parts.

- (1) If W_1 and W_2 are subspaces of a vector space \mathcal{V} , show that $W_1 \cup W_2$ is a subspace iff $W_1 \subset W_2$ or
- (c) W₂ ⊂ W₁.
 (12 pts.)
 (2) Suppose {α_i}ⁿ_{i=1} be distinct real numbers. Examine if the exponential functions {e<sup>α_it</sub>ⁿ_{i=1} are all linearly independent over the space of real numbers.
 </sup>

PROBLEM 5: Consider the inner product space of signals defined over [-1, 1].

- (1) Show that the signals 1 and t are orthogonal. (2 pts.)
- (2) Obtain the least squares approximation of the signal $s(t) = t^{\frac{1}{2n+1}}$ over the interval [-1, 1] using an orthonormal basis for the subspace spanned by $\{1, t\}$. Show all your steps. (18 pts.)