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tuneable quantum spin Hall states 
in confined 1T' transition metal 
dichalcogenides
Biswapriyo Das1*, Diptiman Sen2 & Santanu Mahapatra1

Investigation of quantum spin Hall states in 1T' phase of the monolayer transition metal 
dichalcogenides has recently attracted the attention for its potential in nanoelectronic applications. 
While most of the theoretical findings in this regard deal with infinitely periodic crystal structures, here 
we employ density functional theory calculations and k p.  Hamiltonian based continuum model to 
unveil the bandgap opening in the edge-state spectrum of finite width molybdenum disulphide, 
molybdenum diselenide, tungsten disulphide and tungsten diselenide. We show that the application of 
a perpendicular electric field simultaneously modulates the band gaps of bulk and edge-states. We 
further observe that tungsten diselenide undergoes a semi-metallic intermediate state during the phase 
transition from topological to normal insulator. The tuneable edge conductance, as obtained from the 
Landauer-Büttiker formalism, exhibits a monotonous increasing trend with applied electric field for 
deca-nanometer molybdenum disulphide, whereas the trend is opposite for other cases.

Topological insulators (TI)1–4 have emerged as a relatively new quantum state of matter, characterized by gapped 
(insulating) bulk states and gapless (highly conducting) edge/surface states according to the bulk-boundary cor-
respondence. The ‘topological’ attribute in this context is the nontrivial topology of the bulk bands spanned by 
their characteristic electron wavefunctions. Since this nontrivial topology is a characteristic of the gapped energy 
states, in order to flip the topology across the interface, either the energy gap has to be closed or the symmetry 
property protecting the edge/surface states has to be broken. Appearance of gapless edge (2D) or surface (3D) 
states at the interface of a TI and a normal insulator (NI) or vacuum is thus the most fundamental property of a 
topologically nontrivial phase.

Quantum spin Hall insulators (QSHI) or 2D TIs, as originally proposed by Kane and Mele5,6, features 
spin-polarized ‘helical’ edge states with opposite momentum on each side of the sample to form a Kramer’s pair. 
According to Kane and Mele5, graphene was predicted to be a QSHI with a finite gap opening at Dirac point due 
to spin-orbit coupling (SOC). Unfortunately, very weak SOC in graphene rendered it impossible to experimen-
tally verify their prediction. However, in 2006, the existence of quantum spin Hall (QSH) state was theoretically 
predicted by Bernevig, Hughes and Zhang (BHZ)7 and later experimentally demonstrated by König et al.8 for 
HgTe/CdTe quantum wells. Thenceforth several other 2D TI materials have been reported such as InAs/GaSb9,10 
quantum wells, bismuthene11,12, functionalized Bi/Sb films13, monolayer BiX/SbX (X = H, F, Cl and Br)14, 2D 
bismuth arsenic (BiAs)15, arsenene16, arsenene oxide17, monolayer AsSb18, phosphorene19, silicon-based chalco-
genide (Si2Te2)20, 2D transition-metal halides21, monolayer ZrTe5 and HfTe5

22, Cu2Te and Ag2Te23, silicene24,25, 
germanene26,27, 2D SiGe28, stanene29, functionalized stanene30, tellurene31 etc. This apart, a recent high-throughput 
density functional theory (DFT) based study has reported32 thirteen new 2D materials that are candidates for 
QSHI such as AsCuLi2, Pt2HgSe3 etc. While experimental realization of many of these 2D materials is still in 
infancy, recent advancements in technology have aided the growth and fabrication of several such new and exotic 
materials with interesting quantum properties33,34. However, monolayer transition metal dichalcogenides (TMD), 
i.e. MX2 where M and X denotes metal (e.g. Mo, W etc.) and chalcogen (e.g. S, Se, Te etc.) atoms respectively, were 
first predicted to possess the topological properties by Qian et al.35 and later it was verified by several other inves-
tigations36–48. Based on first principles calculations and tight-binding Hamiltonian, they demonstrated35 that 
among several polytypic structures, 1T' phase of a monolayer TMD features band inversion in its bulk energy 
spectrum. It is caused by the formation of periodic doubling of metal chain in 1T' structures and large SOC of 
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transition metals opens a band gap at the otherwise gapless Dirac points. They depicted the edge-state energy 
spectrum for 1T' MoS2 using surface Green’s function calculations and demonstrated that topological phase tran-
sition in these materials can be achieved as a result of external perturbations like electric field or strain. However, 
experimental findings on the other hand indicate that the topological properties of these materials can also be 
tuned by temperature38 and surface doping41. Later the Haeckelite crystal structures49 of monolayer TMDs were 
also found to possess topological characteristics. To be precise, time-reversal symmetry (TRS) protected topolog-
ical phases in these monolayer 1T' TMDs are attributed by 2 topological invariant, where  = 02  indicates top-
ologically trivial phase and  = 12  denotes topologically ‘twisted’ state or QSH state. The nontrivial topology 
necessarily dictates the transport through edge states to be free of elastic back-scattering, thereby effectuating the 
edge conductance to be exactly equal to the conductance quantum e h/2 , where e and h denotes electronic charge 
and Planck’s constant respectively.

However, from an engineering viewpoint, it is highly desirable to devise a method to control the transport 
through edge states by external means which forms the notion of topological insulator field effect transistors 
(TIFET)50. The most straightforward solution would be rapidly introducing and removing the edge states through 
topological phase transition, which for 1T' TMDs has been demonstrated by applying vertical electric field35,36 
and strain35. Even, if the TRS is broken either by external perturbation (e.g. magnetic field44) or due to the pres-
ence of magnetic impurities51–53 or through ‘spontaneous’ breaking37 by the presence of non-zero magnetic 
moment, the existence of edge states is also not guaranteed or even if they exist, the conductance may deviate 
from the quantized value. In this article, we investigate another possible way to modulate the edge conductance, 
which is by confining the material geometry. Previously, Zhou et al.54 have reported a gap opening in edge state 
spectrum as a result of the restriction on strip width and showed that the charge conductance gets modified as a 
function of the energy gap.

Here, in order to investigate the effects of quantum confinement on the edge state spectra and charge conduct-
ance of monolayer 1T' TMDs, we have employed a continuum model based analytical approach rather than using 
surface Green’s function formalism. Such analytical approach would be suitable for developing compact device 
models for 2D TIFETs. First, we study the topological properties of four such TMD materials, to be precise, MoS2, 
MoSe2, WS2 and WSe2. We obtain the bulk band structures of these materials using density functional theory 
(DFT) computations and thereby investigate the Rashba splitting of spin-degenerate bands as a consequence of 
external electric field. We then identify the critical field values for these materials which define the quantum crit-
ical points for topological phase transitions. Thereafter we calibrate a .k p Hamiltonian that accurately captures 
the band structure subtleties of 1T' TMDs and represent a continuum modeling approach to obtain the edge state 
spectrum. We introduce the finite size effect by confining the real space geometry of the material, by virtue of 
which, the edge states from opposite edges couple together to introduce a gap in the edge spectrum thereby trans-
forming the massless linear Dirac dispersions to massive Dirac hyperbolas. For confined structures, the edge 
conductance is found to be less than the conductance quantum and it decreases with increasing degree of confine-
ment. It is also found that the edge conductance can be tuned as a function of external electric field only for finite 
width of the strips, whereas for unconfined geometry it maintains a constant value of e h/2  for all electric fields.

Results
Crystal structure and bulk energy dispersion. Monolayer TMDs are known to possess several polytypic 
structures e.g. 1 H (trigonal prismatic coordination), 1T (octahedral coordination) and 1T' (distorted 1T struc-
ture), among which, 1T phase, owing to its dynamical instability35,55,56, undergoes a spontaneous lattice distortion 
to transform into stable 1T' structure. Probably the most subtle feature of this 1T' phase is the inverted bandgap 
at the Brillouin zone center (Γ), that occurs as a consequence of periodic doubling of transition metal chain, low-
ering the metal d orbitals below chalcogen p orbitals in the energy scale. Shown in Fig. 1(a,b) are the crystal 
structures and rectangular first Brillouin zone (FBZ) of 1T' TMD. The FBZ has four time-reversal invariant 
momentum (TRIM) points, labeled in Fig. 1(b) as Γ, X, Y and L, while the fundamental bandgap appears at a 
point Λ along the kx axis. First-principles based calculations were conducted (see methods for details) for the 
aforesaid TMD materials in order to probe their electronic band structures. The bulk energy dispersions of 1T' 
MoS2 under varying perpendicular electric fields are depicted in Fig. 1(c–f) and the same for 1T' WSe2 are shown 
in Fig. 1(g–j), while dispersions of MoSe2 and WS2 in 1T' phase can be found in Supplementary Figs. 1 and 2 
respectively. For all of these bulk dispersion profiles the Fermi energy is set to zero. In comparison to 1T' MoS2, 
the topmost valence band of WSe2 is ‘flatter’ owing to its heavier hole effective mass (see Table 1). Figure 1(c) 
depicts the band structure of monolayer 1T' MoS2 in absence of external electric field. For 1T' TMDs, the elec-
tronic contribution to the valence and conduction bands near Γ point mainly comes from metal d and chalcogen 
p orbitals respectively, indicating a band inversion35 at zone center with an inverted bandgap of δ δ δ= +p d, 
where δp and δd are corresponding energies of lowest conduction and highest valence bands at Γ point with 
respect to zero energy level. The Dirac-like linear dispersion (represented by black dotted lines) appears at Λ point 
along Γ – X direction in absence of SOC and the role of high SOC of the transition metal atoms is to introduce a 
finite energy gap E( )g  at Λ making the bulk system gapped. Numeric values of Eg , δp and δd for the four TMD 
materials are tabulated in Table 1, which are in good agreement with the previously reported35 data. The external 
electric field is applied along out-of-plane z  direction by introducing an electric potential shift between two 
metallic electrodes residing on opposite sides of the monolayer TMD material which is spaced out form them by 
sufficiently thick vacuum isolations. We denote the electric field in the vacuum region as FVAC and in the mon-
olayer TMD as FML and calculate these quantities following the method prescribed by Jelver et al.37. The applica-
tion of vertical electric field effectuates a strong Rashba splitting of the otherwise degenerate valence and 
conduction bands near the fundamental band gap as illustrated in Fig. 1(d–f,h–j). As a result, the bulk band gap 
decreases and at a particular value of FML, called the critical electric field for topological phase transition F( )C , the 
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Figure 1. (a) Crystal structure of a 1T' MX2, where M and X denote metal (e.g. Mo, W etc.) and chalcogen (e.g. 
S, Se, Te etc.) atoms respectively. The 1T' structure is formed by lattice distortion of dynamically unstable 1T 
structure. (b) First Brillouin zone of 1T' MX2, showing the high-symmetry points Γ, X, Y and L. Γ is the zone 
centre where the bulk energy dispersion undergoes a band inversion. The fundamental band gap occurs at a 
point Λ along the kx axis. (c–f) Illustrate the bulk band structures of MoS2 respectively under the electric fields 
FML = 0, 0.08, 0.17 and 0.3 V/Å . In all of these figures red lines represent conduction bands and blue lines 
represent valence bands. The Fermi level, set to zero, is represented by green line. (c) Depicts that near Γ point 
the conduction band is mainly contributed by p orbitals of sulphur and valence band is mainly composed of d 
orbitals of molybdenum indicating band inversion. The effect of spin-orbit coupling is to open an energy gap 
near the Λ point in the otherwise gapless bulk dispersion. The black dotted line in (c) indicates the dispersion 
without considering SOC. The inverted band gap δ is the sum of contributions from conduction δ( )p  and valence 
δ( )d  bands. As shown in (d–f), the effect of external electric field is to introduce Rashba splitting between spin-

degenerate bands thereby lifting the degeneracy. As the field strength is increased, eventually the band gap 
closes at = .F 0 17ML  V/Å and in response to further increase in FML, the gap reopens with degeneracy remaining 
lifted. The states in (c) and (d) are topological with  = 12  and the state in (f) is topologically trivial  =( 0)2 . 
However in (e), the topological invariant is ill-defined indicating the quantum critical point for topological 
phase transition. (g) – (j) demonstrate the similar characteristics of bulk energy dispersions for WSe2. The 
colour scheme for representation is same as stated before. However, it can be seen in the inset of (i) that as the 
electric field approaches the critical value, WSe2 tends to become an indirect semiconductor.
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v1 (×105 m/s) v2 (×105 m/s) α (eÅ)

MoS2 −0.417 −0.132 0.047 0.29 0.48 0.92 2.32 0.230 3.383 0.159

MoSe2 −0.719 −0.041 0.030 0.17 0.28 3.14 2.65 0.285 3.421 0.272

WS2 −0.145 −0.023 0.046 0.28 0.53 8.20 3.20 0.845 2.931 0.173

WSe2 −0.678 −0.012 0.023 0.16 0.36 8.40 3.28 0.380 3.542 0.241

Table 1. Material-specific parameters. m0 is the rest mass of electron.
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dispersion becomes gapless. The numeric values of FC for MoS2, MoSe2, WS2 and WSe2 were found to be ±0.17 
V/Å, ±0.12 V/Å, ±0.35 V/Å and ±0.18 V/Å respectively. The numeric value of FC = ±0.17 V/Å as obtained for 
MoS2 is slightly different form previously reported data35, which may originate from different simulation meth-
odologies. However, for >F FML C, the band gap reopens at the Λ point along Γ – X direction, but the spin degen-
eracy remains lifted. Inside the regime <F FML C, all four of 1T' MX2 under consideration are topologically 
non-trivial  =( 1)2  and outside that regime, i.e. for >F FML C the phase becomes trivial  =( 0)2 . However, 
exactly at = ±F FML C, the quantum phase is ill-defined because the bulk spectra in this case becomes gapless. 
Based on parity criteria of the valence bands, the 2 indices for all of these materials were calculated by Qian et 
al.35. The existence of topological phase for <F FML C will be verified in the following section by probing the edge 
state spectrum. Although the electric field has similar effects on all four 1T' TMDs, viz. MoS2, MoSe2, WS2 and 
WSe2, it was found that WSe2 tends to become an indirect semiconductor as FML reaches ±FC as shown in the inset 
of Fig. 1(i).

Sample geometry and topological phase transition. In order to investigate the effects of real-space 
confinement on topological phases, we consider the sample geometry as illustrated in Fig. 2(a), where the sample 
length is infinite along y direction, but width of the material has been limited to W  in x direction. It is to be noted 
that by the term ‘edge’, throughout the article we represent only that type of physical termination where TRS is 
preserved. Also the absence of any form of magnetic perturbation (e.g. introduction of magnetic impurities) in 
our model implies that TRS is always preserved. The spatial confinement of material geometry severely affects the 
edge-state dispersion by introducing an energy gap in the otherwise gapless edge spectra. For analytical calcula-
tion of edge state spectrum, a low energy .k p Hamiltonian (see methods) was calibrated with the bulk dispersion, 
obtained from self-consistent DFT calculations as shown in Fig. 2(b) for MoS2. Details of the calibration proce-
dure is provided in the methods section. Figure 2(c–f) demonstrate the topological phase transitions of all mate-
rials as well as comparison between the numeric values of their bulk bandgaps as obtained from DFT 
computations and analytical calculations from .k p Hamiltonian. It signifies that the Hamiltonian accurately 
describes the low-energy spectrum of the bulk. Although the Hamiltonian works well within the electric fields 
±FC (which defines the quantum critical point for topological phase transition), it deviates from the actual result 

Figure 2. (a) Sample geometry under study, where the width is limited to W  in x direction whereas it is infinite 
in y direction. (b) Calibration of the .k p Hamiltonian against the data obtained from DFT calculations. Here 
the red lines represent conduction band and blue lines represent valence band, whereas, the solid and dotted 
lines respectively indicate the results obtained from DFT calculations and data obtained after calibrating the .k p 
Hamiltonian. The Fermi level, set to zero, is represented by green dashed line. (c–f) Demonstrate the topological 
phase transition of MoS2, MoSe2, WS2 and WSe2 respectively as a result of applied electric field. In (c–f), black 
solid lines represent the DFT data and red lines with data markers represent the .k p Hamiltonian. The critical 
electric fields FC were found to be ± .0 17 V/Å, ± .0 12 V/Å, ±0.35 V/Å and ±0.18 V/Å respectively for MoS2, 
MoSe2, WS2 and WSe2. (c) – (f) also showcase the calibration of bulk band gaps of respective materials obtained 
from analytical formulation with the corresponding DFT data. The material specific electrical parameter α was 
obtained from these calibrations. However, as shown in (f), WSe2 acquires an intermediate semi-metallic phase 
for ≤ ≤ ′F F FC ML C during the transition from topological to non-topological state. The concerned .k p 
Hamiltonian fails to describe this intermediate state.
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as FML goes far beyond ±FC. However, it was observed that unlike other three TMDs under consideration, WSe2 
acquires an intermediate semi-metallic gapless state during the transition from topological to non-topological 
phase. This semi-metallic phase appears in the regime ≤ ≤ ′F F FC ML C, where ′F C is the critical electric field for 
semi-metallic to non-topological phase transition. However, the .k p Hamiltonian under consideration assumes 
that the bulk band gap can be closed only at one particular electric field (either positive or negative), i.e. it indi-
cates the presence of only two quantum critical points ±FC. Therefore the Hamiltonian fails to describe this inter-
mediate phase of WSe2.

Effect of confinement on topological insulators. It is well known that the most subtle characteristic of 
a 2D TI material is the existence of chiral edge states on opposite edges of the bulk. In general, these edge states 
are gapless and thus their dispersions can be modeled by massless Dirac-like linear equations. On the contrary, 
confining the material geometry introduces a gap E( )gE  in the otherwise gapless edge state spectrum which 
increases exponentially with decreasing W  and their massless Dirac-like linear dispersions get transformed into 
massive Dirac hyperbolas54. The edge-state energy spectra of a 1T' MoS2 ribbon with =W 20 nm as calculated 
(see methods for details) from the .k p Hamiltonian, are presented in Fig. 3(a–d) for increasing values of FML. 
Here, the solid dark areas denote valid solutions for energy eigenvalues. The red dashed lines represent the highest 
valence and lowest conduction bands of the bulk and the edge states can be identified as isolated dark solid lines 
within the bulk energy gap (although in some cases the edge states may become indistinguishable from the bulk 
as discussed later). As mentioned earlier, due to the finite width effect, the edge state dispersion becomes gapped 
for <F FML C and the gap appears exactly at =k 0y . As shown in Fig. 3(a–b), the edge state is well defined for the 
electric fields FML = 0 V/Å and FML = 0.08 V/Å, which are less than FC. At the critical field (i.e. = = .F F 0 17ML C  
V/Å), however, the edge state spectrum becomes gapless =E( 0)gE  and it coincides with the bulk dispersion. If 
FML is further increased beyond FC (or decreased beyond −FC), the edge states vanish and the phase becomes 
topologically trivial (i.e. NI phase), which is depicted in Fig. 3(d) where = .F 0 3ML  V/Å. Similar dispersions of 
edge states under varying FML for WSe2 strip ( =W 10 nm) are shown in Fig. 3(e–g). However, in this case, the 

Figure 3. (a–d) are the energy spectra of edge states for 1T' MoS2 ribbon with a width of 20 nm. In all of these 
figures, we have plotted the functional values of coupled Eqs. (6) and (9) for given range of ky and E. While the 
color changes from white to blue to dark, the functional values change from very high to medium to zero. 
Therefore, the dark lines correspond to valid solutions for the energy bands. The red dashed lines correspond to 
bulk dispersion and the edge state dispersions can be identified as dark lines in between bulk valence and 
conduction bands. As shown in the figures, the effect of finite width is to introduce a gap in the otherwise 
gapless edge state spectrum and only when the width is small and finite, the applied electric field is able to 
modulate this energy gap. At = .F 0 17 V/ÅML , the edge states become indistinguishable from the bulk spectra 
indicating the phase transition point. In (d), = .F 0 3 V/ÅML , which is larger than the critical field for MoS2 and 
consequently, the phase becomes topologically trivial. Edge states vanish in this case. (e–g) Represent the edge 
state spectra of a WSe2 ribbon of width 10 nm. The colour scheme is the same as stated above. Similar arguments 
as stated before for MoS2 hold true for WSe2 also, except for the fact that energy spectrum for electric fields 
greater (or smaller) than the critical field of WSe2 could not be obtained since the Hamiltonian becomes invalid 
in that regime.
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energy spectrum for > .F 0 18ML  V/Å could not be obtained since the proposed .k p Hamiltonian becomes invalid 
as mentioned earlier. It is further observed that edge band gap EgE gets modulated as a function of FML and this is 
true only for samples with finite width because for an infinite sample = ∞W( ) the edge-spectrum is always gap-
less. Thus, the role of electric field is to introduce or remove the edge states, i.e. to effectuate topological phase 
transition and the effect of finite width is to make >E 0gE  thereby enabling its modulation. Hence, in a nutshell, 
EgE can be independently controlled and modulated as a function of FML and W  which is later demonstrated in 
detail. The edge state spectra for MoSe2 and WS2 can be found in Supplementary Figs. 3 and 4 respectively.

For a single edge of a TI material, the energy gap cannot be opened in the edge state spectra unless TRS is 
broken. However, the gap opening in our findings is a direct consequence of spatial overlap of the edge state wave-
functions (Ψ) from opposite sides of a finite-width sample. For infinite widths or when λ−

W 1 (λ is the length 
scale of the wavefunction), the edge state wavefunctions are dominantly distributed near the edges of the material 
and corresponding probability densities (|Ψ|2) rapidly decay inside the bulk. However, when W  becomes compa-
rable to or smaller than λ−1, these wavefunctions from opposite edges can indeed overlap in space and couple 
together to open a gap in edge state dispersion (see methods for details). Thus for spatially confined systems with 

λ≤ −W 1, the edge state spectra can become gapped even though TRS is preserved. For example, we find <W 50 
nm causes significant overlap between the edge state wavefunctions of MoS2. To support this statement, probabil-
ity densities of the normalized edge state wavefunctions of 1T' MoS2 have been plotted in Fig. 4(a,b) respectively 

Figure 4. (a,b) Depict the probability density profiles of the edge state wavefunctions Ψ↑± and Ψ↓± for 10 nm 
and 30 nm wide MoS2 ribbons respectively. It shows that for =k 0y , the densities are symmetrically distributed 
across the space, while increased overlap between the wavefunctions for 10 nm indicates the effect of 
confinement. (c,d) Are respectively the density distribution profiles of spin-up states for = ± .k 0 01y  V/Å and 
(e,f) are the same for spin-down states with = ± .k 0 01y  V/Å. (c–f) Illustrate that the spin texture gets resolved 
as we move away from the centre. (g) Indicates that electric field does not have any significant effect on the edge 
state wavefunctions.

https://doi.org/10.1038/s41598-020-63450-5


7Scientific RepoRtS |         (2020) 10:6670  | https://doi.org/10.1038/s41598-020-63450-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

for 10 nm and 30 nm sample widths in absence of electric field. As shown in Fig. 4(a,b), at =k 0y , all the density 
profiles are symmetrically distributed on both sides with Ψ = Ψ↑+ ↓+

2 2 and Ψ = Ψ↑− ↓−
2 2 where Ψ↑+, Ψ↓+ are 

respectively spin-up σ =( 1)x  and spin-down σ = −( 1)x  electron wavefunctions for conduction band while Ψ↑−, 
Ψ↓− are respectively the same for valence band with σx being the first Pauli matrix. As stated earlier, the wavefunc-
tions for finite widths do not vanish far away from the edges in the bulk, rather they overlap in space. This overlap 
occurs between Ψ +↑±( )x k, y  and Ψ −↑±( )x k, y , and also between similar spin-down states. As shown in Fig. 4(a), 
the overlap is more pronounced for =W 10 nm than =W 30 nm, causing larger EgE for smaller width. It is also 
noted that the spin texture of the edge states is not resolved at =k 0y . Figure 4(c–f) depicts the probability densi-
ties of the same wavefunctions at = ± .k 0 01y  Å−1 with =W 30 nm and =F 0ML  V/Å. Quite obviously, the spin 
texture is resolved in this case as ≠k 0y . Therefore, for any non-zero ky, the states Ψ +↑+( )x k, y  and Ψ −↑−( )x k, y  
have the same spin texture and positive velocity >( )v 0y  and the density distribution is dominant on one side; 
whereas Ψ −↑+( )x k, y  and Ψ↑−( )x k, y  have same spin texture and negative velocity <( )v 0y  and the density dis-
tribution is dominant on other side. The spin-down states also behave in a similar fashion. Nevertheless, near 

=k 0y  the wavefunctions couple together due to spatial confinement and the densities of Ψ =↑±( )x k, 0y  and 
Ψ =↓±( )x k, 0y  are distributed symmetrically on both sides, which explains the opening of energy gap in edge 
state spectrum exactly at =k 0y . However, the external electric field does not have any significant impact on the 
edge state wavefunctions other than increasing the amplitude of Ψ 2 near =x 0 as shown in Fig. 4(g).

Figure 5(a–d) represent the variation of EgE as a function of FML − ≤ ≤F F F( )C ML C  with W  as a parameter 
(ranging from 10 nm to infinite) respectively for the 1T' phases of MoS2, MoSe2, WS2 and WSe2. Here the black 
dashed lines indicate the variation of bulk band gap with respect to FML of the corresponding material. It clarifies 
that EgE cannot be tuned at all with the electric field for an infinitely wide sample. However, except for the case of 
deca-nanometer MoS2, for a given finite width, EgE increases monotonically with increasing FML  until it meets the 
bulk band gap profile. Figure 5(a–d) also reveals that for any particular FML, EgE increases with increasing degree 
of confinement. Interestingly, the most peculiar characteristic is that for a given small and finite W , EgE coincides 
with Eg , i.e. the edge states become indistinguishable from bulk bands at an electric field much lower (higher) 
than FC − F( )C  and it becomes more prominent with decreasing values of W . This can be regarded as a reduction 
of effective FC for a small finite width, where FC actually defines the critical field for infinite geometry. These ‘effec-

Figure 5. (a–d) Demonstrate the variation of edge state band gap EgE as a function of the monolayer electric 
field FML for the materials MoS2, MoSe2, WS2 and WSe2 respectively. In all of these plots, the black dashed lines 
indicate the bulk band gap profile with respect to the field strength. The red, blue, green and black lines with 
data markers respectively indicate the results obtained for the sample widths 10 nm, 20 nm, 30 nm and infinite. 
To be noted from these figures is that for any particular field strength, EgE increases with increasing degree of 
confinement. Also the ‘effective critical field’ gets reduced with decreasing ribbon width. (e–h) Showcases the 
charge conductance profiles for the respective materials. The color scheme of representation is same as 
mentioned before. G attains its maximum value of e h2 /2  for infinitely wide sample and it gets modulated by FML 
only when the ribbon-width is finite.
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tive critical fields’ for 1T' MoS2 are marked with colored dotted lines in Fig. 5(a). Thus for a TMD material with 
small W , such phase with an electric field between ‘effective critical field’ and FC becomes somewhat ambiguous 
in topological parlance. This apart, it is also observed that for materials with heavy electron effective mass (viz. 
WS2 and WSe2), the edge state spectra remain gapless at zero electric field even when the sample width is very 
small. For example, as shown in Fig. 5(c), EgE for WS2 remains zero in absence of electric field even when =W 10 
nm. Similar observations for WSe2 can be made from Fig. 5(d) when ≥W 20 nm. This is because the length scale 
of the wavefunctions i.e. λ is a complex function of electron effective masses (viz. mx

p, my
p, mx

d and my
d) and thus the 

characteristic λ−1 becomes smaller for a material with heavier effective mass.
As the edge states deviate from their ideal linear dispersions owing to spatial confinement of strip geometry, 

the charge conductance G( ) through them should also get modified accordingly. Theoretically, the ideal charge 
conductance of a QSH phase is e h2 /2  because of the presence of two chiral 1D conducting channels at the edges 
of the QSH strip8. Following the Landauer-Büttiker formula (see methods), the numeric values of G were calcu-
lated for the gapped edge states in all four materials and are presented in Fig. 5(e–h). It is noteworthy that G is very 
sensitive to the variations of EgE. As shown in these figures, G attains the maximum value of e h2 /2  when the width 
is infinite, but it gradually decreases with decreasing W . Nevertheless, the charge conductance can only be tuned 
by the external field when W  is finite. Figure 5(e–h) demonstrate that for a given finite W , the conductance profile 
decreases (with deca-nanometer MoS2 being an exception) from its maximum attainable value at =F 0ML  V/Å 
with increasing FML  until FML  takes the value of ‘effective critical field’ for that width of that particular material.

Discussion
Using first-principles based calculations and by employing a calibrated .k p Hamiltonian, we have studied the 
effect of spatial confinement and external electric field on the QSH states in four monolayer 1T' TMD materials 
viz. MoS2, MoSe2, WS2 and WSe2. We find that the vertical electric field effectuates a topological phase transition 
in these materials at a particular field strength, called the critical electric field and thus it is responsible for turning 
the edge states ‘on’ or ‘off ’. We also find that unlike the other three materials, 1T' WSe2 acquires an intermediate 
semi-metallic phase during the topological phase transition. However, infinite geometry of the materials renders 
it impossible to modulate the edge state dispersion by applying the vertical electric field. On the contrary, spatial 
confinement of material geometry opens a band gap in the otherwise gapless edge state spectrum, caused by the 
coupling between overlapping wavefunctions from opposite edges of the material. It also enables the external field 
to modulate the edge spectra and thereby the charge conductance. In this case, the charge conductance may devi-
ate from its ideal value of e h2 /2 . Finally, we conclude that the effect of confinement may prove to be a way to 
engineer the charge conductance through edge states, which may become useful for designing a TIFET.

Methods
First-principles based atomistic computations. First-principles based calculations for all four mon-
olayer 1T' TMDs were carried out using the DFT code as implemented in QuantumATK57 in conjunction with 
generalized gradient approximation exchange correlation for non-collinear SOC (SOGGA) and Perdew-Burke-
Ernzerhof (PBE) functional58. We have employed fully relativistic SG1559,60 (SG15-SO) norm-conserving pseudo-
potentials as implemented in QuantumATK database along with corresponding LCAO (linear combination of 
atomic orbitals) basis set of ‘medium’ accuracy for all elements. We also selected the fermion occupation method 
to be gaussian smearing with the electron temperatures 595 K, 1625K, 880 K and 600 K for MoS2, MoSe2, WS2 and 
WSe2 respectively. For Brillouin zone integration, the Monkhorst-Pack61 k-point samplings were set to 

× ×13 13 1 and × ×11 11 1 for MoS2 and MoSe2 respectively and × ×7 7 1 for WS2 and WSe2 along with the 
density mesh cutoff energy being 90 Hartree for MoS2 and MoSe2, 400 Hartree for WS2 and 180 Hartree for WSe2. 
Maximum iteration steps for self-consistent calculations were set to 200 using Pulay mixer algorithm and we 
followed the fast Fourier transform (FFT) for Poisson solver. Furthermore, sufficient vacuum region of about 15 Å 
was provided in z direction to all the structures in order to avoid spurious interactions between periodic images. 
The geometry optimization of unit cells of these materials including the effects of SOC were performed using 
LBFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) optimizer62 with maximum stress error tolerance 
of 0.001 eV/Å3 and force tolerance of 0.01 eV/Å. However, in presence of finite electric field, the geometry opti-
mization in QuantumATK with SG15-SO pseudopotentials including the effects of SOC is a formidable task and 
computationally way more resource-intensive, which often develops convergence issues. Therefore the optimiza-
tion of unit cells were only limited to the case of zero electric field. Nevertheless, the electric field should have 
negligible impact on the ionic positions as mentioned in the supplementary material of ref. 35. In order to investi-
gate the effects of electric field, two metal electrodes are inserted along z direction on either sides of the material 
with sufficient vacuum isolations, whereby an electric potential difference in these electrodes induces the electric 
field FML in the monolayer TMD. Thereafter, self-consistent calculations were carried out using multi-grid Poisson 
solver with Dirichlet boundary condition set to the z direction.

Nevertheless, despite all the atomistic calculations were carried out using PBE functional, the bulk band struc-
tures of all four 1T' TMDs at zero electric field, obtained using Heyd-Scuseria-Ernzerhof (HSE)63 hybrid func-
tional as implemented in the VASP64,65 code are presented in Supplementary Fig. 5 for sake of comparison.

Development of k.p Hamiltonian based continuum model. We start with a low-energy .k p 
Hamiltonian .( )Hk p  for monolayer 1T' MX2 structures, as prescribed by Qian et al.35 and Liu et al.36 that follows 
the form:
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 with  being the modified Planck’s 

constant, mx
p, my

p, mx
d and my

d being corresponding effective masses in conduction p( ) and valence d( ) bands in x 
and y directions respectively and v v,1 2 are respectively the velocities along x and y directions. Ep and Ed basically 
denote the onsite energies of p and d orbitals respectively and the upper and lower 2×2 blocks along the 
off-diagonal of .Hk p define the inter-band interactions between them. Numeric values of δp and δd were directly 
obtained from the DFT data while the effective masses and velocities were obtained by calibrating the above 
Hamiltonian with DFT results. All of these material-specific parameters can be found in Table 1. In our calcula-
tion δ δ δ= + <( ) 0p d  represents the band inversion at Γ  point.

Numerical fitting of .Hk p with the data obtained from first-principles calculations was carried out for both 
Γ → X and Γ → Y directions in the FBZ using nonlinear least-squares method in conjunction with 
trust-region-reflective optimization algorithm66,67. Since precise fitting is required around both Γ and Λ points, it 
is necessary to identify a region around the Γ point which is just sufficient to include Λ. point. Thereby, about 0.2 
Å−1 around the Γ point in both X and Y directions was chosen for curve-fitting. It was observed that although the 
Hamiltonian fits nicely in the Γ → Y direction, it fits poorly beyond Λ point along the Γ → X direction, which 
becomes more prominent for the materials with heavy electron effectiev mass such as WS2 and WSe2.

To incorporate the effects of external electric field, i.e. the Rashba splitting of spin-degenerate bands, we con-
sider the electric field Hamiltonian36 as:

α=












H F

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0 (2)

F ML

where FML is the monolayer electric field induced by the potential difference between the electrodes and α is a 
material-specific electrical constant. Thus the total Hamiltonian of 1T' MX2 including the effect of electric field 
becomes:

= +.H H H (3)k p F

By fitting the band gap as obtained from the eigenvalues of H  against the band gap computed by DFT (see 
Fig. 2(c–f)), we get the numeric values of α for different materials as tabulated in Table 1.

We start the analytical derivation of edge state spectra by rewriting H as:

δ δ τ τ τ τ σ τ α τ= − − + − + + + +− + − + − +( )H I M I M k M I M k v k v k F( ) ( ) (4)z x x z x y y z y x x x y y ML x
2 2

1 2 

where, δ δ δ= ±± ( )/2d p  and =
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( ) ( )

. Here I  stands for identity matrix, and the ×4 4 matrices 

σx, τx, τy, τz are mathematically represented as:
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The last term in Eq. (4) describes the electric field. For this Hamiltonian in Eq. (4), σx can be found to be a 
good quantum number that has the eigenvalues ±1. Hence in σx basis, the spin texture can be resolved and the 

×4 4 Hamiltonian H can be separated into two ×2 2 Hamiltonians corresponding to each eigenvalue of σx. We 
nomenclate σ = + 1x  states as ‘spin-up’ states ψ↑( ) and σ = − 1x  states as ‘spin-down’ states ψ↓( ). Now, let us con-
sider only the spin-up Hamiltonian that reads:

 
 

 
 

δ α

α δ
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1 2
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Therefore the eigenvalue problem for spin-up states becomes ψ ψ=↑ ↑ ↑Ĥ E  with E being the energy eigenvalue 

and ψ↑ being a two-component wavefunction ψ
ψ
ψ

=








↑

1

2
. For a strip geometry of width W  (see Fig. 2(a)), only ky 
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is a good quantum number and kx should be replaced by Peierls substitution = − ∂ ∂k i x/x . Now, in order to 
obtain the energy spectrum and wavefunctions, we solve the coupled Schrödinger equations using the trial wave-
functions ψ = λ ( )e 1

1
x

1,2 . The resulting secular equation reads

δ λ α λ

α λ δ λ
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It gives four roots of λ, namely λ1, λ2, λ3 and λ4. The nature of λns =n( 1, 2, 3, 4) determine the distribution 
of wavefunction in space. If nλ s are purely imaginary, then the wavefunctions can be expressed in terms of sine 
and cosine functions, i.e. they span throughout the whole space indicating solutions for bulk states. But when λn
s become real quantities, the wavefunctions are mainly distributed near the edges and they rapidly decay inside 
the bulk, pointing out the existence of edge states. However, in our calculation, λns were found to be complex 
numbers with non-zero real part and therefore the resulting wavefunctions become oscillatory as well as expo-
nentially decaying away from the edges (see Fig. 4). In general, the secular equation (Eq. (6)) turns out to be a 
depressed quartic equation in presence of external electric field. Nevertheless, at  =F 0ML , it transforms into a 
simple quadratic equation. Next, we figure out the eigenfunctions ψ1 and ψ2 as functions of λn as:
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Taking their linear combination, therefore we may construct the wavefunction as:

∑ψ λ
ψ λ
ψ λ
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where Cns =n( 1, 2, 3, 4) are the coefficients for linear combination. Now, applying the open boundary condition 
ψ = ± =↑( )x W k/2, 0y , we get another secular equation from the condition of having a nontrivial solution of 
these coefficients, that takes the following form.

∑Θ λ λ λ λ =
=

( , , , ) 0
(9)j
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1 2 3 4

The expressions for Θj =j( 1, 2, 3) are given as:
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Finally, the energy spectrum of the edge states can be obtained by numerically solving Eqs. (6) and (9) (see 
Fig. 3). The MATLAB code used to produce the dispersions in Fig. 3 is given in Supplementary Data. The same 
formalism can be applied to get the solutions for spin-down σ = −( 1)x  states. However, as it suggests, the disper-
sions for spin-up and spin-down states were found to be degenerate.

On the other hand, to obtain the edge-state wavefunctions, we need the numeric values of the coefficients Cn. 
If we choose C1 to be unity, then from the condition of having nontrivial solutions of the other three coefficients 
we can get the analytical expressions for C2, C3 and C4 as noted below.
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where, β, β′, γ and γ′ are expressed as:
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Finally, the normalized wavefunctions for σ = + 1x  can be written as:
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where N  is the normalization constant. Again, using the same formalism as stated above, Ψ↓( )x k, y  can also be 
calculated.

Nevertheless, this formalism also applicable for an infinite sample provided appropriate boundary conditions 
have been incorporated which are: ψ = =( )x k0, 0y  and ψ = − ∞ =( )x k, 0y .

Calculation of charge conductance through edge states. The charge conductance G through the edge 
states gets modified as an effect of gap opening in dispersion profile. Following the Landauer-Büttiker formula54,68, 
the charge conductance was calculated as
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where, EF is the Fermi energy (set to zero), kB is Boltzmann’s constant and T  is temperature. To be specific, all the 
conductance profiles in Fig. 5 were calculated for =T 300 K and it was assumed that no disorder is present in the 
sample. Thus the conductance appears to be a linear function of EgE, which will be highly nonlinear at low tem-
peratures. It clearly indicates that when the spectrum is gapless, i.e. =E 0gE , then G attains its maximum value of 
e h2 /2  and it reduces with increasing EgE. Nevertheless, the conductance profile becomes quantized at absolute 

zero.
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