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High-throughput discovery of high Curie point
two-dimensional ferromagnetic materials
Arnab Kabiraj 1✉, Mayank Kumar1 and Santanu Mahapatra1

Databases for two-dimensional materials host numerous ferromagnetic materials without the vital information of Curie temperature
since its calculation involves a manually intensive complex process. In this work, we develop a fully automated, hardware-
accelerated, dynamic-translation based computer code, which performs first principles-based computations followed by
Heisenberg model-based Monte Carlo simulations to estimate the Curie temperature from the crystal structure. We employ this
code to conduct a high-throughput scan of 786 materials from a database to discover 26 materials with a Curie point beyond 400 K.
For rapid data mining, we further use these results to develop an end-to-end machine learning model with generalized chemical
features through an exhaustive search of the model space as well as the hyperparameters. We discover a few more high Curie point
materials from different sources using this data-driven model. Such material informatics, which agrees well with recent
experiments, is expected to foster practical applications of two-dimensional magnetism.
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INTRODUCTION
The recent experimental demonstration of ferromagnetism in two-
dimensional (2D) materials: CrI3

1 and Cr2Ge2Te6
2 at low tempera-

tures, has opened a new horizon of nanotechnology research
since these materials inherit the potential to revolutionize
engineering fields like spintronics3, valleytronics4, sensing and
memory technologies5. In their classical work, Mermin and
Wanger6 showed that under an isotropic Heisenberg model,
long-range magnetic order must be absent in 2D. However, the
more recent discovery of even room-temperature ferromagnetism
in monolayer VSe2

7 and MnSe2
8 has been possible as the strong

magnetocrystalline anisotropy of these 2D materials lifts the
Mermin–Wanger restriction. So far, a plethora of 2D ferromagnetic
(FM) materials9–14 have been computationally predicted, including
a few general-purpose 2D materials databases15–17 containing
hundreds to thousands of entries. However, none of these
databases contain the most crucial parameter for 2DFM materials
relevant for practical applications: the transition temperature or
Curie point (TC). This is due to the fact that the computational
determination of TC is a highly complex process, which involves a
manual heuristics-based search for the ground-state and low-
energy spin configurations. Identification of different magnetic
exchanges (direct, super or double) within the neighbouring
atoms and mapping them appropriately in a Monte Carlo based
spin-flipping simulator has also been a manually intensive
exercise. The choice of the model Hamiltonian (Ising instead of
Heisenberg) used to simulate the spin-flipping with temperature,
also raises a question on the reliability of the Curie temperatures
of 2D materials predicted so far in the literature10,14.
Recently, an algorithm18 has been proposed which can search

and predict the collinear, experimentally verified ground and low-
energy spin states for bulk materials, almost optimally and
exhaustively. Building on this, we develop a code, which performs
first principles-based computations followed by Heisenberg
model-based Monte Carlo simulations to predict the Curie point
accurately from any magnetic 2D material crystal structure.

Software engineering on this code makes it capable to execute
such rigorous calculations in a high-throughput manner, even on
a workstation-grade computer with GPU (graphical processing
unit) acceleration. We use this code to determine the Curie points
of materials from a suitable database16. To our surprise, almost
47% of the 786 materials classified as FM, turned out to be
antiferromagnetic (AFM) upon close inspection by our code. The
TC and other magnetic properties could be successfully deter-
mined for 157 materials, among which 26 materials reveal beyond
400 K Curie point. Close agreement with experimentally measured
TC for a few materials validates our high-throughput methodology.
In pursuit of faster discovery of high-TC materials, we further
develop a machine-learning (ML) pipeline using these 157 data
points. Using this ML model, we identify a few high TC 2DFM
materials from the literature and other databases.
The informatics, which optimally balances the rigorousness and

efficiency, gives us unprecedented opportunity to compare the
magnetic properties of a very large number of materials with
diverse structures, which may lead to many new insights on 2D
magnetism. For example, we understand why the inclusion of the
higher-order neighbours is important for TC calculation for certain
materials and why it is not for the others. We observe several
violations of the Goodenough–Kanamori19,20 rules for super-
exchange, the origin of which is open for further exploration. We
also demonstrate that a machine-learning model can capture the
complex process of temperature-dependent spin-flipping with
exceptional accuracy. Our work thus significantly upgrades the
computational materials toolbox to foster practical applications of
two-dimensional magnetism.

RESULTS
High-throughput computational framework
We first explain the workflow of our automated code as illustrated
in Fig. 1. The unit cell of the material is first fed to a recently
developed module18 of the open-source python library
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pymatgen21, which generates different FM and AFM spin
configurations of the material based on symmetry analysis.
Eliminating the heuristics-based approach, pymatgen not only
helps to automate the process of the TC calculation, but also
makes it more rigorous and thus reliable [see Methods]. The code-
generated spin configurations for experimentally synthesized
materials CrI3

1 and Cr2Ge2Te6
2 and newly predicted material

Cr3Te4
10 are shown in Supplementary Figs. 1–3 as examples. These

structures are then relaxed using collinear density functional
theory with Hubbard correction (DFT+ U) and their energies are
calculated. At this stage, if the ground state is found to be AFM,
the material is discarded. Here we also calculate the magnetic
moment (µ) of each atom of the structure. Since the magneto-
crystalline anisotropic energy (MAE) is essential for the existence
of long-range magnetic order in 2D materials, it is calculated using
non-collinear DFT including the effects of spin–orbit coupling
(SOC) in the next step. These calculations also reveal the easy
magnetization axis (EMA) of the 2DFM material, which can be
important for specific applications. All these calculations provide
us enough information to fit the DFT energy values to the
following Heisenberg Hamiltonian:

H ¼ � 1
2

X

i;j
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2

X
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(1)
Here, J1, J2, J3 and J4 are the nearest-neighbour (N1), 2nd nearest-
neighbour (N2), 3rd nearest-neighbour (N3) and 4th nearest-
neighbour (N4) exchange coupling constants and Si, Sj, Sl, Sm and
Sn are the spins at sites i, j, l, m, and n, respectively. kx, ky, and kz
are the magnetic anisotropy constants in the x, y and z directions.
S is computed as µ/(2µB), where µ is the local magnetic moment of
the magnetic ions.
For 2D materials, the classical Monte Carlo (MC) based solution

of the Heisenberg Model is known to accurately predict the
transition temperature22. First, the 2DFM unit cell is multiplied to
make a supercell large enough to eliminate size effects, and using
a GPU accelerated search, all the neighbours of all the sites are
mapped into an 1D array structure. This is then used to perform a
Heisenberg model-based classical MC simulation using a semi-
compiled dynamic-translation based module, from which the TC of

the material can be obtained. For a few materials, no in-plane
anisotropy is observed which are classified as XY magnets.
Mermin–Wagner theorem6 prohibits spontaneous symmetry break-
ing in these kinds of systems where the spin degree of freedom is
≤2. Instead, XY magnets exhibit a Berezinskii−Kosterlitz−Thouless
(BKT) transition to a quasi-long-range ordered low-temperature
phase. For these materials, TC is calculated from the following
equation obtained from Monte Carlo simulations of the XY model23:

TC ¼ 0:89
8kB

ðEAFM � EFMÞ; (2)

where kB is the Boltzmann constant and EFM and EAFM are energies
of the FM and the most stable AFM solutions normalized by the
number of atoms.
Though the Ising model can provide good results for materials

with extremely high anisotropy, significant overestimation of TC
may happen for materials with moderate to low anisotropy10,11,14.
The anisotropic Heisenberg model takes care of this problem and
effectively balances the contributions between exchange and
anisotropy. However, it requires further MAE calculations and the
MC simulation becomes computationally much more expensive.
Although this is a high-throughput study, leveraging software
engineering [see Methods], we decide to use the rigorous
Heisenberg model without compromising the accuracy.

Database search
We identify the database C2DB16 as the ideal database to conduct
our study based on the following reasons. (1) The authors have
performed a preliminary classification between FM and AFM
materials and a large number (786) of materials are classified as
FM. (2) These materials have been explored by a “systematic
combinatorial approach” where almost all known layered exfoli-
able materials are covered15, and by substituting the atoms, the
authors have predicted a lot of new materials. This kind of
variation is ideal to train machine-learning models, which is one of
our primary goals. Also, recent synthesis of janus24 and other
species substituted25 2D materials with no bulk analogues have
made practical application of this kind of “synthetic” 2D materials
possible. (3)The authors have calculated several properties of
interest including thermodynamic stability and energy above the
convex hull which helps us to estimate the chance of potential

Fig. 1 Automated high-throughput machinery. The different building blocks of our end-to-end code for determining properties of 2DFM
materials along with an estimation of CPU and GPU usage of each block.
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synthesis of these materials. The electronic structures have also
been computed, which tells us about the presence of important
properties like half-metallicity.
Interestingly, after a close examination by our code, 368 of the

786 materials classified as FM in the database turns out to be
actually AFM. The pymatgen magnetism module explores the
symmetry allowed spin-configuration space almost exhaustively,
and in the process also explores large AFM supercells, which
probably the authors of C2DB could not afford to do in their
general-purpose study. A few discrepancies can also arise from the
difference in DFT settings between the studies. Analyses of a
considerable amount of materials have failed and thus have been
discarded due to various computational limitations [see Methods].
Sheet 1 of Supplementary Spreadsheet 1 lists all the examined
materials with FM/AFM classification as found by our method. In
the end, the TC of 157 2DFM materials could be successfully
computed, among which 12 materials are found to be XY
magnets. These materials belong to more than 20 different
prototype structures, which are shown in Fig. 2.

Discovery of high-Tc materials
Almost all experimentally synthesized 2D materials are there in
C2DB, except Cr2Ge2Te6, which too we have included manually in
this set. We have not included those 2DFM materials whose
ferromagnetism cannot be accurately modelled by the Heisenberg
or the XY model, such as known itinerant material Fe3GeTe2

26,27.
Sheet 1 of Supplementary Spreadsheet 2 lists all the calculated
properties, as well as the computed Curie temperatures of these
2DFM materials. To include interactions of N neighbours in the
Hamiltonian, N+ 1 spin configurations are required, and the
number of configurations generated by pymatgen is also listed in
Supplementary Spreadsheet 2. Given enough configurations, we
have included up to the 4th nearest-neighbour interaction in this
work. The TCs are calculated using two methodologies: (1)
commonly used nearest-neighbour approach: including only the
N1 interaction and fitting the energies of the FM and the most
stable AFM configurations, (denoted as ‘TC’ in the spreadsheet)
and (2) multi-neighbour approach: interactions including up to N4
(listed under the ‘TC_exact’ column). Apparently, the TC_exact

Fig. 2 Prototypes of training data. Top view of prototypes (according to C2DB) of all the 2DFM materials for which TC could be determined
using our method. Blue balls represent the magnetic metal ions and the red and brown balls signify non-magnetic ions. Note that the
grouped prototypes, e.g. FeOCl, FeSe, and NiO3 show the same structure cation-wise, but have different numbers of anions. However, all
prototypes in such a group look similar from the top.
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should provide a better estimate of the real TC of the material.
However, to our surprise, we observe that TC, which is
computationally much economic, is close to TC_exact in most of
the cases, except a few as described below. (1) Materials with
more than one distinct metal layer (prototypes CH, GaSe, CdI2-
MXene, Ti2CO2, and Ti2CH2O2). For prototypes CH and GaSe, there
is no layer containing anions between the metal layers, which
gives rise to strong inter-layer direct exchange in addition to the
intra-layer superexchange. In prototypes CdI2, Ti2CO2 and
Ti2CH2O2, which are all MXenes, the distinct metal layers are
connected by anionic layers, where both the inter-layer as well as
intra-layer exchange interactions play a pivotal role in deciding
the TC. Clearly, considering only the N1 interactions in these
materials is not accurate enough, as reflected in the huge
differences between TC and TC_exact. In passing, we note that,
for a few MXenes, pymatgen could only generate two configura-
tions, thus, the TC value has been repeated as TC_exact. (2)
Materials with square or rectangular lattice (prototype FeOCl, FeSe,
GeS2 and NiSe). Here, the N1s or N2s are the atoms situated in the
diagonally opposite corners of the square or rectangle, where
superexchange is expected to be feeble at best and only strong
direct exchange could persist. The difference in distance between
N1s and N2s are also very small in these materials, which again
makes the inclusion of the higher neighbour interactions
necessary [see Supplementary Figs. 4 and 5]. In a few materials
(Janus) the effect of higher-order neighbours is not possible to
take into account due to moderate distortion in the lattice and TC
value has been repeated as TC_exact.
The calculated TC (TC_exact) by our automated code for the

experimentally synthesized materials CrI3
1, Cr2Ge2Te6

2, and
MnSe2

8 matches the experimental reports very closely without
any manual tinkering of parameters, validating the generalization
and accuracy of our method. For T-phase VSe2 our predicted TC is
only 114.33 K, whereas room temperature ferromagnetism has
been reported7. However, it must be noted that the authors have
reported strong substrate dependence of the magnetism and TC
in this study which explains this apparent discrepancy. Also, our
code confirms the magnetism to be in-plane in this material which
matches the experimental report. With Supplementary Table 1,
Supplementary Note 1 and Supplementary Figs 1, 2, and 6, we
explain in detail how our code works for 2 FM (CrI3

1, CrGeTe3
2) and

2 AFM (FePS3
28, NiPS3

29) experimentally synthesized 2D materials.
We finally discover a total of 26 materials with TC > 400 K and 32

materials with TC ≥ 300 K, making these materials suitable for
practical device applications. Interestingly, many of these materi-
als are known to show a “low” amount of magnetism in bulk
forms, such as materials containing Rh, Ru, Mo, W, Sc, Ti, and Zr,
which were ignored in previous heuristics-based searches10.
However, our study suggests that the materials containing the
above-mentioned metals can indeed show a “decent”
(0.59–3.96 µB/atom) magnetic moment in 2D crystal form along
with high-TC, possibly because of the enhanced electron localiza-
tion. Also, for some of these materials the anisotropy is not great,
but the difference in energy between the FM and AFM states,
which ultimately translates to exchange parameters, helps to lift
the TC beyond the room-temperature.
Since the magnetic properties of these materials can greatly

depend on the value of U (Hubbard Correction), we also calculate
the TC of the 26 promising high-TC materials with much more
accurate material-specific U valuess30 [see Methods] and present
the results in Sheet 3 of Supplementary Spreadsheet 2. Apart from
a single material (MoIN_Pmmn), we observe that the TC of the rest
of the materials remains either close to 400 K or becomes much
higher than that. We also noticed in some cases the TC value has
been significantly enhanced with the application of these tailor-
made U values. Thus, we expect that some of the materials whose
TC values fall in the 250–400 K range might exhibit much higher TC
if it is calculated using material-specific U.

Machine-learning model
Due to an increasing amount of available data, machine-learning
has recently found many applications in the field of solid-state
materials science31. Very recently, training on about 2500
experimentally reported Curie temperature of bulk materials,
accurate ML models to predict TC of bulk materials have been
developed32. 2D magnetism is fundamentally different from the
magnetism of the bulk materials as most of the time anisotropy
does not play such a significant role there. Therefore, In this
emerging field, one doesn’t have the luxury of a sufficient amount
of data points to train on. Based on the 157 data points obtained
from our database-search we develop a machine-learning model
to predict the TC from the crystal structures. To decide the best
model and features, we use the autoML library automatminer
(https://github.com/hackingmaterials/automatminer). This tool
takes structures as input and decorates the dataset with easily
computable and chemically and physically meaningful features33.
Then the dataset is cleaned and reduced and is sent to the autoML
library TPOT34, which stochastically searches the model and the
hyperparameter space using a genetic algorithm and finds the
best model for the given dataset. After this extensive search [see
Methods], we find an excellently fitted pipeline with average cross-
validation (CV) score 94.57 K2, which is reported as the mean
square error (MSE) on the training set. For the FM/AFM
classification problem, we also try to find a suitable pipeline
using the same method, with our examined 525 FM+ AFM data
points. The fitted pipeline reports an average CV score of a lowly
72.89% (accuracy) on the training set, which is understandable
considering the complexity of the problem and the size and
skewness of the data.
To test the generalization and predictive power of these ML

pipelines, we construct a test set from reported 2DFM materials.
Also, quite a few selected materials are included in the test set
from a separate database17 with completely new structures and
complex compositions. After inspecting these materials using our
code, we find a few materials to be AFM which have been claimed
as FM. This discrepancy can originate from the use of different DFT
settings. This, along with fitting with a large number of spin
configurations also causes a difference in fitted J values as
observed for few materials (see Supplementary Fig. 3). Details of
22 materials identified as FM are provided in Sheet 2 of
Supplementary Spreadsheet 2. The new prototypes encountered
in this set are illustrated in Fig. 3.
Figure 4a illustrates the accuracy of the ML pipeline prediction

against the DFT-MC calculated TC for all the train and test data.
The ML predicted TC is also listed in the ‘TC_exact predicted’
column of Supplementary Spreadsheet 2. The distribution of
absolute errors in train and test data have been plotted in Fig. 4b.
Although the pipeline has fitted to train data with high accuracy,
generalization to test data does not seem so well. The MSE value
also turns out to be 30335.46 K2. Although the small train data size
could be partially responsible for this, the main reason is possibly
the introduction of unseen crystal structures. For instance,
although we have not trained with even a single material
containing La, the prediction for LaBr2 is exceptionally close
probably because we had a lot of crystals with similar structures in
our train data. The same argument can be applied to Mn2H2NO2

and Cr3Te4. The ML classifier pipeline has also been tried on the
test data containing a total of 123 FM+ AFM samples, which
yields a decent 73.17% accuracy. Sheet 2 of Supplementary
Spreadsheet 1 tabulates all the materials tried and their ultimate
fate as well as the classification prediction.
During this exercise, we identify CrO2 _P4/mmm and ZnNi2O5 as

high-TC materials, while the claim of Cr3Te4 possessing high-TC has
also been verified, albeit the Curie temperature turns out to be
much lower than the reported Ising model predicted value10, but
higher than the experimentally reported value for bulk Cr3Te4.
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Violation of Goodenough-Kanamori rule
The classical Goodenough-Kanamori semi-empirical rules19,20 for
magnetic materials essentially states that when the magnetic-ion-

anion-magnetic-ion bond angle is close to 180°, a strong AFM
structure due to superexchange should prevail, whereas if this
angle is close to 90°, the material should show ferromagnetism.

Fig. 4 Accuracy of the machine learning model. a plot of DFT-MC calculated TC and machine learning predicted TC for all the train as well as
test samples. The green line represents a perfectly accurate prediction line. b distribution (histogram plot) of the absolute error of the machine
learning prediction for test and train data combined.

Fig. 3 Prototypes of unique test data. The unique prototypes of the test data which have not been covered in Fig. 2. Note that for
visualization purposes, top view of the materials in the 1st and 2nd row has been shown, but the third row contains all side-views. The same
colour convention as Fig. 2 have been used.
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However, in this work, we notice quite a few violations of this rule.
We have tabulated these bond angles for all the train and test
materials in Supplementary Spreadsheet 2 and the apparent
violation cases are marked in red. The most significant violation of
the Goodenough-Kanamori criterion can be seen in the strong
high-TC FM material CrO2 _P4/mmm, where the
cation–anion–cation bond angle is precisely 180°. Although a full
investigation is out of the scope of this work, it appears that these
postulates were developed for bulk materials and are failing here
because of highly covalent bonds of 2DFM materials. Especially
CrO2 _P4/mmm exhibits a highly planar structure, and thus should
manifest highly covalent bonds. However, this material seems to
be dynamically unstable and possesses a much higher total
energy compared to the experimentally available bulk phase
which might make it unlikely to be experimentally synthesized9.

High-temperature structural stability
According to the thermodynamic stability classification in C2DB,
we choose three highly stable high-TC materials, namely
CrIN_Pmmm, RhCl2_C2/m, and Mn2H2CO2_P-3m1 along with
newfound ZnNi2O5_Pmmn for further structural stability evalua-
tion at high temperatures. An ab-initio molecular dynamics (AIMD)
run at 400 K for a total of 6.5 ps is conducted for this. Although
CrIN, RhCl2, and ZnNi2O5 retain their crystal structure during this,
albeit with less crystallinity, the MXene Mn2H2CO2 starts to melt
away just after 3 ps, rendering it unsuitable for practical
applications. Supplementary Figs 7–10 show the structural
differences resulted from the MD runs.

DISCUSSION
In this study, we predict a total of 26 2D materials to have TC
beyond 400 K. Many of these could be easily synthesizable,
either by straight exfoliation from their bulk counterparts or by
bottom-up chemical methods24,25. It is worth noting that, low
thermodynamic stability does not necessarily mean the material
would be unusable for practical applications. For instance,
according to C2DB, Silicene is classified as a material with low
thermodynamic stability. However, Silicene transistors have
been demonstrated to work in room temperature35. Some of
these materials screened by us even show dynamic instability.
Again, many commonly used 2D materials, such as T-phase
MoS2 showing dynamic instability36 in free-standing form
stabilizes themselves on substrates through possible substrate
interaction and even finds application in room-temperature
devices37. Also, these materials can show charge density wave
(CDW) characteristics and stabilize in a larger supercell with
slight structural distortion7. However, CDW distortions can
sometimes impact the magnetic order adversely38.
To summarize, using high-throughput automated codes and

data-driven models, we thoroughly screen 2D materials data-
bases and predict a host of 2DFM materials with high Curie
point. With the emergence of novel synthesis techniques, these
materials could indeed be of interest to experimentalists and
engineers in terms of practical application in various devices.
The ML model and the automated code developed in this work
could find use in the community for rapid magnetic property
prediction. The model complements the rigorous DFT-MC based
code and if trained with sufficiently large datasets the model
could eventually replace the code32. State-of-the-art software
engineering enables us to achieve an optimal balance between
rigor and computational efficiency, which is very important for
reliable high-throughput material screening. As a result, we
discover many important magnetic materials involving metals
like Mo, W and Ti which have so far been ignored by heuristic-
based formula-screening10.

METHODS
Spin configurations generation
As mentioned before, the python library pymatgen21 has been extensively
used in this study for generating spin configurations, managing, and
parsing input-output files and performing the neighbour mappings. The
python module ASE39 has also been used to parse the input structure files.
To ensure the reliability and coverage of the pymatgen generated spin
configurations, we manually verify that the code-generated spin config-
uration set almost always includes all heuristics-based configurations
reported in the literature9–14. Often, the code generates even more
unexplored but symmetrically valid configurations that we leverage to
include a higher number of neighbour interactions for a more accurate
prediction of the TC. At the same time, we ignore ferrimagnetic
configurations since these are usually energetically highly unstable as
well as asymmetric. For instance, in contrast to the previous report10, our
TC prediction of Cr3Te4 is based on a larger number of symmetric FM and
AFM configurations and thus seems to be much more accurate.
It is worth mentioning that since we cover such a huge variety of

materials using an automated workflow, we use such values of various DFT
and numerical parameters [see Supplementary Readme (readme file at OSF
repository)], which would yield reasonable results for all materials. For
instance, in case of CrI3, the default value of the parameter enum_prec=
0.001 (enum_precision_parameter in pymatgen) generates 3 configura-
tions, where the Néel AFM configuration gets excluded (Supplementary Fig
1). But with enum_prec= 1e-7, all 4 configurations can be generated. For
the first case, we obtain J1= 2.78 and J2= 0.43meV/link, while the second
set gives us almost identical values of J1= 2.82, J2= 0.41 and J3=
0.009meV/link and in both cases, we obtain the same TC. The Néel AFM
solution turns out to be the most energetically unfavourable state and gets
truncated18 by pymatgen-enumlib with default settings. For this high-
throughput study, we find the default values to be accurate enough for our
one-fits-all scheme. However, for focused studies on some specific material
one might want to obtain extremely accurate results and thus might need
to tune the parameters a little.

DFT parameters
Because the energy differences between various configurations for
magnetism calculations could be as low as ≈µeV, the computations need
to be performed with high accuracy. We use heavily modified versions of
predefined configurations ‘MPRelaxSet’, ‘MPStaticSet’ and ‘MPSOCSet’
available in pymatgen for relaxations, static runs and MAE calculations.
These modifications, as well as other details of DFT, are highlighted below.
Spin-polarized DFT calculations are carried out using generalized

gradient approximation (GGA) as implemented in the code VASP40 with
projector augmented-wave (PAW)41 method using the
Perdew–Burke–Ernzenhof (PBE)42 exchange-correlation functional. Along
with the CPU version, The GPU port43 of VASP has been used extensively.
For all calculations, a correction on the strongly correlated d-shell electrons
(GGA+ U) is applied using the Dudarev44 formulation. The default value of
the cut-off energy (520 eV) is used which proved to be sufficiently large.
For relaxations, the default reciprocal density of 64 Å−3 is employed
whereas for all collinear and non-collinear static runs a much denser
reciprocal density of 300 Å−3 has been used. Electronic convergence is set
to be attained when the difference in energy of successive electronic steps
becomes less than 10−6 eV, whereas the structural geometry is optimized
until the maximum Hellmann–Feynman force on every atom falls below
0.01 eV/Å. For the high-precision MAE calculations, a stricter electronic
convergence criterion of 10−8 eV is imposed. A large vacuum space of
>25 Å in the direction of c is applied to avoid any spurious interaction
between periodically repeated layers. The Bader charge and magnetization
analysis are performed using the code developed by the Henkelman
group45, where charge densities generated from DFT static runs are used
as inputs. These Bader partitioned magnetic moments have been used as
the local magnetic moments of the magnetic elements. All crystal structure
images are generated using the tool VESTA46.
For metals, Co, Cr, Fe, Mn, Mo, Ni, V and W, the effective U values have

been taken from the Materials Project (https://wiki.materialsproject.org/
GGA%2BU_calculations#Calibration_of_U_values) where these effective U
values have been calibrated by performing a fitting to experimental binary
formation enthalpies47. This is an established practice and has been used
in similar high-throughput screening studies before10. We also find that the
application of an effective U is essential to perform accurate DFT
calculations on materials with “low” magnetization (materials containing
Nb, Sc, Ru, Rh, Pd, Cu, Os, Ti, Zr, Re, Hf, Pt, and La) as the AFM solutions
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become difficult to obtain for these materials without a proper effective U.
In these cases, for a specific metal, first the effective U values are obtained
using the linear-response approach30 using 3 × 3 supercells for a few
materials containing the element and then the average value of these
effective U is taken as the final effective U. A complete list of effective U
values (in eV) used in this study, as well as the DFT parameters imposed
can be found in Supplementary Code 1 (e2e.py at OSF repository).
It is worth noting that, these effective U values depend on the element

type, charge state and coordination mode of magnetic species in a certain
material, which implies that the value of U is quite material-specific and
should be determined carefully for accurate predictions. Thus, we also
calculate the material-specific U values for the most promising 26 materials
with predicted high-TC using the linear-response approach30. We observe
that the U values obtained from the linear-response method can be quite
different from the high-throughput U values we have used so far (see
Sheet 3 of Supplementary Spreadsheet 2). However, the computational
budget of the linear-response method is excessively high to be adopted
for high-throughput material screening.

Hamiltonian fitting
The coupling constant (J) values are fitted using the collinear energy values
of different FM and AFM spin configurations. However, for a lot of cases,
when the energies of all configurations are taken, the determinant of the
system of equations becomes zero which makes the set of equations
unsolvable. As an automated remedy for these problems, again a fitting is
tried omitting the most unstable AFM configuration and using one less
neighbour than before. This process is repeated until a set of physically
meaningful solutions is found, or the code runs out of configurations to fit.
The anisotropic constant (k) values are fitted using the non-collinear energy
values with spins oriented in different directions ([100], [010], [110], [001]).
Despite our best efforts, calculations for 261 materials (out of the 786

materials classified as FM in C2DB) had to be cancelled because of the
following reasons: (1) pymatgen could not recognize the symmetry and
could generate only one configuration, (2) material turned out to be non-
magnetic after DFT calculations, (3) severe convergence issues occurred
during DFT calculations, (4) AFM configurations could not be retained even
after application of proper U and manual tuning of parameters, (5) the
Hamiltonian could not be fitted properly, (6) phase change of crystal
structure after relaxation.

Monte Carlo simulation
To study ferromagnetic (FM) to paramagnetic (PM) transition in these
monolayer materials, Monte Carlo (MC) simulations of the Heisenberg
model have been performed using the Metropolis algorithm with single-
spin update scheme48. To eliminate the size effects, a 50 × 50 supercell
containing 2500-8000 sites has been used to simulate the system. Total 105

Monte Carlo steps have been performed for each temperature, while the
results from the first 104 steps have been discarded, as the system is
allowed to equilibrate (thermalize) during this time. The final values of
magnetization and susceptibility are calculated as the average over the last
9 × 104 MC steps for each temperature.

Software engineering
We develop the complete end-to-end code in python to take advantage of
pymatgen. However, python being an interpreted language, the MC
simulations turned out to be excessively slow, especially with high
coordination numbers and inclusion of higher neighbours, which made the
code unsuitable for the high-throughput study. As a remedy to this problem,
we decide to use python-based just-in-time (JIT) compiler numba49 which
compiles specific decorated python modules at the first encounter to low-
level instructions, and when these modules are repeatedly called, the
compiled version is used which makes the code extremely fast. However, the
trade-off is, a lot of powerful functions and the coding flexibility offered by
python (like heterogeneous data structures, appending to a list) cannot be
successfully compiled and significant software engineering, as well as timing
and cost-benefit analyses, are required to achieve an optimal code. GPU
acceleration for neighbour-mapping of large lattices (2500–8000 sites) has
also been implemented, which on a CPU must be done serially and takes a
lot more time.
The engineered code was optimized to such an extent that the whole

study could be performed using even a workstation-grade machine, albeit
with GPU acceleration. A video of real-time execution of the code, where
the TC of four materials (CrI3, Cr2Ge2Te6, MnSe2, and MoC3) are being

calculated in parallel in a single-CPU (18 cores), three-GPU enabled
workstation within ≈10 hour, can be found at https://youtu.be/HJkR-
03OzBI. At the same time excellent scalability is observed, when the code is
executed on a high performance computing node (https://youtu.be/
GQaFfm29LR4).

Machine learning
The python libraries automatminer and matminer33 have been used to
featurize the datasets and search for optimal ML pipeline for the FM/AFM
classification problem as well as the TC predicting regression problem.
Dataset cleaning and feature reduction are handled by automatminer.
Then, various pre-processing algorithms along with a host of commonly
used ML models employed for materials science problems31 for small to
moderate datasets have been searched by the autoML library TPOT34, such
as naive Bayesian, decision tree, extra trees, random forest, gradient
boosting, k-neighbors, linear SVC and logistic regression for classification
and elastic net CV, decision tree, extra trees, random forest, gradient
boosting, k-neighbors, lasso lars CV, ridge CV and linear SVR for regression.
Also, the hyperparameters are tuned at the same time. A full list of pre-
processing algorithms, ML models and hyperparameters searched can be
found at https://github.com/hackingmaterials/automatminer/blob/master/
automatminer/automl/config/tpot_configs.py. It is worth noting that TPOT
uses the ML library scikit-learn50 for the ML as well as the feature-
engineering models. For each autoML search, more than 60,000 pipelines
have been explored.
The generic python codes using scikit-learn for the best pipelines for

both FM/AFM classification and TC regression have been given in
Supplementary Codes 2 and 3 (TPOT_*.py at OSF repository). For the
former, a combination of SelectPercentile, MaxAbsScaler, and ExtraTree-
sClassifier turns out to be the best pipeline, whereas for the latter it is a
combination of SelectPercentile, ZeroCount, and GradientBoostingRegres-
sor. The list of features used for these problems can be found in
Supplementary Logs 1 and 2 (*_digest at OSF repository). Moreover, the
pickled pipelines have also been provided in Supplementary ML Pipes 1
and 2 (*.pipe at OSF repository) which can be loaded into automatminer to
make predictions on any dataset. The Supplementary Readme file provides
detailed instructions on how to use the Supplementary codes and pipes.

AIMD simulations
For the chosen materials, to minimize the temperature oscillations a large
supercell containing ≥144 atoms has been constructed to run the AIMD on.
Because of severe convergence issues, non-spin-polarized DFT calculations
are performed with Gamma-point only sampling which can be sufficient to
determine structural stability. A canonical ensemble (NVT) is used and a
Nosé-Hoover thermostat51,52 at 400 K is employed. The simulations run for
6.5 ps with a 2 fs time step. The crystal structures of the tested materials
after the simulation can be seen in Supplementary Figs 7–10.
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