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Analytical Study of Low-Field Diffusive Transport in
Highly Asymmetric Bilayer Graphene Nanoribbon

Sitangshu Bhattacharya and Santanu Mahapatra, Member, IEEE

Abstract—We present a simplified theory of carrier backscat-
tering coefficient in a twofold degenerate asymmetric bilayer
graphene nanoribbon (BGN) under the application of a low static
electric field. We show that for a highly asymmetric BGN (� = γ),
the density of states in the lower subband increases more that of the
upper, in which � and γ are the gap and the interlayer coupling
constant, respectively. We also demonstrate that under the acoustic
phonon scattering regime, the formation of two distinct sets of en-
ergy subbands signatures a quantized transmission coefficient as a
function of ribbon width and provides an extremely low carrier re-
flection coefficient for a better Landauer conductance even at room
temperature. The well-known result for the ballistic condition has
been obtained as a special case of the present analysis under cer-
tain limiting conditions which forms an indirect validation of our
theoretical formalism.

Index Terms—Bilayer graphene, nanoribbon, scattering,
transmission.

I. INTRODUCTION

E LECTRONS in a bilayer graphene (BG) move with a
Fermi velocity, which is about 300 times less than that

of the speed of light. This marks the central importance of the
graphene sheet in mesoscopic devices and interconnects [1], [2].
BG is primarily a zero bandgap material, but can be modulated
to act as a semiconductor by applying either an external bias [3]
or by changing the doping profile in the two coupled hexagonal
lattices with an A′–B-type stacking pair [4]. In both cases, this
results in a potential difference between the layers, which may
be called symmetric or asymmetric, depending on whether the
difference is zero or nonzero, respectively [5]. Thus, by vary-
ing the bias or the doping concentration, one can modulate the
magnitude of the bandgap in graphene-based devices, and this
may find interesting applications in low dimensional photonics.

Recently, quantum Hall and cyclotron experiments were car-
ried out in a pure symmetric 2-D graphene sheet [6]–[8] for
the realization of extremely high carrier mobility. Theoretical
investigations have already been proposed to explain such high
mobility [9], [10] within the limitations of acoustic phonon scat-
tering. In an asymmetric 2-D BG, the conduction and valance
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bands are two-fold degenerate. Since the carriers are confined
in a 2-D plane, a further structural confinement along the lat-
eral direction transforms the 2-D system to a 1-D one. Such a
system may be called a BG nanoribbon (BGN). The resulting
lateral quantum well leads to the generation of discrete energy
eigenvalues due to the van Hove singularity (VHS) condition.
There has been a recent advancement in probing a few electronic
properties of BG within the frame work of tight binding (TB)
formalism [11]–[13]. The extensive analyses of Hwang and Das
Sarma [9] and Kubakaddi [10] suggest that although BG has an
extremely nonlinear band structure, the overlap integral can be
avoided since the Coulomb potential does not play a role in the
determination of the phonon matrix element. Their arguments
fit well in explaining the room-temperature electron mobility in
BG, which is about 105 cm2 ·V−1 ·s−1 and can also be experi-
mentally realized [14]. With such high electron mobility and a
large mean free path length (MFP) [15], it would be interesting
to determine the acoustic-phonon-dominated MFP in a degen-
erate highly asymmetric BGN for its potential applications in
nanoscale device interconnects technology.

In this paper, we present a simplified theoretical formulation
of the carrier back-scattering coefficient in a BGN within the
framework of TB formalism. Since the diffusive Landauer con-
ductance is directly proportional to the transmission coefficient,
we will also investigate how this conductance is affected with
the change in lateral and longitudinal lengths and a static lon-
gitudinal applied field. The paper is organized as follows. In
Section II-A, we will derive the expression of the electron den-
sity of states in a BGN using the TB approach. This is followed
by the derivation of the longitudinal acoustic (LA) phonon scat-
tering rate in Section II-B. Section II-C deals with the determina-
tion of the isotropic carrier back-scattering length and Landauer
diffusive conductance within LA phonon-scattering regime and
in the presence of a longitudinal static electric field. Finally, in
Section III, we present the results and discussion.

II. THEORETICAL BACKGROUND

A. Formulation of the Electron Density of States in BGN

For an asymmetric BG sheet, the TB formalism leads to the
electron Hamiltonian near the K point as [5], [7]

H =

⎛
⎜⎝

−�/2 0 0 π†

0 �/2 π 0
0 π† �/2 γ
π 0 γ −�/2

⎞
⎟⎠ (1)

in which � = φ1 − φ2 , φis are the onsite potentials on each
monolayer, π{= vF h̄(−i ∂

∂x + ∂
∂y )} is the Berry phase momen-

tum operator [5], γ is the interlayer coupling constant [5] and
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Fig. 1. E–k dispersion surface of an asymmetric BG.

vF is the Fermi velocity. Assuming a Bloch-type wave func-
tion, the electron dispersion relation can be evaluated as (see the
Appendix)

[
k2

x + k2
y −

(
E −�/2

h̄vF

)2
][

k2
x + k2

y −
(

E + �/2
h̄vF

)2
]

= γ2
[
E2 −�2/4

(h̄vF )4

]
(2)

in which E is the electron energy as measured from the edge
of the conduction band in the vertically upward direction.
Equation (2) generates two sets of two degenerate bands,
namely, E+

+ , E+
− , E−

− , and E−
+ . Fig. 1 exhibits the energy spec-

trum for an asymmetric BG. The constant energy surfaces are
the circles in the kx–ky plane. With the increase of asymmetry,
the gap opens, as shown in Fig. 2. For an asymmetric BGN, (2)
transforms to

k±
x± = ± 1

h̄vF

[
E2 +

�2

4
−

(
nyπh̄vF

ly

)2

±
√

E2 (γ2 + �2) − γ2�2/4
]1/2

(3)

where ny (=1, 2, 3, . . .) and ly are the VHS quantum numbers
and the ribbon width along the y-direction, respectively. Fig. 3(a)
exhibits the energy subband structure of a 10-nm-wide asym-
metric BGN. It appears that with an increase in �, there is no
intermixing of the lower and upper set of subband levels. For
ly = 10 nm, there is a considerable opening of the gap about
the zero level. However, as the ribbon width is reduced further,
the bulging nature of the lower subband curves near kx = 0
smoothen up. This essentially means that with the increase in
�, less energy is required to transfer the electrons to the higher
subbands near kx = 0. Also, we notice that as we increase �,
the subband energies for the lower sets decrease. This means
that the carriers are more populated in the lower subbands than
in the upper, and this creates a population inversion. Hence, for
very narrow width BG, it is expected that a negative differen-
tial conductance might occur. Using (3) and the spin and valley

Fig. 2. E–k dispersion curve of symmetric (� = 0) and asymmetric (� �= 0)
BG.

Fig. 3. E–k dispersion curves of (a) 10 nm and (b) 5 nm BGN with varying
�. With the increase in �, energies of the lower subband decrease, while for
upper subbands they increase. For 10nm BGN, we see the bulging nature near
kx = 0, while no bulging occurs for 5 nm BGN. Thus, as the ribbon thickness
is reduced, a population inversion occurs where the lower subbands are more
populated than the higher.

degeneracy (gs = gv = 2) [16], the electron density of states in
an asymmetric BGN for both the lower (−) and upper (+) set
of energy subbands can be derived as

N±
1-D =

gsgv

πh̄vF

ny m a x∑
ny =1

{[
E ±

E
(
γ2 + �2

)
/2√

E2 (γ2 + �2) − (γ2�2/4)

]

×
[
E2 +

�2

4
−

(
nyπh̄vF

ly

)2

±
√

E2 (γ2 + �2) − γ2�2

4

]−1/2

H(E − E±
ny

)

⎫⎬
⎭

(4)
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in which H is the Heaviside step function and the subband
energies are given by the condition k±

x = 0, in which E
is replaced by E±

ny
, where, E±

ny
= (1/21/2) × [ς(ny ) ±√

ς2(ny ) − 4ξ(ny )]1/2 , ς(ny )= γ2+Δ2

2 + 2((nyπh̄vF /ly ))2 ,

and ξ(ny )=Δ2

16 + γ 2 Δ2

4 − (Δ2/2)(nyπh̄vF /ly )2 + (nyπh̄vF /
ly )2 .

However, for a highly asymmetric case (� = γ), (3) and (4)
reduce to

k±
x =

1
h̄vF

[
E2 +

γ2

4
−

(
nyπh̄vF

ly

)2

±
√

2E2γ2 − γ4

4

]1/2

(5)
and

N±
1-D =

gsgv

πh̄vF

ny m a x∑
ny =1

{[
E ± Eγ√

2E2 − (γ2/4)

]

×
[
E2 +

γ2

4
−

(
nyπh̄vF

ly

)2

± γ

√
2E2 − γ2

4

]−1/2

× H
(
E − E±

ny

)}
. (6)

B. Formulation of the Acoustic Phonon-Scattering Rate

The momentum relaxation rate using Fermi’s Golden rule can
be written as [17]

1
τk,k ′

=
2π

h̄

∑
k ′

∑
q

{
|M (k, k′)|2 (1 − cosθ)

×
(

Nq +
1
2
± 1

2

)
δ (E − E ′ ∓ h̄ω) |If i |2

}
(7)

in which |M (k, k′)| is the phonon matrix element, Nq is the
phonon number governed by Bose–Einstein statistics, δ is the
Dirac-delta function, ω = vphq, vph is the phonon velocity,
and q and k′ are the phonon and the scattered electron wave
vector, respectively. ∓, in this case, indicates an LA phonon
emission and absorption condition and θ is the angle between
the incoming and scattered electron wave vector. The quan-
tity |If i |2 , in this case, is defined as the form factor that
characterizes the condition whether there would be an inter-
band (f �= i) or intraband (f = i) subband carrier transition.
Following [9], the phonon matrix for graphene can be writ-
ten as |M(k, k′)| = (D2 h̄q/2Aρvph)[1 − (q/2k)2 ], where D is
the acoustic deformation potential constant in electron volts,
A(=Lly ) is the area of the sample, L is the longitudinal length,
and ρ is the material density in kilograms per meter square. It
may be noted that a more general approach to the phonon disper-
sion relation has been carried out recently [18] between the first,
second, and third nearest neighbor interactions by imposing the
lattice symmetry of graphene. Since, however, in the present
case, the phonon velocity is smaller than that of the electron
Fermi velocity, without losing any generality, we can assume
q = 2ksin (θ/2) [9], [19]. Using the fact that the LA phonon
scattering is elastic and the lateral quantum well is of infinite
height, the momentum relaxation rate for both the lower and

upper set of subbands assumes the form

1
τ±
f i

=
π2D2kB T

gsgv h̄ρv2
ph

(
1

lyf i

)
N±

1-D (E) (8)

in which 1/lyf i
= (1/ly ) (2 + δf i). The Kronecker delta con-

dition i = f gives intraband transition, whereas i �= f gives
interband transition.

C. Formulation of the Carrier Back-Scattering in a BGN

The isotropic carrier back-scattering length can be written
as [20]

λ±
f i (E) = 2vx (E) τ±

f i (E) (9)

in which vx (E) is the carrier subband velocity along the x-
direction. Thus, using (3), (4), and (8), the isotropic back-
scattering length per subband in both the upper and lower sets
in the presence of a drain potential vD (x) can approximately
be written as

λ±
f i (E) =

2h̄2ρv2
F v2

ph

πD2kB T

(
ly

2 + δf i

) (
ε ± γ√

2

)−2

×
[
ε
(
ε ±

√
2γ

)
+

γ2

4
−

(
nyπh̄vF

ly

)2
]

(10)

in which ε = E + evD (x). Using (10) and assuming the left
and right velocities (v∓ (x)) of the carriers (n∓ (x)) remains
the same (v+ (x) = v− (x) = v (x)) as the boundary condition
and n− (L) = 0 as the current continuity equation, the equation
for the 1-D-directed flux per subband in both the upper and lower
sets following McKelvey’s method [21] assumes the form

n+ (x) v+ (x) = −
(
n+ (0) − n− (0)

) v (0)
λ0f i

×
∫ [

1 − f±

(
2ε ± b

ε2 ± bε + c (ny )

)

+e±

(
1

ε2 ± bε + c (ny )

)]
dx (11)

in which λ0f i
= (h̄2ρv2

F v2
ph/2πD2)(ly /(2 + δf i)), b =

√
2γ,

c(ny ) = [γ2/4 − (nyπh̄vF /ly )2 ], f± = (
√

2/2)[1 ∓ 1]γ, and
e±(ny ) = (γ2/4) + (nyπh̄vF /ly )2 ± γ2 [1 ∓ 1]. Integrating,
and rearranging the terms at x = 0, we get the total reflection
coefficient (Rf i) for both the upper and lower set of subbands
for the present case as

Rf i =
n− (0)
n+ (0)

∣∣∣∣
f i

=
(

1
N

)[
R+f i

R−f i

R+f i
+ R−f i

]
(12)

where N is the total number of subbands, R±f i
=

∑ny m a x
ny =1

[LkT ξ±(ε, ny )/(λ0f i
+ LkT ξ±(ε, ny ))], LkT (= kB T/eE0) is

the distance over which the potential drops to the value kB T/e
of its maximum at the source terminal, E0 is the constant electric
field applied along the longitudinal length (between the source



412 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 3, MAY 2011

and drain terminal) and

ξ± (ε, ny ) = eE0L − f±ln

∣∣∣∣
c (ny ) + ε (ε ± b)

c (ny ) + E (E ± b)

∣∣∣∣

+

{
e± (ny )√

b2 − 4c (ny )
ln

∣∣∣∣∣

{
(2ε ± b) −

√
b2 − 4c (ny )

(2E ± b) −
√

b2 − 4c (ny )

}

×
{

(2E ± b) −
√

b2 − 4c (ny )
(2ε ± b) −

√
b2 − 4c (ny )

}∣∣∣∣∣

}
. (13)

In the limit E0 → 0, (12) converges to

Rf i →
1

2N

(
L

λf i + L

)
(14)

where, λf i = λ0f i
/kB T .

Since almost all the carriers at the Fermi level take part in the
conduction mechanism, the net carrier-degeneracy statistics for
carriers at the upper and lower set of subbands can be written as

n1-D =
gsgv

2πh̄vF

ny m a x∑
ny =1

[
2kB T

{
F0 (η)−ln

(
1+

EF − evD√
2γ

)}

− c (ny )√
2γ

{
47
48

− � (EF − evD )
}

(15)

in which η = (1/kB T ){EF −
√

2γ − evD}, �(EF ) = (
√

2γ/
EF )[1− (1/4)(

√
2γ/EF ) + (1/6)(

√
2γ/EF )2 + (1/16)(

√
2γ/

EF )3 ] and Fj (η) is the one-parameter Fermi–Dirac integral of
order j [22]. Using (12), the diffusive conductance of the carri-
ers at the Fermi level can be written from the Landauer–Buttiker
formulation as

G
f i

=
2e2

h
(Tf i) (16)

in which Tf i is the transmission coefficient.

III. RESULTS AND DISCUSSIONS

Using γ = 0.4 eV [4], [23], D = 19 eV, ρ = 7.6 ×
10−7 kg/m2 , vF = 106 m/s, and vph = 2 × 104 m/s for a
graphene sheet [9], [10], we have plotted the scattering rate
as a function of the carrier energy in Fig. 4 for ly = 10 nm at
300 K. For both symmetric and asymmetric BGN, the presence
of γ and � has a profound effect on the density of states func-
tion. For a symmetric system, states are more available in the
upper set of subbands rather than in the lower. However, with
an increase in the electron energy in a highly asymmetric BGN,
by comparing with the corresponding subband energies in the
lower and upper sets, we see that the states in the lower set
of subbands increase rather than in the upper. This remarkable
property of population inversion signatures the use of asym-
metric BGN in the area of optical electronics. Since there is a
1-D carrier motion in a BGN, the inclusion of subband energies
owing to Born-Von Karman boundary conditions (BVK) leads
to a discontinuity in the density-of-states function due to the
VHS of the wave vectors. This joint handshaking of both BVK
and VHS signatures quantized behavior in many physical and
transport properties of BGN. As our formalism is based on the

Fig. 4. LA phonon scattereing rate in a symmetric BGN with ly = 10 nm at
T = 300 K. It appears that with an increase of � and E , states at the lower
subband are populated more than in the upper.

Fig. 5. MFP length as a function of well thickness for a highly asymmetric
(� = γ) BGN for E0 = 106 V/m and n1-D = 109 m−1 at different temper-
atures.

low longitudinal-biased system, we have restricted ourselves to
only elastic acoustic phonon scattering for the present system
which mainly determines the ribbon conductance [9]. However,
for a high biased system, the interaction is mainly determined
by inelastic scattering between the electron and optical phonons
and (8) no longer holds good.

Using (10) and (15), we have numerically plotted the MFP at
different temperatures as a function of ribbon width in Fig. 5 for
a highly asymmetric BGN by including both inter- and intra-
subband scattering. It appears that the MFP increases with the
ribbon width. Since the dispersion relation of an asymmetric
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Fig. 6. MFP length as a function of temperature for a highly asymmetric
(� = γ) BGN for ly = 10 nm, E0 = 106 V/m and n1-D = 109 m−1 .

Fig. 7. Intrasubband transmission coefficient as a function of ribbon width for
a highly asymmetric (� = γ) BGN for E0 = 106 V/m and n1-D = 109 m−1

at different temperatures.

BGN is highly nonlinear due to the presence of γ and �, the
rate of increment of λ between two singularities is not uniform.
In general, MFPs are functions of electron energy. However,
when the system is nondegenerate, the carrier’s energy can be
represented mainly due to thermal energy [17]. This is in sharp
contrast to materials having high carrier degeneracy, since, in
such a case, the carriers’ Fermi energy is much larger than that
of thermal energy. It is also exhibited from the same figure that
even at room temperature, the intrasubband acoustic phonon
scattering may lead to an MFP of about 300 nm for a ribbon
width of 10 nm (see Fig. 6). It may also be noted that the MFP,
in general, depends on the subband energies. The electron ener-
gies, in this case, are restricted close to that of the Fermi energy,
so that the back scattering of the electrons due to the acoustic
phonon can be profoundly achieved. Fig. 7 exhibits the variation
of the transmission coefficient for intrasubband scattering as a
function of ribbon width for different values of the electric field.
It appears that Tf i decreases in a step-like manner. At this point,

Fig. 8. Intrasubband transmission coefficient as a function of electric field for
a highly asymmetric (� = γ) BGN for ly = 1 nm, L = 300 nm, T = 300 K,
and n1-D = 109 m−1 for different subbands.

it may be noted that in a high electric field, Fermi energy tends
to increase since more carriers are generated. This is the reason
why the Tf i for a particular subband will increase, although
the incorporation of all the subbands due to the increment in
lateral dimension will reduce Tf i , and hence, the Landauer con-
ductance Gf i . Another physical explanation for this decreasing
behavior is that since the Fermi energy is reduced with the in-
crease in ribbon width, this reduces the overall Gf i . However,
with the decrease in the magnitude of the electric field, carriers
cease to generate, and thus, Tf i becomes nearly constant until
a new subband generates. The step dependencies are due to the
crossing over of the Fermi level by the size-quantized levels. For
each coincidence of a size-quantized level with the Fermi level,
there is a discontinuity in the density-of-states function resulting
in a quantum jump. The appearance of humps in the curves of
Figs. 5 and 7 are due to the redistribution of the electrons among
the quantized energy levels when the size quantum number cor-
responding to the highest occupied level changes from one fixed
value to another. From Fig. 7, we see that more than 92% of
carriers are transmitted to the drain from the source even at room
temperature for a longitudinal length of 300 nm. At this point,
we note that for degenerate wires with extremely low lateral
dimensions (as in this case), neglecting quantized energies may
not provide an in-depth solution. Thus, one also has to take the
subband energies for more accurate analysis that significantly
alters the scattering coefficient. This fact has been exhibited in
Fig. 8 for different subbands. The net effect of including all the
subbands for both the sets increases the total Tf i .

From (14), we also see that in a low electric field, the contri-
bution to Rf i from both the upper and lower sets of subbands
is equal to L/4N (λ + L) and it is independent of the lateral
well width, and thus, the subband number. However, this must
not be construed to mean that the equal reflection suffered from
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Fig. 9. Intrasubband transmission coefficient as a function of ribbon length for
a highly asymmetric (� = γ) BGN for ly = 10 nm, T = 300 K, and n1-D =
109 m−1 for different electric field.

Fig. 10. Intrasubband transmission coefficient as a function of temperature for
a highly asymmetric (� = γ) BGN for ly = 5 nm, L = 300 nm, and n1-D =
109 m−1 for different electric field.

the drain in both sets of subbands means that an equal number
of carriers are present. This logic is entirely satisfactory in the
sense of the difference in the density of states in each band [see
(6)]. Figs. 9 and 10 exhibit the variation of Tf i with respect
to the longitudinal ribbon length and temperature, respectively.
It appears that in both cases, Tf i decreases. However, the rate
of the decaying of Tf i is higher for E0 = 106 V/m than for
E0 = 105 V/m.

It may be noted from (6) that for a highly asymmetric case, the
minimum electron energy is given by E = γ/2

√
2. However,

for a simplified analytical formulation, we have considered E ≥√
2γ by taking n1-D = 109 m−1 for consistency with the Fermi

energy. We also note that for degenerate highly asymmetric
BGN, the maximum longitudinal bias that can be applied suffers

the inequality vD (x) ≤ (1/e)
(
EF −

√
2γ

)
for each different

subband level.
In reality, Gf i depends on the collective scattering mechanism

suffered during the transport process. The numerical value of
Gf i near the Fermi energy at lower temperatures may become
extremely high even for a very low electric field and in the
presence of other scattering mechanisms. We have not extended
the appropriate plots below the ballistic length, since in that
case, λf i > L and Gf i become independent of L. A similar
case for a parabolic potential profile between source and drain
could have been done as in [20] for 1-D material, which follows
parabolic energy dispersion relations. In such a case, only the
expression ξ± (ε, ny ) in (13) would be modified.

We wish to state that the results obtained in this paper may find
important applications in defining the diffusive current transport
in BGN FETs. On replacing the electron energy as Fermi energy
in (15), the transmission coefficient can readily be calculated to
produce the basic current–voltage relationship in BG transistors
[24]. However, for an asymmetric BG with very short ribbon
width for, e.g., 1–5 nm, it is expected that a negative differential
conductivity will exhibit due to the population inversion in the
subbands as stated in this paper. This is not particularly featured
in BG-based FETs [25] since with the increase in the asymmetry,
near kx = 0 region, the bulging of the lower conduction band
occurs. This increases the bandgap instead of decreasing, and
hence, no population inversion occurs.

A direct application of our simplified result lies in the deter-
mination of the other diffusive transport properties like mobility,
diffusion constant, Seebeck coefficient, etc., for the analysis of
signal transmission under the application of a time-dependent
electric field. With the time-dependent drifted occupation prob-
ability, it would be of interest to examine the variation of such
quantities for the present system. We wish to note that we have
not considered the optical and zone boundary phonon scattering
mechanisms due to the weak couplings with other graphene lat-
tice phonon modes [9] in this simplified theoretical formalism.
The inclusion of the said effects would certainly increase the
accuracy of the results, although the qualitative features of the
transmission coefficient in degenerate highly asymmetric BGN
would not change in the presence of the aforementioned effects.
The simplified theory for the diffusive reflection coefficient, as
presented in this paper, may find application in transferred elec-
tron devices, where resistances can be controlled by opening
the gap. The theory developed in this work can also be used to
investigate the variation of the effective electron mass, nonlin-
ear response of the carriers, etc., under the influence of external
photon fields.

IV. CONCLUSION

In this paper, we have presented an analytical solution of
the carrier reflection coefficient in a twofold degenerate asym-
metric BGN under the application of a low static field. For a
highly asymmetric (� = γ) BGN, the density of states in the
lower subband increases more than in the upper. Under the LA
phonon scattering regime, the formation of two distinct sets of
energy subbands signatures a quantized transmission coefficient
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as a function of ribbon width and length. The splitting of both
conduction bands results an extremely high value of Landauer
conductance even at room temperature. The transmission co-
efficient becomes a quantized function of ribbon width. About
92%–65% of carriers gets transferred from source to drain for a
ribbon width of 1–7 nm at room temperature. The well-known
result for ballistic conditions has been obtained as a special case
of the present analysis under certain limiting conditions and
forms an indirect test of our theoretical formalism.

APPENDIX

Modeling the BG as a two coupled hexagonal lattice with
a stacking pair of A′–B type, the use of (1) and a Bloch-type
eigenstates Ψ (x, y) = (ψA, ψB ′ , ψA ′ , ψA ), where ψi (x, y) =
φi (y) eikx x , in which, i = A,B,A′, B′, leads to the following
equations:

−vF h̄

(
∂

∂y
− kx

)
φB =

(
E +

�
2

)
φA (17)

vF h̄

(
∂

∂y
+ kx

)
φA ′ =

(
E − �

2

)
φB ′ (18)

−vF h̄

(
∂

∂y
− kx

)
φB ′ =

(
E − �

2

)
φA ′ − γφB (19)

vF h̄

(
∂

∂y
+ kx

)
φA =

(
E +

�
2

)
φB − γφA ′ . (20)

Taking the values of φB ′ and φA from (18) and (17) and substi-
tuting them in (19) and (20), respectively, results in
[(

k2
x − ∂2

∂y2

)
−

(
E −�/2

vF h̄

)2
]

φA ′ + γ
E −�/2
(vF h̄)2 φB = 0

(21)
and

γ
E + �/2
(vF h̄)2 φA ′ +

[(
k2

x − ∂2

∂y2

)
−

(
E + �/2

vF h̄

)2
]

φB = 0.

(22)
Assuming the potentials to be constants, the solution is given by

{
k2 −

(
E −�/2

vF h̄

)2
}{

k2 −
(

E + �/2
vF h̄

)2
}

− γ2
[
E2 −�2/4

(vF h̄)4

]
= 0 (23)

in which k2 = k2
x + k2

y . However, for a symmetric case (� =
φ1 − φ2 = 0), (23) results in

{
k2 −

(
E

vF h̄

)2
}

= ±γ
E

(vF h̄)2 (24)

which at k = 0 simplifies as either E = 0 or E = ±γ for both
E > 0 and E < 0 energy bands. This convergence is in accor-
dance with the well-known result [23] and proves the mathe-
matical compatibility of our theory.

For asymmetric BGN, we invoke the VHS condition ky =
nyπ/ly for a Bloch-type wavefunction along the y-direction,

which result in,
{

k2
x +

(
nyπ

ly

)2

−
(

E −�/2
vF h̄

)2
}{

k2
x +

(
nyπ

ly

)2

−
(

E + �/2
vF h̄

)2
}

= γ2
[
E2 −�2/4

(vF h̄)4

]
. (25)

Equation (3) is the direct consequence of (25).
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