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Abstract—Although the recently proposed single-implicit-
equation-based input voltage equations (IVEs) for the independent
double-gate (IDG) MOSFET promise faster computation time
than the earlier proposed coupled-equations-based IVEs, it is not
clear how those equations could be solved inside a circuit simulator
as the conventional Newton–Raphson (NR)-based root finding
method will not always converge due to the presence of disconti-
nuity at the G-zero point (GZP) and nonremovable singularities
in the trigonometric IVE. In this paper, we propose a unique
algorithm to solve those IVEs, which combines the Ridders algo-
rithm with the NR-based technique in order to provide assured
convergence for any bias conditions. Studying the IDG MOSFET
operation carefully, we apply an optimized initial guess to the
NR component and a minimized solution space to the Ridders
component in order to achieve rapid convergence, which is very
important for circuit simulation. To reduce the computation bud-
get further, we propose a new closed-form solution of the IVEs
in the near vicinity of the GZP. The proposed algorithm is tested
with different device parameters in the extended range of bias
conditions and successfully implemented in a commercial circuit
simulator through its Verilog-A interface.

Index Terms—Circuit simulation, compact modeling, double-
gate MOSFET, input voltage equations (IVEs).

I. INTRODUCTION

THE independent double-gate (IDG) MOSFET has re-
ceived considerable attention in the recent years, ow-

ing to its ability to modulate the threshold voltage and the
transconductance dynamically. A fast and accurate solution of
the input voltage equations (IVEs) is the most fundamental step
toward developing surface-potential-based compact models for
such transistors. Previous techniques [1]–[4] used for solving
the 1-D Poisson equation (PE) rigorously for long-channel
IDG MOSFETs result in IVEs that involve multiple intercou-
pled implicit equations, which are computationally expensive
for circuit simulation. Recently, we have proposed a different
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rigorous technique for solving the same PE by which one can
obtain single-implicit-equation-based IVEs [5] (there are four
independent implicit equations; however, for a given bias condi-
tion, we need to solve only one of them). By using the optimiza-
tion routine available in a commercial computational software
program [6], we show that the single-implicit-equation-based
IVEs converge five times faster than the coupled-implicit-
equation-based IVEs. However, it is difficult to make such
optimization routines converge, and they are also not available
in standard “C” or “Verilog-A” libraries.

Finding the solution of the IVEs for the IDG MOSFET
is quite a nontrivial exercise due to the following reasons.
In comparison to the bulk and symmetric double-gate (SDG)
MOSFETs, the complexities in the IVEs of the IDG MOSFET
are manifolds. Here, the IVEs can take two different forms,
i.e., trigonometric (when the external-bias-dependent coupling
factor G ≤ 0 [5]) or hyperbolic (G > 0), and thus, the IVEs are
discontinuous at G = 0 [(G-zero point (GZP)]. In addition, the
trigonometric IVE has several nonremovable singularities due
to the presence of cot() and log[sin()] terms. As a result, the
Newton–Raphson (NR)-based method either does not converge
(leads to an imaginary solution) or very slowly converge when
the root of the IVEs lies close to the discontinuity/singularity
points. Moreover, the higher order derivatives of the IVEs are
extremely cumbersome, and thus, it is impractical to constitute
a higher order NR method for faster convergence. In order to
achieve assured convergence, one needs to use a computation-
ally expensive bisection method. Furthermore, it can be seen
that the analytical approximations proposed for bulk [7] and
SDG MOSFETs [8] are not applicable to the IVEs of the IDG
MOSFET.

In this paper, we propose a unique algorithm to solve the
IVEs [5], which combines the Ridders algorithm [9] with the
NR-based technique in order to provide assured convergence
with a low computational budget for any bias conditions. The
Ridders algorithm is a bounded root finding technique, which
offers assured convergence at a much faster rate than the regular
bisection routine. Studying the IDG MOSFET operation care-
fully, we apply an optimized initial guess to the NR component
and a minimized solution space to the Ridders component in
order to achieve rapid convergence, which is very important for
circuit simulation. To reduce the computation budget further,
using the concept of the GZP, we propose a new closed-form
solution of the IVEs in the very near vicinity of the GZP.
The proposed algorithm is implemented in a Verilog-A-based
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circuit simulator [10], tested and verified against numerical
simulations [11], [12].

It is worth noting that coupled-implicit-equation-based IVEs
also have similar discontinuity and singularity points. However,
as it is extremely difficult to constitute an efficient bounded root
finding technique for the multidimensional solution space [13],
those IVEs appear to be more theoretical in nature than useful
for the practical implementation in a circuit simulator. A similar
argument is also applicable for a recent work [14] that uses
complex variable and multiple coupled equations.

II. DEVELOPMENT OF THE ALGORITHM

Conventions used in this paper are follows: Cox1(2) is the
oxide capacitance per unit area of the first (second) gate defined
as εox/tox1(2), Csi is the silicon body capacitance per unit area
defined as εsi/tsi, εsi and εox are the permittivities, and tsi and
tox are the thicknesses of silicon and SiO2, respectively. q is the
elementary charge, β is the inverse thermal voltage, ni is the
intrinsic carrier density, V is the electron quasi-Fermi potential
(channel potential), ψ1(2)Si/SiO2 is the interface potential at
first (second) gate, and Vgs1(2) is the effective front (back)-gate
voltage, i.e., Vgs1(2) = Vgs1(2)applied − Δφ1(2), where Δφ1(2)

is the work function difference at the respective gates.
We explain the algorithm for case Vgs1 ≥ Vgs2, and it could

be extended in similar lines for case Vgs1 < Vgs2. The hyperbo-
lic (fhyp1(ψ1) = 0) and trigonometric (ftrig1(ψ1) = 0) equa-
tions for which we are seeking the solutions are given below:

fhyp1 ≡ −

√
Be−βV

G1
sinhθ1 + e−

β

(
Vgs2+

√
G1εsi coth θ1

Cox2

)
2 (1)

ftrig1 ≡ e

√
G∗

1
βεsi cot θ∗

1
2Cox2 sin θ∗1√

G∗
1

−
√

e−β(Vgs2−V )
B

(2)

where

G1 =
C2

ox1(Vgs1 − ψ1)2

ε2si
− Beβ(ψ1−V ) (3)

θ1 =
√

G1βtsi
2

+ sinh−1

( √
G1√

Beβ(ψ1−V )

)
(4)

with B = (2qni)/(βεsi) and G∗
1 = −G1. θ∗1 could be obtained

by replacing G1 with G∗
1 and sinh−1 with sin−1 in (4). These

equations are obtained by restructuring the IVEs proposed in
[5] for better convergence.

A. ψgzp1 Calculation

As explained in [5], the surface-potential computation should
start with the ψgzp1 calculation, which is the solution of the
2G1 = 0 equation. As the IVEs are discontinuous at the GZP,
ψgzp1 needs to be calculated with very high accuracy. Although
a closed-form solution of ψgzp1 is available in terms of the
Lambert W function and can be implemented in a simulator as
discussed in [15], such an expression has following limitations:
1) The exponential term inside the argument of the W function
overflows for high values of (Vgs1 − V ) (for example, beyond

36 V at room temperature for a long double-precision data-
type implementation) and thus becomes uncomputable for large
bias values, which might appear during circuit simulation [16].
2) The implementation of the W function in special C li-
braries or in mathematical packages are generic in nature.
For example, in the GNU Scientific Library (GSL) [17], the
W function is computed using Halley’s method with some
optimized initial guess (obtained from the polynomial ap-
proximation of the W function). It is possible to reduce the
computation time of ψgzp1 if we try to solve equation G1 = 0
directly using a physics-based initial guess. In this paper, we
calculate ψgzp1 by transforming equation G1 = 0 into the fol-
lowing form:

fψgzp1 ≡ Vgs1 − ψ1 −
εsi
√

Beβ(ψ1−V )

Cox1
= 0. (5)

We then solve this equation by Halley’s method using the
initial guess Vgs1 for Vgs1 ≤ 0 and min((2/β) ln(Vgs1Cox1/

εsi
√

B) + V, Vgs1) for other values with the exit condition
|fψgzp1 | < 10−17 or when the absolute difference between
ψgzp1 obtained from two successive iterations becomes less
than 10δ (where δ is the machine precision and, for a long
double data type, δ is equal to 2−52 ≈ 2.3 ∗ 10−16). In most of
the cases, the Halley loop is seen to converge within two to three
iterations. We present the comparison of the performance of our
proposed implementation to that of the Lambert-function-based
approach in Section III.

We then use ψgzp1 to calculate the value of the critical gate
voltage Vgs2crit (as it appears in [5]) in order to choose between
trigonometric or hyperbolic IVE.

B. Explicit Solution

For a given bias point, ψ1 is determined, as depicted by the
algorithm in Fig. 1. Here, we first check for the cases where ψ1

can be approximated to an explicit form in order to reduce the
computation budget. As explained in [5], at deep weak inver-
sion, the difference between ψgzp1 and Vgs1 becomes extremely
small, and then, the surface potential could be approximated by
the following expression of ψ1wi by neglecting the inversion
charge completely:

ψ1wi =
Vgs1

1 + Cox2Csi
Cox1Csi+Cox1Cox2

+
Vgs2

Cox1Csi+Cox1Cox2
Cox2Csi

+ 1
. (6)

Another explicit formulation of the surface potential is possi-
ble when Vgs2 is very close to Vgs2crit (i.e., the solution is very
close to the ψgzp1 value). Here, using the concept of the GZP,
a generic explicit formulation for the surface potential could be
obtained by Taylor series expansion with respect to Vgs2 around
the GZP as given below:

ψ1 = ψgzp1 +
∑

n

1
n!

∂nψ1

∂V n
gs2

∣∣∣∣∣
ψ1=ψgzp1

(Vgs2 − Vgs2crit)n.

(7)

Unfortunately such expression cannot be used in the cir-
cuit simulator as it is very difficult to obtain the analytical
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Fig. 1. Algorithm for finding roots of the IDG-MOSFET IVEs. ERT , ERH are adjustable parameters chosen to be 10−17 and 10−13 respectively in this work.

expressions for higher order derivatives ∂nψ1/∂V n
gs2 at the

GZP. However, if we neglect all the higher order terms in (7),
then in the close neighborhood of the GZP, ψ1 could be approx-
imated as ψ1 � ψ1r = ψgzp1 + (∂ψ1/∂Vgs2)|ψ1=ψgzp1(Vgs2 −

Vgs2crit), where the expression for ∂ψ1/∂Vgs2|ψ1=ψgzp1 is ob-
tained from the IVEs (either from the trigonometric or hy-
perbolic one) and given in (8), shown at the bottom of the
next page.
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The bias ranges for which such solutions could be used in the
algorithm is heuristically chosen such that the continuity in the
surface potential, the drain current, and the transconductances
is well preserved. If conditions for using those explicit solutions
are not satisfied, the IVEs are numerically solved. The explicit
solution also helps us avoid the computation of IVEs (1) and
(2) around the GZP, which is numerically unstable, since cot(θ)
and coth(θ) → ∞ as G → 0.

C. Solution of the Hyperbolic IVE

In order to solve fhyp1, we first use the NR algorithm with the
optimized initial guess and then switch to the Ridders algorithm
if NR fails to converge. In order to use the Ridders algorithm,
we first need to calculate the solution space (i.e., maximum
and minimum possible values of ψ1). In the hyperbolic mode,
ψ1 < ψgzp1 [5], and thus, the maximum bound for fhyp1 =
0 is ψgzp1. The lower bound could be obtained in follow-
ing manner. When G1 becomes large, [5, eq. (11)] could be
approximated as

Cox2

εsi

⎡
⎣ 2

β

⎧⎨
⎩ln

⎛
⎝

√
Be−βV

G1

⎞
⎠+θ1−ln 2

⎫⎬
⎭+Vgs2

⎤
⎦+

√
G1 =0.

(9)

The solution of (9) gives the lower bound of ψ1

in fhyp1. However, this equation is difficult to solve.
Since sinh−1(x) > ln(2x) for all positive and finite x val-
ues and ln(2x) is a curvilinear asymptote of sinh−1(x),
by replacing term sinh−1(

√
G1/

√
Beβ(ψ1−V )) − ln 2 with

ln(
√

G1/
√

Beβ(ψ1−V )) in the expression for θ1 in (9), we
arrive at the following simpler function flt_hyp1, the solution
of which, i.e., ψ1limit, provides the lower bound of ψ1:

flt_hyp1 ≡ Be−β(V −ψ1) − C2
ox1

ε2si
(Vgs1 − ψ1)2

+
C2

ox2

ε2si

(
Cox2
Csi

+ 1
)2 (Vgs2 − ψ1)2. (10)

Using the technique discussed in [8], an approximate analyt-
ical solution of (10) is obtained, as shown in Fig. 1.

To solve fhyp1 when Vgs1 − V ≤ 0.4 or Vgs2crit − Vgs2 ≤
0.01, the initial guess ψguess for NR is chosen to be
min(ψgzp1 − δ, ψ1wi) since the device will be either in weak
inversion or close to the GZP. For other biases, ψguess is taken
to be ψ1limit. The derivative of fhyp1 is given in (11). As one
can see, the expression of f ′

hyp1 is pretty complicated, and thus,
it is impractical to constitute the higher order NR method using
higher order derivatives. The NR loop successfully converges
if |fhyp1| < 10−13 or the change in ψ1 between two successive
iterations, i.e., |ψnew − ψold|, is less than δ.

As mentioned earlier, fhyp1 is discontinuous at the GZP,
and thus, for many practical biases, the NR loop might not
converge if, at any stage, the iterative solution becomes higher
than ψgzp1. For such cases, we have to switch to the Ridders
algorithm. We implement the Ridders algorithm as it appears
in [18] with ψmax and ψmin representing quantities xh and
xl, respectively. A slight modification is made to eliminate the
cases where the proposed implementation might fail. When the
S-parameter given in [18] goes to zero or (1 − |(F(ψmax +
ψmin/2))/S| < 10δ), where F is the function to be solved by
the Ridders algorithm, then the bisection algorithm is used as
backup to assure certain convergence. This situation is however
very less probable, as shown in the results presented Section III.
As shown in Fig. 1, a flag flag_ridder gets set whenever
ψnew exceeds ψgzp1. It also gets set when the relative change
in the solution between iterations |ψnew − ψold| is less than
10δ, which is an empirical check for slow NR convergence or
oscillations in convergence. When this flag gets set, the Ridders
algorithm gets executed after breaking out of the NR loop. For
the Ridders method, the ideal bounds for the solution spaces are
ψgzp1 and ψ1limit. However, in the hyperbolic mode, ψ1limit

can be very far from ψgzp1, and thus, the Ridders algorithm
might slowly converge. The interim solution ψold obtained in
the NR loop is used to reduce the bounds of the solution space.
As shown in Fig. 1, the sign of function flt_hyp1 at the interim
solution ψ = ψold is compared with its sign at ψ = ψgzp1. If
the sign is negative, then the lower bound can be changed from
ψ1limit to ψold, else the upper bound can be changed from

∂ψ1

∂Vgs2

∣∣∣∣
ψ1=ψgzp1

=
(
12α2

1Cox2ε
2
si(α1βtsi + 2)3

)
/(

B3β4ε2sit
3
si(16εsi + 10Cox2tsi + α1βCox2t

2
si + 2α1βεsitsi)

e3β(V −ψgzp1)

+
16BCox2

(
ε2si(9α1βtsi + 6) − βt2siω1(5α1βtsi + 9)

)
B (48βεsitsiω1(2α1βtsi + 3))

eβ(V −ψgzp1)

− 96α1ω1(εsi + Cox2tsi) +
2B2β2tsi

(
ε3si(24α1βtsi + 24) + 4Cox2ε

2
sitsi(5α1βtsi + 12)

)
e2β(V −ψgzp1)

+
2B2β2tsi

(
−βCox2t

3
siω1(α1βtsi + 10)

)
−

(
2βεsit

2
siω1(α1βtsi + 8)

)
e2β(V −ψgzp1)

)

where α1 =
√

Be−β(V −ψgzp1) and ω1 = C2
ox1(ψgzp1 − Vgs1) (8)



JANDHYALA AND MAHAPATRA: ALGORITHM FOR SURFACE-POTENTIAL CALCULATION OF MOSFET 1667

ψgzp1 to ψold. The search space, hence, is now limited to either
ψold to ψ1limit or ψold to ψgzp1 instead of ψ1limit to ψgzp1. In
this way, even in cases where NR does not converge, we can
use its interim solution ψold to reduce the search space, which
remarkably improves the efficiency of the Ridders algorithm

f ′
hyp1 = −

√
Be−βV

G1
cosh(θ1)κ1 +

√
Be−βV sinh(θ1)γ1

2G
3
2
1

−β

2

(
εsi coth(θ1)γ1

2Cox2
√

G1
− εsi

√
G1(coth2(θ1)−1)κ1

Cox2

)

e

β

(
Vgs2+

εsi
√

G1 coth(θ1)
Cox2

)
2

where

γ1 =
∂G1

∂ψ1

=
2C2

ox1(ψ1 − Vgs1)
ε2si

− βBe−β(V −ψ1)

κ1 =
∂θ1

∂ψ1

= − βtsiγ1

4
√

G1

−

β

2e
βψ1
2

√
B

G1eV β

+ Bγ1

2G2
1eβV e

βψ1
2

(
B

G1eβV

) 3
2

√
G1eβ(V −ψ1)

B + 1
.

(11)

D. Solution of the Trigonometric IVE

To solve ftrig1 = 0, we use only the Ridders algorithm as the
solution space is much smaller (five to ten times) than the hyper-
bolic case, where the Ridders method is found to show similar
or even better performance than the NR or hybrid NR–Ridders
method. Moreover, the Ridders algorithm does not require the
derivative of the function to be solved. As the derivatives of the
IVEs are pretty complicated, the implementation of the Ridders
algorithm is less error prone than the NR routine. The lower
bound for the solution space is ψgzp1 as in the trigonometric
mode ψ1 > ψgzp1 [5]. From the expression of ftrig1, one can
deduce that the upper bound of the solution space ψ1limit is
determined by the solution of equation flt_trig1 ≡ π − θ∗1 = 0,
which also denotes the first nonremovable singularity point of
ftrig1 and thus needs to be very accurately evaluated. Unlike
fhyp1, the solution space of ftrig1 is bounded between a dis-
continuity point and a singularity point, which gives another
argument to use pure Ridders method for root finding.

A straightforward NR-based method is found to be not
efficient for solving flt_trig1, as during iteration,

√
G∗

1 could
become imaginary, and thus, we use the hybrid NR–Ridders
method (similar to the hyperbolic mode). To solve flt_trig1 by
the Ridders method, we need to find the upper bound of ψ1limit

(the lower bound is given by ψgzp1). Now, as the maximum
possible value of

√
G∗

1 could be 2π/(βtsi) [1], the solution of
equation π − (β

√
G∗

1tsi/2) = 0, denoted by ψ1χ, provides the
upper bound of ψ1limit. This equation for computing ψ1χ can

Fig. 2. Comparison of (dotted line) the proposed algorithm with (circle)
the COMSOL solution. (Blue) Hyperbolic mode. (Red) Trigonometric mode.
The device parameters are tox1 = 1 nm, tox2 = 2 nm, tsi = 10 nm, and
Vgs2 = 1 V.

be transformed into following form, which can eliminate the
discontinuities at boundaries and has better convergence:

f1χ ≡ V − ψ +
ln

(
4π2

β2t2si
+ C2

ox1(ψ−Vgs1)
2

ε2si

)
β

− ln(B)
β

. (12)

f1χ can be solved using Halley’s method, as shown in Fig. 1.
Although the solution of flt_trig1 gives the ideal upper bound
for the surface potential, it can be further reduced to optimize
the solution space of ftrig1. In order to do so, we use the
fact that ψ1 ≤ Vgs1; however, ψ1limit could be greater than
Vgs1. As shown in Fig. 1, if Vgs1 is less than ψ1limit, then the
upper bound for ψ1 is simply Vgs1, and thus, the computation
of ψ1limit can be avoided. This check is done even before
the computation of ψ1χ by comparing the sign of function
flt_trig1 at ψ = Vgs1 with that of ψ = ψgzp1. This optimiza-
tion in the upper bound of ψ1 is found to provide significant
improvement in the overall computation time, as we not only
avoid the overhead (ψ1limit) computation, but we also reduce
the solution space for the solution in ftrig1 = 0. It will be
shown in Section III that the overhead computation time is
quite small compared with the total computational-time Ridders
loop in (2), and thus, the reduction in its solution space will
improve the overall performance significantly. However, this
check has a numerical limitation. It can be performed only
when Vgs1 − V < 708/β, as beyond this point, the exponen-
tial term in the expression of flt_trig1 overflows (similar to
the ψgzp1 calculation). Hence, for cases Vgs1 − V > 708/β,
the aforementioned bound optimization is performed after the
computation of ψ1limit. Once the optimized upper bound for
ψ1 is obtained, ftrig1 is solved using the Ridders method, as
explained in Fig. 1.

III. RESULTS AND DISCUSSION

We validate the accuracy of our algorithm against the nu-
merical solution of the PE obtained from the COMSOL 4.0
multiphysics software [12]. Fig. 2 shows the good agreement
between results obtained from the proposed algorithm and the
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Fig. 3. gm2/ID around Vgs2crit for Vgs1 = 1 V. (Circles) COMSOL data.
(Solid lines) Solution by our algorithm. The device parameters are tox1 =
1 nm, tox2 = 2 nm, and tsi = 10 nm.

Fig. 4. Surface potential for extreme bias conditions. The device parameters
are tox1 = 1 nm, tox2 = 2 nm, and tsi = 10 nm. Here, we used the tied gate
configuration with Δφ1 = 0.56 and Δφ2 = −0.56.

COMSOL data for the calculation of the surface potential and
its derivative for both cases where Vgs1 is greater and less
than Vgs2. The analytical expressions for the derivatives are not
shown due to space constraints. In Fig. 3, we have shown how
the proposed algorithm handles the discontinuity at the GZP. In
this figure, we have plotted gm2/ID, where gm2 is the second
gate transconductance and ID is the drain current, against
Vgs2, while the source end is changing from hyperbolic to
trigonometric mode (by varying Vgs2 around Vgs2crit for a step
size of 1 nV). Both the characteristics appear to be continuous
and match very well with the COMSOL data. It should be noted
that, in regime |Vgs2 − Vgs2crit| < 10−6, we use the explicit for-
mulation, but beyond this limit, we solve the IVEs numerically.
In Fig. 4, we examine the robustness of the proposed algorithm
(and the ψgzp calculation) against extremely high bias voltages,
which might appear during circuit simulation. As the overflow
and the underflow of math functions under extreme biases are
properly covered in the algorithm, it gives an accurate result for
any bias conditions.

Due to the presence of several independent variables in the
IVEs, it is very difficult to analyze the computation efficiency

of the proposed algorithm. We use the following statistical
technique in order have a fair estimate of the efficiency. For
two different devices dev1 and dev2 (having tox1 = 2 nm,
tox2 = 3 nm, and tsi = 30 nm, and tox1 = 1 nm, tox2 = 1 nm,
and tsi = 10 nm, respectively), the efficiency of the algorithm
is demonstrated in terms of the required number of iterations
and computation time by executing it for 1 million random bias
points where Vgs1 and Vgs2 are varying between 0 and 3 V for
a channel voltage of 0 V.

Fig. 5 shows the histogram of the iterations needed (exclud-
ing the ψ1limit calculation) to compute ψ1 for dev1 and dev2,
respectively. Bars in black represent samples in the hyperbolic
mode, and bars in gray represent that in the trigonometric mode.
It can be noticed that convergence is always achieved within
ten iterations. It also shows that the probability of using the
Ridders algorithm in the hyperbolic mode is very small and
the bisection method has never been used. The explicit solution
also gets used (although the probability is very small) both in
the trigonometric and hyperbolic modes, as indicated by the
presence of samples with zero iteration.

Fig. 6 shows the histogram of the total computation time
(including the ψ1limit calculation) taken by the samples for
nonzero iterations. The histogram is generated by binning the
total samples into bins of 0.1-ms width based on the magnitude
of their total computation time. Hence, for example, a sample
with a 0.32-ms computational time falls into the 0.4-ms bin,
and a sample with a 1.15-ms computation time falls into the
1.2-ms bin. It is shown that, in both the devices, the peak
in trigonometric samples lags behind the peak in hyperbolic
samples by about 9%–15%. Fig. 7 shows the histogram of the
percentage of the total computation time taken by the ψ1limit

calculation for samples in the trigonometric mode for dev1 and
dev2, respectively. On an average, it is shown that the ψ1limit

computation, i.e., the overhead computation needed in the
trigonometric mode, takes about 10% of the total computation
time in both the devices. From Fig. 5, it is shown that the
trigonometric and hyperbolic modes peak at the same iteration
number. From these observations, it could be concluded that the
computation of the trigonometric IVE is slower than that of the
hyperbolic IVE because of the iterative ψ1limit calculation in
the trigonometric mode.

Finally, in Fig. 8, we show the histogram of the ratio of
computational times for the ψgzp1 calculation using the sug-
gested approach to that of the W -function-based approach (as
available in the GSL). The suggested approach is found to be
much faster than the standard W -function-based approach as
only 5% of samples have this ratio more than one.

We have not shown the effect of nonzero V in the above
simulation due to the fact that a nonzero (positive) V only shifts
the samples from the trigonometric mode to the hyperbolic and
explicit modes (which is understandable from the concept of
the GZP [5]). For example, when V changes from 0 to 1 V, the
percentage of trigonometric samples decrease from about 75%
to 50% on an average.

The proposed algorithm is implemented in a commercial
circuit simulator [10] through its Verilog-A interface. Fig. 9
depicts the characteristics of an IDG complementary MOS
AND gate (NAND gate followed by an inverter) successfully
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Fig. 5. Histogram of the iterations needed to compute ψ1 for 1 million samples. Samples in (black bars) hyperbolic mode and (gray bars) trigonometric mode.
The Ridders algorithm in the hyperbolic mode is used for samples in the bar represented by “R.” For dev1, 771 011 samples are in the trigonometric mode, whereas
for dev2, 739 998 samples are in the trigonometric mode.

Fig. 6. Histogram of the total computation time for the samples with nonzero iterations. Samples in (black bars) hyperbolic mode and (gray bars) trigonometric
mode.

Fig. 7. Histogram of the percentage of the total computation time taken by the ψ1limit calculation for samples in the trigonometric mode.

simulated using the circuit simulator and verified with the
mixed-mode simulation of a technology computer-aided design
(TCAD) simulator [11].

In a very recent work [19], effort has been also put to imple-
ment those IVEs [5] in a Verilog-A-based circuit simulator with
some mathematical conditioning. As the detailed algorithm
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Fig. 8. Histogram depicting the ratio of computational times between the proposed approach to the Lambert-function-based approach for ψgzp1 using a million
random bias points using a bin width of 0.1 for binning the ratios.

Fig. 9. Simulated characteristics of NAND and AND gates using (line) the circuit simulator and (symbol) the mixed-mode TCAD simulator, keeping the second
input at VDD = 1 V. Here, we use the same W/L ratio (W is the width, and L is the length of the transistor) for both p- and n-FETs. Yet, the logic transition
at VDD/2 is achieved by applying suitable second gate voltages (0.8 and 0 V for all p- and n-FETs, respectively). Device parameters used are tox1 = 1 nm,
tox2 = 2 nm, and tsi = 10 nm.

(initial guess, exit condition, etc.) is not presented, we are not
able to compare the proposed algorithm with their work.

IV. CONCLUSION

We have proposed a robust yet efficient root finding algo-
rithm for the IVEs of an IDG MOS transistor without any
compromise in accuracy. The proposed algorithm uses a unique
approach of root finding by combining the Ridders algorithm
with the NR method in order to provide assured conver-
gence in the presence of discontinuity and singularity in the
IVEs. Physics-based optimized input guess, minimized solution
space, and regional explicit solution have been used to make
the computation faster. The algorithm has been successfully
implemented in a commercial circuit simulator and verified
against numerical simulations.
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