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Physics-Based Band Gap Model for Relaxed and
Strained [100] Silicon Nanowires
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Abstract—In this paper, we propose a physics-based simplified
analytical model of the energy band gap and electron effective
mass in a relaxed and strained rectangular [100] silicon nanowires
(SiNWs). Our proposed formulation is based on the effective mass
approximation for the nondegenerate two-band model and 4 × 4
Lüttinger Hamiltonian for energy dispersion relation of conduc-
tion band electrons and the valence band heavy and light holes,
respectively. Using this, we demonstrate the effect of the uniaxial
strain applied along [100]-direction and a biaxial strain, which
is assumed to be decomposed from a hydrostatic deformation
along [001] followed by a uniaxial one along the [100]-direction,
respectively, on both the band gap and the transport and sub-
band electron effective masses in SiNW. Our analytical model
is in good agreement with the extracted data using the extend-
ed-Hückel-method-based numerical simulations over a wide range
of device dimensions and applied strain.

Index Terms—Band gap, effective mass, nanowires, size quanti-
zation, strain.

I. INTRODUCTION

S ILICON NANOWIRE (SiNW) has emerged as a building
block for the next-generation nanoelectronic devices as it

can accommodate multiple-gate transistor architecture with ex-
cellent electrostatic integrity. However, as the experimental ex-
traction of its various energy band parameters at the nanoscale
regime is an extremely challenging task, it is customary to
adopt atomic level simulations, whose results are at par with
the experimental data. Two such parameters are the band gap
and effective mass, which are of pioneer importance for the
understanding of the current transport mechanism.

In recent years, there has been an extensive investigation on
the variation of band gap and electron effective mass along dif-
ferent channel orientations in both relaxed [1]–[4] and strained
[5]–[7] SiNWs, which are based on numerical methods like the
first principle, pseudopotential, semiempirical, etc. Although
there exists a large number of empirical relations of the band
gap in relaxed SiNW [4], [8], there is a growing demand for the
development of a physics-based analytical model to standardize
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different energy band parameters, which particularly demands
its application in TCAD software for predicting different elec-
trical characteristics of novel devices like SiNW-based relaxed
tunnel field effect transistors and its strained counterpart [9].

The main challenge involved in the formulation of the ana-
lytical method for these two parameters (i.e., the band gap and
the effective masses) comes from the transition of the indirect
energy band gap of bulk Si near X point of the Brillouin
zone to direct energy band gap at Γ point of SiNW. Due
to this, the direct energy band gap starts depending on the
conduction subband effective masses at the Γ point, which, in
turn, depends on the conduction and valence subband energies.
This conduction subband energy is, again, dependent on the
subband electron effective masses, thus making it a coupled
relation. This results in a parallel variation of all the parameters
of an intrinsic Si that are entangled to each other.

Thus, the major contributions of this work are listed as
follows:

1) an analytical technique to estimate the band gap and
electron effective mass in [100] SiNW;

2) formulation of electron effective masses at the quantized
subband levels along the two confined directions, together
with the transport effective mass under both relaxed and
strained conditions.

We use a relaxed nonparabolic dispersion relation based on
the effective mass approximation (EMA) for the conduction
band in bulk Si near the X point and 4 × 4 Lüttinger Hamil-
tonian dispersion relation for valence band heavy holes (HH)
and light holes (LH) to formulate the bulk electron effective
mass along the three different directions x, y, and z and the hole
energies, respectively. This is followed by the incorporation
of the quantum confinement effects to generate the quantized
subband energies at the Γ point of [100] SiNW to formulate
the transport and subband electron effective masses and the
direct energy band gap. Further, we apply a uniaxial strain fol-
lowed by a hydrostatic one along [100]- and [001]-directions,
respectively, to form a biaxial strain with the former one. Both
the tensile and compressive strain is being associated with this
uniaxial and biaxial strain. The analytical data of the band gap
and the electron transport effective masses for both relaxed and
strained rectangular SiNW are further being compared with the
data extracted from the Atomistix ToolKit (ATK), which uses a
semiempirical approach by taking the extended Hückel method
[10]. Our analytical model stands valid for the cases where
the strain are within 1% and the spin–orbit coupling does not
influence the conduction energy band.

0018-9383/$31.00 © 2012 IEEE
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II. MODEL AND DISCUSSIONS

A. Relaxed SiNW

An intrinsic relaxed bulk Si crystal consists of six equivalent
conduction band minima located symmetrically along 〈100〉
at a distance of approximately k0 = 0.815(2π/a0) from the
Γ point along X line in a 3-D Brillioun zone, in which a0

is the relaxed lattice constant of Si. The nonparabolic energy
dispersion relation of the bulk conduction band electrons can
then be written following the EMA formalism as [11]:

E(1 + αE) =
�

2

2ml
(kz − k0)2 +

�
2k2

x

2mt
+

�
2k2

y

2mt
(1)

in which E is the electron energy as measured from the bottom
of the conduction band minimum, � [= (h/2π)] is the reduced
Planck’s constant, ml (= 0.91m0) and mt(= 0.19m0) are the
longitudinal and transverse electron effective mass, respec-
tively, where m0 is the free electron mass, α = 0.5 (eV)−1

is the nonparabolicity factor [11], and kx, ky , and kz are
the electron wave vectors along the x-, y-, and z-directions,
respectively. At this point, it should be noted that this relation is
isotropic in the (001) plane and fails to describe the conduction
band wrapping and the subband structure correctly in (110)-
oriented Si films [11], [12]. In particular, to correlate a com-
plete analytical conduction band dispersion relation with the
advanced empirical tight binding model like sp3d5s∗, a two-
band degenerate k · p model should be used where a second
conduction band close to the first conduction band must be
taken into account, the two of which become degenerate just
at the X point [11]. These are generally called as primed (�2′)
and unprimed (�1) bands, respectively. This phenomenon is,
however, not arrested in the simple nonparabolic EMA relation
as given in (1), but since the electron energy in a state of the art
MOSFET is of few tenths of electron-volts [13] within which
the energy diagram from (1) and the sp3d5s∗ are almost same
[11], one can use (1) safely for a simplified analytical solution
of the band gap and electron effective mass without affecting
the electron transport mechanism.

Assuming that the spin–orbit interaction between the HH and
LH with split-off holes is less, the hole dispersion relation at the
Γ point can be written as [14]

E = Ak2 ±
[
B2k4 + C2
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yk2
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zk2
x

)]1/2
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where E in this case is the hole energy as measured from the
top of the valence band maxima, ± indicates the HH and LH
bands, k2 = k2

x + k2
y + k2

z and A = −(4.1 ± 0.2)(�2/2m0),
|B| = (1.6 ± 0.2)(�2/2m0), and |C| = (3.3 ± 0.5)(�2/2m0)
are the inverse mass band parameters.

The band structure of relaxed SiNW whose electron transport
is along [100]-direction is an involved task. The sp3d5s∗ model
exhibits the fact that the symmetry between the six equivalent
conduction band minima is now displaced due to the difference
in the effective mass as a result of the quantum confinement of
the carriers along y- and z-directions. Because of this, the six
conduction band valleys are now grouped in four in-plane (Δ4)
along y- and z-directions and two out-of-plane (Δ2) valleys
along the x-direction. The former is projected at the Γ point of

the 1-D Brillioun zone, while the latter is zone folded to kx =
±0.37(π/a0) [1], [15]. Due to the lighter electron effective
mass in the Δ4 valley, the corresponding energy minimum is
at a lower position than that of the Δ2 valley, thus making the
NW to be a direct band gap. This chronological transition of
the energy wave vector minimum from an indirect to a direct
band gap as a result of the corresponding change from the bulk
Si structure to its [100] NW depends not only on the effective
masses at the band minima but also on to the subband energies
along the confinement directions. Several numerical methods
exhibit the fact that a [100]-oriented SiNW acts as a direct band
gap material roughly below 4 nm diameter [8], [16], [17].To
simplify this mathematical hierarchy and to correlate with the
existing numerical models, without any loss of generality, we
assume the following empirical relation between the wave
vector minima of the NW and k0 to be

kmin = k0

{
1 + exp

[
η

(
1 − (π/10a0)2

kzky

)]}−1

(3)

where η can be assumed to be a constant (in this case, η = 10).
As there is no conclusive experimental or simulation evidences
of how, in general, kmin changes at this transition region leading
to a direct from indirect band gap, the empirical model as given
in (3) would be much helpful in understanding the mechanism
of the behavior of the electron effective masses near this transi-
tion region.

As seen in Fig. 1(a) represents a schematic diagram of a
[100]-oriented SiNW, the atomistic cross-sectional view along
y and z of which is exhibited in Fig. 1(b). This has been
carried out using the ATK simulator. After a cleaved [100] fully
relaxed atomic configured SiNW, the dangling bonds on the Si
surface are sp3 passivated with hydrogen atoms to dissolve any
surface states in the band gap region. We have considered the
nearest Si–Si and Si–H bond lengths to be 0.235 and 0.152 nm,
respectively [16]. For the band structure computation, we used
the semiempirical extended Hückel method instead of the usual
ATK-DFT method. This has been used due to two main reasons:
first, the DFT calculation does not provide a good estimation
of the energy band gap, and second, the extended Hückel
approach is more computationally efficient with a simultaneous
good convergence [18]. The Hückel basis set used for the
computations included Cerda silicon (GW Diamond) [19] and
Hoffman hydrogen having a vacuum energy level of −7.67 and
0 eV, respectively, with a Wolfsberg weighting scheme. The
tolerance parameter was 10−5 with maximum steps of 100, and
a Pulay mixer algorithm [20] was used as the iteration control
parameter. In addition, the k-point sampling of 1 × 1 × 11 grid
was used with a mesh cutoff energy of 20 Hatree. In all the
following subsequent sections, we have strictly maintained the
same aforementioned control parameters. Fig. 1(c) exhibits the
energy band structure of the [100] SiNW for a square cross
section of width 1.5 nm. It can be seen in Fig. 1(c) that using
the Hückel basis set, the lifting of the valley degeneracy due
to the difference in electron effective mass is not captured,
which has already been stated earlier. However, as the valley
splitting energy even in room temperature is relatively small in
[100] and [001] SiNWs, one can ignore its contribution to the
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Fig. 1. (a) Schematic of the [100]-oriented channel of SiNW with cross-
sectional thicknesses dy and dz along the y- and z-directions, respectively.
(b) ATK built an sp3 hydrogen passivated (100) SiNW plane. (c) Energy
band structure of a [100] hydrogen passivated SiNW of square cross-sectional
area using ATK builder that uses an extended Hückel approach. (d) Plot of
(kmin/k0) as function of thickness for a square cross-sectional SiNW. It
appears that roughly below 4 nm, the conduction energy band minima for SiNW
tends to Γ point. The role of η in this case is to make the curve continuous over
the NW width.

modification of the carrier transport mechanism [1], [3], [21].
Further, as the band gap for a 1.5-nm-wide SiNW exhibited as
a direct one, one can ignore this lifting of the valley degeneracy
for the present relaxed case and can concentrate on the lowest
valley at the Γ point that essentially determines the band gap.
Fig. 1(d) represents the variation of kmin as a function of wire
width for a square cross section that resembles much like the
statistical Fermi–Dirac distribution function of holes at a finite
temperature, where kmin dies out below roughly 4 nm, while
above this, it rises quickly to its bulk value minima at k0.

The use of (3) in (1) results the nonparabolic electron disper-
sion relation in [100] SiNW with NW electron effective masses
mx, my , and mz as

E(1 + αE) =
�

2

2mz
(kz − kmin)2 +

�
2k2

x

2mx
+

�
2k2

y

2my
. (4)

Since the carriers about the Fermi energy only takes part in
the conduction mechanism, the transport effective mass mx,
defined as

mx = �
2

(
∂2E

∂k2
x

)−1
∣∣∣∣∣
E=EF

(5)

should be evaluated when E = EF at the band minimum. In
case of an intrinsic SiNW, the Fermi energy position is nearly at
the middle of the band gap, thus, one can use EF ∼ (EgNW/2),
where EgNW is the energy band gap of the SiNW for a particular
thickness. The subband electron effective masses along the y-
and z-directions, however, depends on the subband energies
along their respective directions and are the solution for E =
En of (4) when the transport direction wave vector kx = 0.
It should be particularly noted that for the present analyses,

we have not considered the effect of quantum confinement of
the carriers in the set of (011) planes on the nonparabolicity
factor α. Although this has been modeled recently for ultrathin
Si films using two-band degenerate perturbation k · p theory,
but leads to unsatisfactory results below certain film thickness
[22]. The question of this band nonparabolicity factor has also
been dealt by Wang et al. [3] for SiNWs where they took α to
be a fitting parameter to correlate with their data. However, in
the present analytical formalism, we have taken the theoretical
value of α to be 0.6 (eV)−1 [11], a result close to 0.5 (eV)−1 as
stated earlier.

Using (4) and (5), the transport effective electron mass mx

for [100] relaxed SiNW can be obtained as

mx = (1 + αEgNW)mt. (6)

Equation (6) is the result of the assumption that the carriers
obey the periodic Bloch waves together with the van Hove
singularity conditions occurring due to the carrier confinement
along the y- and z-directions. Under such “particle-in-a-box”
conditions, we have ky = nyπ/dy and kz = nzπ/dz , where dy

and dz are the thicknesses of the SiNW and ny and nz are the
quantum wire subband index numbers (1, 2, 3, . . .) of the con-
duction subbands along the respective directions. Thus, we see
that the transport effective mass along [100] of a relaxed SiNW
depends on the corresponding energy band gap. However, it
should be noted that for bulk relaxed Si crystal, (6) converges
to mx = (1 + αEg)mt ∼ 0.32m0, where Eg = 1.12 eV is the
indirect band gap. Under the usual parabolic energy dispersion
relation (α → 0), and thus, mx = mt = 0.19m0. The subband
effective mass along the y- and z-directions can, respectively,
be written using (4) and (5) as

my =
(1 + 2αEn)[
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�2

(
nyπ
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)2
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}]mt (7)
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ml(1+2αEn)2

}]ml (8)

in which E is replaced by En, which are the subband energies
that can, in turn, be written using (4) as
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It appears from (7) and (8) that the subband effective masses
along the confinement directions depends on the corresponding
quantum numbers ny and nz . However, it is customary to
assume that almost all the carriers are occupied within the
lowest subbands for which ny = nz = 1. Physically, the energy
band gap of 1-D nanowire is the absolute energy difference be-
tween the lowest conduction (ny = nz = 1) and lowest valence
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subband level (my = mz = 1). Thus, using (7)–(9), the band
gap for the relaxed SiNW can be written as

EgNW = Eg + En|kmin=0 + |Ep| (10)

which is the absolute sum of its bulk value Eg , En evaluated at
kmin = 0 and ny = nz = 1 and Ep evaluated at my = mz = 1,
respectively, where Ep is the hole subband energy given by

Ep =A
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in which my and mz are the hole subband index numbers (1,
2, 3, . . .) of the split HH and LH valence bands along the
respective directions. It also appears that due to the occurrence
of the square root in (2), the HH and LH dispersion relation,
in general, cannot be described by the effective masses [11].
Keeping this in view, we assume that the Lüttinger parameters
A, B, and C are independent of the cross-sectional dimensions.
It should be noted that Eg in (10) is the bulk indirect band
gap value. However, the contribution to the band gap due to
the thickness reduction comes directly from En|kmin=0 and
Ep. This En|kmin=0 consists of the effective masses my and
mz through (7) and (8), which depends again on En in (9).
Since kmin changes from its bulk position at k0 to Γ, which
leads to a corresponding change in the masses my and mz , the
band gap EgNW becomes a direct one. As the cross-sectional
dimension increases, both the subband energies En|kmin=0 and
Ep diminish, and EgNW tends to its indirect value Eg , which is
essentially the difference between the conduction band minima
and valence band maxima, where the bulk conduction band
minima at k0 comes implicitly in the EMA formulation.

Thus, we see that (6)–(10) are coupled equations, which
cannot be solved directly. Furthermore, a parallel evaluation of
various size-dependent parameters usually makes the analyses
a formidable one to make any precise analytical formulation.
Approximations are thus needed to obtain analytical and mean-
ingful results. Hence, we first solve the subband energies using
the relation given in (9) for the bulk effective masses ml and
mt as
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where the subband effective mass are then evaluated from (7)
and (8) as

m1
y =(1 + 2αE1)mt (13)

m1
z =(1 + 2αE1)ml (14)

Fig. 2. Plot of the band gap using (10) in relaxed [100] SiNW as a function of
lateral wire width dy = dz = d. The subband effective masses in (9) has been
evaluated by using (16) and (17). The symbols are our simulation data that have
been obtained by using the ATK by passivating the Si atoms at the surface of
the wire using hydrogen atoms as shown in Fig. 1(b) followed by the use of
semiempirical extended Hückel method.

in which we have neglected the denominator since the con-
tribution of the factors 2α{(�2(π/dy)2/mt(1 + 2αE1)2)}
and 2α{(�2((π/dz) − kmin)2/ml(1 + 2αE1)2)} are very less
above 1 nm wire width. Using (13) and (14), we evaluate a more
precise subband energy E2 as

E2 =
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[
−1 +
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1 + 4α
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where the subband effective mass generated from (15) can then
be evaluated following (13) and (14) as

m2
y =(1 + 2αE2)mt (16)

m2
z =(1 + 2αE2)ml. (17)

Finally, replacing my and mz by m2
y and m2

z , respectively, in
(9), and using (10), we find the SiNW direct band gap EgNW .
Fig. 2 exhibits the variation of [100] relaxed SiNW band gap
as function of wire width of equal thickness. The effect of the
carrier confinement along the [001]- and [010]-directions leads
to the discrete subband energy levels for both the electrons
and holes. In case of valence bands, the HH and LH form
separate energy subband levels due to the difference in their
energy. Thus, using this, it appears that the first subband of
Ep for HH in a 1.5 × 1.5 nm2 SiNW is about 0.1 eV below
compared to that of the maxima point of the HH in case of
bulk. However, for the LH subband, Ep is about 2.2 eV below
the same. Thus, we see that the energy band gap difference in
case of SiNW should be considered from the lowest conduction
subband to the lowest HH subband, which is precisely meant
by (10). Using (6), (16) and (17), Fig. 3 exhibits the variations
of the transport and subband effective mass as a function of
wire width. It appears that mx decreases with the increase
in width, and as d → ∞, mx tends to its nonparabolic bulk
value, which is 0.32 m0. In case of subband effective mass,
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Fig. 3. Plot of the electron (a) transport effective mass using (6) and
(b) subband effective mass using (16) and (17) as a function of wire thickness.
The symbol represents the extracted data from the energy band structure
obtained using ATK simulation.

the variation is divided into two parts. Roughly below 5 nm, it
appears that both my and mz increase with a decrease in wire
thickness. This is due to the reason that the contribution of kmin

in (3) diminishes. Fig. 3(b), if compared with Fig. 1(d), exhibits
that using our model (3), the direct-to-indirect transition occurs
roughly below 4 nm. However, due to the addition of the
term ((π/dz) − kmin), the minimum of my and mz is shifted
to roughly about 5 nm. As the thickness increases, both the
subband masses start increasing and reach their corresponding
nonparabolic bulk effective masses, which are precisely 0.38m0

and 1.81m0, respectively. It should be noted that these bulk
values are measured with respect to the valence band maxima
at Γ point. However, if the origin is shifted to k0, the value of
these masses converges to 0.19m0 and 0.91m0, respectively.

Using this approach, the maximum error between our for-
mulation and simulation data are within 3%. The main reason
behind this error is due to the complete negligence of the
spin–orbit interaction between the split-off holes and HH/LH
in our model. The other part of the error comes due to the
omission of the interaction of the plane waves of Hydrogen
on the Si atoms due to which the band structure of ultrasmall
thin SiNW gets affected. Our analytical model can also be
compared to the band gap of circular SiNW under identical
conditions. However, for other different cross-sectional shapes
like circular and triangular [100] SiNW, the band gap exhibits
almost zero deviations from each other when plotted against the
cross-sectional area, whereas if plotted against cross-sectional
dimension, both the transport effective mass and band gap
exhibit slight deviations [3], [23].

B. Strained SiNW

The influence of strain on bulk Si crystal has different effects
along different directions and has been extensively studied
in past few decades [24], [25]. Recently, using the density
functional theory, the effect of both uniaxial and biaxial strain
on the band structure of a [100]-oriented SiNW has been shown,
where the modification of the positions of already lifted Δ4 and
Δ2 valleys due to the quantum confinement effects has been

Fig. 4. Band alignment of the first (ny = nz = my = mz = 1) conduction
and valance subband using the EMA formulation under an application of a
biaxial strain on [100] SiNW for (a) tensile and (b) compressive strain. Δ2

and Δ4 in relaxed SiNW are the results of difference in effective masses due to
quantum confinement as arrested by the sp3d5s∗ method. The average of the
HH and LH subband (as shown by the horizontal dotted line below Ep(HH)
is assumed to coincide with the Ep(HH) for both the tensile and compressive
cases due to higher effective mass of the former.

considered [7]. For our present quantitative analysis, we take
into consideration a uniaxial and hydrostatic strain along the
[100]- and [001]-directions, respectively. Fig. 4 schematically
exhibits this situation on the conduction and valence bands for
both tensile [Fig. 4(a)] and compressive [Fig. 4(b)] strains on
a [100]-oriented SiNW. In case of a bulk Si, an application of
a tensile hydrostatic strain shifts up the average energy of the
conduction band with respect to its six equivalent valleys. In
addition, a uniaxial strain along [100] splits this conduction
band into Δ2 and Δ4. The position of these valleys about
their bulk relaxed value, however, strictly depends whether
the strain is tensile or compressive. For example, in a 〈110〉
uniaxial tensile strain, the position of Δ4 is higher in energy
than Δ2 [26].

As shown in Fig. 4(a) for a relaxed SiNW, the two valleys
Δ4 (lower in energy) and Δ2 (higher in energy) are the set
of subbands as a result of ky = nyπ/dy and kz = nzπ/dz .
The average energy of this set of subbands under a tensile
hydrostatic strain along [001] shifts up by the same amount.
However, the presence of a uniaxial compressive strain along
the [100]-direction makes Δ4 to be higher in energy than that
of Δ2 [7], as shown in Fig. 4(b). In case of valence bands,
the HH and LH split as subband energy levels [see (11)] in
which a tensile hydrostatic strain shifts up their respective
average position, while a uniaxial tensile strain shifts up the
HH subbands over LH subbands [Fig. 4(a)]. We now discuss
a quantitative analysis of the energy band gap and transport
and subband effective masses under the presence of a biaxial
strained [100] SiNW based on the EMA formalism as stated
earlier. Further, in case of the split valence bands, we assume
that the average position of the HH and LH subband almost
coincides with the HH subband due to the higher effective mass
of the former. The isotropic hydrostatic strain shifts the average
energy of the nanowire conduction band edge from En [in
(9) with ny = nz = 1] by an amount Enav = ac(2ε/(1 − ν)),
where ε is the isotropic strain component. In addition, the
influence of a uniaxial strain along [100] increases the
difference in energy between the Δ2 and Δ4 subbands.
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Each of these valleys now shifts by an amount E�2 =
(2/3)bc(εzz − εxx) = (2/3)bc((3ν − 1)/(1 − ν))ε and
E�4 = −(1/3)bc(εzz − εxx) = −(1/3)bc((3ν − 1)/(1 − ν))ε,
as shown in Fig. 4(a) and (b) with respect to their unstrained
positions, where εzz > 0 and εxx are the strain tensor
coefficient along the z- and x-directions, respectively. The
parameters ac = 4.18 eV and bc = 9.16 eV are the deformation
potentials for the hydrostatic and uniaxial strain in the Si
conduction bands, respectively [24], [27], while ν = 0.37
is the SiNW Poisson’s ratio [28]. In case of the valence
subbands, the hydrostatic strain shifts the average energy
of the nanowire valence band edge from Ep [in (11) with
my = mz = 1] by an amount Epav = av(2ε/(1 − ν)). This is
further shifted to an amount ELH = 2bv((3ν − 1)/(1 − ν))ε
and EHH = −bv((3ν − 1)/(1 − ν))ε in case of tensile and
compressive case, respectively, in which av = 2.46 eV and
bv = −2.35 eV are the valence band deformation potentials
[24], [27]. Thus, we see from the energy band diagram in
Fig. 4(a), that the band gap in a biaxially tensile strained [100]
SiNW is given by

Eg(ε > 0) = Eg + � + �′ (18)

in which � = En|ny=nz=1 + Enav + E�4 , where Enav

and E�4 are positive and negative quantities and �′ =
|Ep|my=mz=1| − (Epav + EHH) in which Epav and EHH are
both positive quantities, respectively. In case of a compressive
biaxial strain, (18) can be written following Fig. 4(b) as

Eg(ε < 0) = Eg + � + �′ (19)

where, in this case, � = En|ny=nz=1 + Enav + E�2 in which
Enav and E�2 are both negative quantities and �′ =
|Ep|my=mz=1| − (Epav + ELH), where Epav is a negative
quantity while ELH is a positive one.

The effect of strain on the band gap in [100] SiNW has been
exhibited in Fig. 5. It appears that band gap decreases as the
uniaxial tensile and compressive strain increases, however, the
rate of decrement is different due to the difference in energy
between Enav , Epav , ELH, and EHH in both the regime. It
should be noted that an increase in the tensile strain decreases
the energy of Δ4 subbands, while the HH subbands shifts
toward the valence band maxima position of the bulk Si. This
marks a reduction of the band gap as the tensile strain increases.
In case of uniaxial compressive strain, it is the Δ2 that shifts
down and LH shifts up, thus decreasing the band gap. The
scenario changes when the uniaxial strain is combined with
the [001] hydrostatic strain. Under this biaxial strain condition,
the band gap increases along the tensile strain while decreases
with compressive strain at a rate much faster than that of the
corresponding uniaxial case. It is now well understood that
the sp3d5s∗ model predicts the direct to indirect transition of
the band gap in a 〈100〉 uniaxially strained SiNW occurring
inside the compressive zone [7], [29]. The reason for this is
the asymmetric splitting of the six equivalent valleys in bulk Si
into Δ4 and Δ2 due to the quantum confinement of the carriers
in SiNW. Since Δ4 lies lower at the Γ point axis than Δ2,
which lies at higher energy at the off-Γ axis, it takes a certain
amount of compressive strain to bring the Δ2 subband (at the

Fig. 5. Band gap as function of uniaxial strain along the [100]-direction and
biaxial strain for the [100]-oriented SiNW. Symbols are the results of the ATK
simulations.

Fig. 6. Plot of the electron (a) transport effective mass and (b) subband effec-
tive mass as function of uniaxial and biaxial strain. The symbol represents the
extracted data from the energy band structure obtained using ATK simulation.

same off-Γ axis) lower than the Δ4. Since this confinement
splitting is not arrested in EMA formalism, Fig. 5 exhibits that
the band gap from the beginning of the compressive strain starts
becoming indirect. However, an increase in the tensile strain
decreases the Δ4 subband at the same Γ axis, whereby the band
gap remains direct always.

The variation of the transport and subband effective mass
as function of strain has been exhibited in Fig. 6 in which the
transport effective mass is given as mx = (1 + αEg(ε))mt and
the subband effective masses at the first subband are given as
my = (1 + α�)mt and mz = (1 + α�)ml. It appears from
Fig. 6(a) that with the increase in both uniaxial tensile and
compressive strain, the transport effective mass follows the
same rate of decrement as exhibited by its corresponding band
gap variation. However, in the case of subband effective mass
as seen in Fig. 6(b), the variation follows Δ. It appears that
the subband effective mass along the z-direction has larger
variation due to the application of the hydrostatic strain than
that of the y-direction. Further above 0 strain, the effective
masses are due to the direct band gap, and below 0 strain, the
effective masses are due to the indirect band gap, a reason that
has already been stated earlier.

Finally, the work, as exhibited here, lightens an analytical
method of extracting these parameters through in an iterative
way until the solutions converge. Although it is not possible
to decouple the entangled relation between the band gap and
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effective electron masses along different directions, however,
our analytical approach lies with the easier and reduced steps
with an excellent convergence in extracting these energy band
parameters by considering the effects of quantum confinement.
Further, in defining (3), it should be noted that (3) is indepen-
dent of strain since strain changes the electron energy levels not
the minima points as long as nanowires are concerned [7], [11].
We wish to state that the methods as presented in this work for
the formalism of both the band gap and effective mass in the
presence of strain may be useful for the determination of differ-
ent electrical transport properties in uniaxial ([110]-direction)
and biaxially ([110] and [001]) strained [110] SiNWs. The
results and the methodologies as carried out in this work can
be tuned further by modifying the nanowire dispersion relation
by considering the variation of the nonparabolicity factor as a
function of film thickness and incorporating the valley splitting,
which would certainly increase the accuracy of our analytical
results, although the qualitative features of the band gap and
the effective masses both in relaxed and strained case would
not change.

III. CONCLUSION

In this paper, we have presented an analytical technique to
estimate the band gap and electron effective mass in a [100]-
oriented relaxed and strained SiNW. Using this, we investigate
the variation of the band gap and the effective mass along
the transport direction and confined directions as function of
cross-sectional dimension and applied strain. The results of our
analytical model for both relaxed and strained SiNWs are in
good agreement with that of the semiempirical extended Hückel
method and found to possess an error less than 3%.

REFERENCES

[1] N. Neophytou, A. Paul, M. S. Lundstrom, and G. Klimeck, “Bandstruc-
ture effects in silicon nanowire electron transport,” IEEE Trans. Electron
Devices, vol. 55, no. 6, pp. 1286–1297, Jun. 2008.

[2] E. Zheng, C. Rivas, R. Lake, K. Alam, T. B. Boykin, and G. Klimeck,
“Electronic properties of silicon nanowires,” IEEE Trans. Electron De-
vices, vol. 52, no. 6, pp. 1097–1103, Jun. 2005.

[3] J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. S. Lundstrom,
“On the validity of the parabolic effective-mass approximation for the
I–V calculation of silicon nanowire transistors,” IEEE Trans. Electron
Devices, vol. 52, no. 7, pp. 1589–1595, Jul. 2005.

[4] J. A. Yan, L. Yang, and M. Y. Chou, “Size and orientation dependence
in the electronic properties of silicon nanowires,” Phys. Rev. B, vol. 76,
no. 11, pp. 115 319-1–115 319-6, Sep. 2007.

[5] M. O. Baykan, S. E. Thompson, and T. Nishida, “Strain effects on three-
dimensional, two-dimensional, and one-dimensional silicon logic devices:
Predicting the future of strained silicon,” J. Appl. Phys., vol. 108, no. 9,
pp. 092716-1–092716-24, Nov. 2010.

[6] R. N. Sajjad and K. Alam, “Electronic properties of a strained 〈100〉
silicon nanowire,” J. Appl. Phys., vol. 105, no. 4, pp. 044307-1–044307-6,
Feb. 2009.

[7] K.-H. Hong, J. Kim, S.-H. Lee, and J. K. Shin, “Strain-driven electronic
band structure modulation of Si nanowires,” Nano Lett., vol. 8, no. 5,
pp. 1335–1340, May 2008.

[8] P. W. Leu, B. Shan, and K. Cho, “Surface chemical control of the elec-
tronic structure of silicon nanowires: Density functional calculations,”
Phys. Rev. B, vol. 73, no. 19, pp. 195 320-1–195 320-5, May 2006.

[9] International Technology Roadmap for Semiconductors. [Online]. Avail-
able: http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/
2009_ExecSum.pdf

[10] Atomistix ToolKit (ATK), QuantumWise Simulator, [Online]. Available:
http://www.quantumwise.com/

[11] V. Sverdlov, Strain-Induced Effects in Advanced MOSFETs. Wein, NY:
Springer-Verlag, 2011.

[12] K. Uchida, A. Kinoshita, and M. Saitoh, “Carrier transport in (110)
nMOSFETs: Subband structures, non-parabolicity, mobility character-
istics, and uniaxial stress engineering,” in IEDM Tech. Dig., 2006,
pp. 1019–1021.

[13] M. S. Lundstrom and J. Guo, Nanoscale Transistors: Device Physics
Modeling and Simulation. New York: Springer-Verlag, 2006.

[14] G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron resonance of elec-
trons and holes in silicon and germanium crystals,” Phys. Rev., vol. 98,
no. 2, pp. 368–384, Apr. 1955.

[15] R. N. Sajjad, K. Alam, and Q. D. M. Khosru, “Parametrization of a
silicon nanowire effective mass model from sp3d5s∗ orbital basis calcu-
lations,” Semicond. Sci. Technol., vol. 24, no. 4, pp. 045023-1–045023-8,
Mar. 2009.

[16] M.-F. Ng, L. Zhou, S.-W. Yang, L. Y. Sim, V. B. C. Tan, and P. Wu, “Theo-
retical investigation of silicon nanowires: Methodology, geometry, surface
modification, and electrical conductivity using a multiscale approach,”
Phys. Rev. B, vol. 76, no. 15, pp. 155 435-1–155 435-11, Oct. 2007.

[17] J.-B. Xia and K. W. Cheah, “Quantum confinement effect in thin quantum
wires,” Phys. Rev. B, vol. 55, no. 23, pp. 15 688–15 693, Jun. 1997.

[18] D. Kienle, K. H. Bevan, G.-C. Liang, L. Siddiqui, J. I. Cerda, and
A. W. Ghosh, “Extended Hückel theory for band structure, chemistry, and
transport—Part 2: Silicon,” J. Appl. Phys., vol. 100, no. 4, pp. 043715-1–
043715-8, Aug. 2006.

[19] J. Cerda and F. Soria, “Accurate and transferable extended Hückel-type
tight-binding parameters,” Phys. Rev. B, vol. 61, no. 12, pp. 7965–7971,
Mar. 2000.

[20] P. Pulay, “Convergence acceleration of iterative sequences the case of scf
iteration,” Chem. Phys. Lett., vol. 73, no. 2, pp. 393–398, Jul. 1980.

[21] S. Jin, M. V. Fischetti, and T.-W. Tang, “Theoretical study of car-
rier transport in silicon nanowire transistors based on the multisubband
Boltzmann transport equation,” IEEE Trans. Electron Devices, vol. 55,
no. 11, pp. 2886–2897, Nov. 2008.

[22] V. Sverdlov, H. Kosina, and S. Selberherr, “Electron subband dispersions
in ultra-thin silicon films from a two-band k · p theory,” J. Comput.
Electron., vol. 7, no. 3, pp. 164–167, Sep. 2008.

[23] R. N. Sajjad, S. Bhowmick, and Q. Khosru, “Cross-sectional shape effects
on the electronic properties of silicon nanowires,” in Proc. IEEE EDSSC,
2008, pp. 1–4.

[24] C. G. V. de Walle and R. M. Martin, “Theoretical calculations of hetero-
junction discontinuities in Si/Ge systems,” Phys. Rev. B, vol. 34, no. 8,
pp. 5621–5634, Oct. 1986.

[25] J. C. Hensel and G. Feher, “Cyclotron resonance experiments in uniaxially
stressed silicon: Valence band inverse mass parameters and deformation
potentials,” Phys. Rev., vol. 129, no. 3, pp. 1041–1062, Feb. 1963.

[26] Y. Sun, S. E. Thompson, and T. Nishida, Strain Effect in Semiconduc-
tors: Theory and Device Applications. Heidelberg, Germany: Springer-
Verlag, 2010.

[27] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and
Materials Properties., 4th ed. New York: Springer-Verlag, 2010.

[28] M. Durandurdu, “Ab initio modeling of small diameter silicon
nanowires,” Phys. Stat. Solid (B), vol. 243, no. 2, pp. R7–R9, Feb. 2006.

[29] D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, “Strain induced change
of bandgap and effective mass in silicon nanowires,” Appl. Phys. Lett.,
vol. 93, no. 7, pp. 073114-1–073114-3, Aug. 2008.

Ram Krishna Ghosh received the B.Sc. de-
gree in physics from the University of Calcutta,
West Bengal, India, in 2006 and the M.Sc. degree
in physics from the Indian Institute of Technology
Madras, Chennai, India, in 2008. He is currently
working toward the Ph.D. degree in the Nano Scale
Device Research Laboratory, Department of Elec-
tronic Systems Engineering (formerly CEDT), In-
dian Institute of Science, Bangalore, India.

His research interests include the quantum trans-
port in nanoscale semiconductor devices.



1772 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 6, JUNE 2012

Sitangshu Bhattacharya received the B.S. and
M.S. degrees from the University of Calcutta,
West Bengal, India, in 2001 and 2003, respectively,
and the Ph.D. degree from Jadavpur University,
Calcutta, India, in 2009.

He is currently a Postdoctoral Young Scientist
with the Department of Electronic Systems En-
gineering, Indian Institute of Science, Bangalore,
India. His current research topic includes the theoret-
ical modeling of electro-thermal transport properties
in low dimensional structures and devices under

external controlled fields.

Santanu Mahapatra (M’08–SM’10) received the
Ph.D. degree from the Ecole Polytechnique Federale
de Lausanne, Lausanne, Switzerland, in 2005.

He is currently an Associate Professor with the
Indian Institute of Science, Bangalore, India. His
research interests include compact modeling multi-
gate transistors, carbon-based interconnects, and new
materials for future nanoelectronics.

Dr. Mahapatra is the recipient of a Ramanna Fel-
lowship from the Department of Science and Tech-
nology, Government of India.


