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Improvements in Efficiency of Surface Potential
Computation for Independent DG MOSFET
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Abstract—A robust numerical solution of the input voltage
equations (IVEs) for the independent-double-gate metal–oxide–
semiconductor field-effect transistor requires root bracketing
methods (RBMs) instead of the commonly used Newton–Raphson
(NR) technique due to the presence of nonremovable discontinuity
and singularity. In this brief, we do an exhaustive study of the
different RBMs available in the literature and propose a single
derivative-free RBM that could be applied to both trigonomet-
ric and hyperbolic IVEs and offers faster convergence than the
earlier proposed hybrid NR–Ridders algorithm. We also propose
some adjustments to the solution space for the trigonometric IVE
that leads to a further reduction of the computation time. The
improvement of computational efficiency is demonstrated to be
about 60% for trigonometric IVE and about 15% for hyperbolic
IVE, by implementing the proposed algorithm in a commercial
circuit simulator through the Verilog-A interface and simulating
a variety of circuit blocks such as ring oscillator, ripple adder, and
twisted ring counter.

Index Terms—Circuit simulation, compact modeling,
independent-double-gate metal–oxide–semiconductor field-effect
transistor (IDG MOSFET).

I. INTRODUCTION

AN efficient solution for the implicit input voltage equa-
tions (IVEs) [1] for independent-double-gate (IDG)

MOSFETs is a nontrivial task due to the presence of disconti-
nuity in the IVEs at the G-zero point (where it changes from
trigonometric to hyperbolic and vice versa) and the nonre-
movable singularities in trigonometric IVEs. The commonly
used Newton–Raphson (NR) method fails to provide guaran-
teed and rapid convergence under such conditions. Further, the
NR method is nonoptimal when the derivative computation is
lengthy or when the initial guess for the root is not obvious. This
necessitates the use of derivative-free root bracketing methods
(RBMs) to solve these IVEs. Recently, a unique algorithm to
solve the IVEs was proposed by combining the NR method and
the Ridders root-finding method [2]. The hyperbolic IVE was
solved using the NR method backed up by the Ridders method
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[3], whereas the trigonometric-mode IVE was solved using
the Ridders method alone, with the aim of achieving assured
convergence under any bias condition. In this brief, we propose
a new RBM that completely eliminates the need for derivative
computation. The choice of a single root-finding algorithm, to
solve both the trigonometric and hyperbolic IVEs, also simpli-
fies the overall surface potential calculation procedure. The per-
formance of several RBMs [4]–[8] reported in the literature was
studied, and the LZ4 [8] algorithm was chosen to replace the
hybrid NR–Ridders technique. A further speedup of 12%–15%
in the computation time is achieved for the trigonometric IVE
solution by replacing the exact upper bound for the solution
space described in [2], by a simplified approximate bound with
an improved initial guess. The proposed IVE solution technique
is implemented in a commercial circuit simulator, using the
Verilog-A interface. By simulating a variety of circuit blocks
such as the 51-stage ring oscillator, the 8-bit ripple adder, and
the 8-bit twisted ring counter, it is shown to be more efficient
(60% for trigonometric IVE and 15% for hyperbolic IVE) than
the previously reported technique.

II. ALGORITHM DEVELOPMENT

A. Study of RBMs

The conventions used in this brief are as follows: Cox1(2) is
the oxide capacitance per unit area of the first (second)-gate
defined as εox/tox1(2), εsi and εox are the permittivities, and
tsi and tox are the thicknesses of Si and SiO2, respectively. q
is the elementary charge, β is the inverse thermal voltage, ni

is the intrinsic carrier density, V is the electron quasi-Fermi
potential (channel potential), ψ1(2) is the Si/SiO2 interface
potential at the first (second) gate, and Vgs1(2) is the effec-
tive front (back)-gate voltage, i.e., Vgs1(2) = Vgs1(2)applied −
∆φ1(2), where ∆φ1(2) is the work function difference at the
respective gates.

The numerical efficiency of any iterative root finding method
is decided by its rate of convergence (ROC) and the number of
function (NOF) or derivative evaluations required at each itera-
tion step. Table I shows these parameters for the algorithm used
in [2] and for the set of five algorithms, which demonstrated
a superior efficiency among the several RBMs considered for
study. Fig. 1 depicts the total root computation time for solving
the trigonometric IVE, normalized with respect to the Ridders
algorithm, for the five root finding algorithms mentioned in
Table I. The computation time is recorded after implementing
the algorithm in “C” using the GNU compiler collection version
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TABLE I
COMPARISON OF DIFFERENT RBMS

Fig. 1. Comparison of normalized root computation time for different al-
gorithms to solve the trigonometric IVE using ψ1limit as the upper bound.
Vgs1 = 1.2 V and V = 0.4 V. Vgs2 is swept from Vgs2crit = 0.783 V to
1.2 V. The device parameters are tox1 = 2 nm, tox2 = 1 nm, and tsi = 25 nm.
Here, “A-P” refers to algorithm-4.2 in [6], and “Dekker” refers to algorithm-M
in [5].

4.1.2 20080704 (Red Hat 4.1.2-50). One can see that all the
considered algorithms perform better than the Ridders method,
with LZ4 outperforming the rest. The superior performance of
this algorithm can be attributed to the use of a higher order
numerical method in its basic iterative process while retaining
the root bracketing property and speeding up the convergence
through occasional bisection steps. The high-order numerical
method is realized using an approximating function based on
Taylor polynomials where all the necessary derivative terms are
replaced by their divided difference approximations using only
the function values [8]. It should be noted in Fig. 1 that ψ1limit

[2] is used as the upper bound for the solution space of the
trigonometric IVE. A further reduction in the computation time
could be achieved by adjusting this limit, as discussed in the
next section. In the case of the hyperbolic IVE, the performance
of the Alefeld–Potra, Brent and LZ4 algorithms is found to
be similar and better than the hybrid NR–Ridders technique.
Hence, we choose to use the LZ4 algorithm to solve both the
trigonometric and hyperbolic IVEs.

B. Adjustment of the Upper Bound for the Trigonometric IVE

A solution using a RBM requires determination of the
bounds for the root. As discussed in [2], the exact upper limit
ψ1limit for the trigonometric solution space is obtained by
solving the following implicit equation:

flt_trig1 = π −
[√

Gβtsi
2

+ sin−1

( √
G√

Beβ(ψ1−V )

)]
= 0

(1)

Fig. 2. Comparison of normalized root computation time for different algo-
rithms to solve the trigonometric IVE using ψ1χ as the upper bound. Vgs1 =
1.2 V and V = 0.4 V. Vgs2 is swept from Vgs2crit = 0.783 V to 1.2 V. The
device parameters are tox1 = 2 nm, tox2 = 1 nm, and tsi = 25 nm. Here,
“A-P” refers to algorithm-4.2 in [6], and “Dekker” refers to algorithm-M
in [5].

where G = −[(Cox1/εsi)(Vgs1 − ψ1)]2 + Beβ(ψ1−V ) and B =
2qni/βεsi. Since G can change signs, the hybrid NR–Ridders
algorithm was employed to solve (1). For this process, ψ1χ

was used as the upper bound for the root, which is obtained
by solving [2, Eq. (12)] using Halley’s method. This two-step
procedure for determining ψ1limit is extremely cumbersome
and hence inefficient. This accounts for an overhead up to 30%
in the trigonometric IVE solution process. Although the first
step, i.e., the calculation of ψ1χ is relatively fast, ψ1limit com-
putation is time consuming. This procedure is simplified using
ψ1χ itself as the upper bound instead of ψ1limit while solving
the trigonometric IVE. For ψ1 lying in the range of ψ1limit to
ψ1χ, the trigonometric function can have a discontinuity and a
sign change. To avoid this, θ is limited to π for values of ψ1

beyond ψ1limit so as to ensure the continuity of the function
until ψ1χ. This modification also retains the sign of the function
seen at ψ1limit until ψ1χ. Hence, the simplified upper bound
ψ1χ can be effectively used with any RBM. In this brief, we also
propose an improved initial guess ψ′

guess for the computation of
ψ1χ. ψguess mentioned in Fig. 1 in [2] is again used to arrive at
a new guess ψ′

guess, i.e.,

ψ′
guess = V +

1
β

ln




[
2π
βtsi

]2

+
[

Cox1
εsi

(Vgs1 − ψguess)
]2

B


 .

(2)

This ensures a faster convergence of Halley’s iterative loop
used in computing ψ1χ under all bias conditions.

Fig. 2 shows the effect of change in the upper bound to
ψ1χ over the performance of these algorithms. Here, the LZ4
algorithm is observed to be superior to all the other root-
finding methods consistently. A slightly wider solution space
due to a change in the upper bound seemed to degrade the
performance of the LZ3, Brent, and Alefeld–Potra algorithms,
whereas the performance of Dekker and LZ4 remained almost
unaffected. There is an improvement of about 12%–15% in the
LZ4 algorithm over Fig. 1, resulting from the simplification in
the computation of the upper bound.
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TABLE II
PERFORMANCE COMPARISON OF OLD AND NEW ALGORITHM AS SEEN IN A CIRCUIT SIMULATOR

III. IMPLEMENTATION AND CIRCUIT SIMULATION

The proposed IVE solution technique is implemented in
a professional circuit simulator, SmartSpice [9], using the
Verilog-A interface. A 51-stage ring oscillator, a 8-bit ripple
adder, and a 8-bit twisted ring counter (Johnson counter) were
designed using the IDG MOSFET device with tsi = 30 nm,
tox1 = 3 nm, tox2 = 2 nm, and ∆φ1(2) = 0. Two different
circuit design approaches were adopted, i.e., circuits using
tied-gate configuration, where the transistor always operates in
the trigonometric mode, and circuits where the second gate is
deactivated (grounded or connected to the source) so that the
transistor operation is predominantly in the hyperbolic mode.
The circuit simulation time with the proposed algorithm was
compared against that for the existing method [2]. The simula-
tion time recorded in Table II is the mean value obtained after
three repeated simulation runs. All the simulations are run on a
Intel Xeon E5472 eight-processor single-core 2400-MHz-speed
6144-KB cache with a 16-GB random access memory machine,
using the 4.3.2.c version of SmartSpice. To record the timings in
SmartSpice, we use the command “.options ACCT = 2” in the
netlist file and check for “VLGP” in “Device Loads” section in
the logfile. The entries in column “old” refer to the simulation
time for the technique mentioned in [2], and those in “new”
refer to our proposed method.

As shown in Table II, the simulation time for circuits us-
ing tied-gate devices is reduced by an average 60% with the
proposed solution technique when compared with the old tech-
nique, which employed Ridders RBM. In the case of circuits
with untied-gate device configurations, an average improve-
ment of 15% in the simulation time is observed over the
NR algorithm-dominated previous technique. Furthermore, it
can be observed that, with the proposed technique, the ratio
of simulation times for tied-gate configurations to untied-gate
configurations approaches unity, hence reducing the disparity
in the computational effort between the trigonometric and
hyperbolic modes that previously existed. These results clearly
demonstrate the superiority and the efficiency of the proposed
solution technique over the existing hybrid solution technique
when implemented in a circuit simulator.

IV. CONCLUSION

A single RBM has been proposed to solve the IVEs of
the IDG MOSFET across all bias conditions. The proposed
algorithm uses only the function values and completely elim-
inates the need for derivative computation. It converges much
faster than the existing hybrid technique without compromising
the root accuracy. A simpler upper bound for the root of the
trigonometric IVE has been proposed, which further reduces
the computation time by 12%–15%. The proposed IVE solu-

tion has been implemented in a professional circuit simulator,
SmartSpice, using the Verilog-A interface. The simulation of
circuit blocks such as the ring oscillator, the ripple adder, and
the counter confirms the superior timing performance of the
proposed technique over the existing technique.
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