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Abstract—Developing precise artificial retinas is crucial be-
cause they hold the potential to restore vision, improve visual
prosthetics, and enhance computer vision systems. Emulating
the luminance and contrast adaption features of the retina is
essential to improve visual perception and efficiency to provide
an environment realistic representation to the user. In this paper,
we introduce an artificial retina model that leverages its potent
adaptation to luminance and contrast to enhance vision sensing
and information processing. The model has the ability to achieve
the realization of both tonic and phasic cells in the simplest
manner. We have implemented the retina model using 0.18µm
process technology and validated the accuracy of the hardware
implementation through circuit simulation that closely matches
the software retina model. Additionally, we have characterized
a single pixel fabricated using the same 0.18µm process. This
pixel demonstrates an 87.7-% ratio of variance with the temporal
software model and operates with a power consumption of 369
nW.

Index Terms—Neuromorphic circuits, Silicon retina, Adapta-
tion, Tau-cells, Bio-inspired, Contrast gain control, Spiking.

I. INTRODUCTION

Frame-based image sensors are commonly used in the

majority of vision-based systems. These sensors offer several

advantages, including a smaller pixel pitch and a high fill

factor. Moreover, they employ double sampling techniques

such as correlated double sampling (CDS) or delta-reset sam-

pling (DRS) to effectively reduce fixed-pattern noise (FPN).

However, these image sensors are very slow, as all pixels are

read in each frame regardless of the dynamics of the scene.

Due to the frame-based readout scheme, the bandwidth of the

system gets wasted, and the imaging system cannot perform

well in a highly dynamic scene. When a fast-moving object is

to be detected, the frame rate has to be increased. However,

this results in an increase in power dissipation and the amount

of generated data. Mechanisms for detecting regions of interest

can also be used; however, it comes at the cost of higher

computation [1]–[3].

Biological vision sensors, on the other hand, operate in a

fundamentally distinct manner, drawing inspiration from the

Prince Philip and Chetan Singh Thakur are with the Department of
Electronic Systems Engineering, Indian Institute of Science, Bangalore, KA,
560012 INDIA (e-mail: princephilip@iisc.ac.in, csthakur@iisc.ac.in).

Kapil Jainwal is with the Department of Electrical Engineering, In-
dian Institute of Technology, Hyderabad, 502285, INDIA (email: kapiljain-
wal@ee.iith.ac.in).
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Fig. 1. (a) The analog circuit implementation of the retina is illustrated
in a simplified diagram, starting with the photoreceptor cell that receives
video input from the environment and ending with the spiking output from
the ganglion cells; (b) Images are presented that demonstrate the impact of
the stimulus on different layers of the retina model where the first image
(i) displays a frame of the input video stimulus, while the second image
(ii) depicts the effect of the OPL layer, represented by the difference of
photoreceptors and horizontal cells in Fig. 1a, the third image (iii) shows
the outcome of the bipolar layer, and the fourth image (iv) illustrates the
resultant spiking activity.

biology of the retina. Within the biological retina, specialized

photoreceptor cells (rods and cones) respond to changes in

light intensity. When light strikes these cells, they undergo

an electrochemical process that generates nerve impulses, or

spikes, which are transmitted to interconnected neurons. Sim-

ilarly, in artificial neuromorphic vision sensors, when the light

intensity sensed by a pixel undergoes a significant change, it

triggers a spike that is transmitted to its linked neurons. In

this approach, the sent-out data is only from the pixels which

are detecting an event in terms of intensity change beyond

a threshold [4]–[10]. Hence, the transmission bandwidth is

only consumed by the activated pixels. Because of the fast

response, wide dynamic range, low latency, and effective in-

sensor processing, bio-inspired vision sensors have become

increasingly appealing in recent years [11]–[14].

Mahowald and Mead created the first silicon retina [4],

which uses a diffuser grid to compute spatial contrast and

includes photoreceptor cells, horizontal cells, and bipolar cells.

Boahen and Andreou expanded on this approach by employ-
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ing two coupled diffuser grids and more complex biological

models [5]. The CSEM Neuchatel team demonstrated a device

whose output conveys spatial contrast rather than temporal

contrast [6], which is a combination of an event and a

frame-based vision sensor. The team of Etienne-Cumming

developed a temporal change threshold detection imager [7],

which changes the typical active pixel sensor (APS) CMOS

pixel to detect a quantized absolute change in illumination.

The spatial contrast retina [8] produces outputs in the form

of events and features on-chip calibration. A voltage-based

dynamic vision sensor (DVS) converts the temporal contrast

(TC) of the intensity of light into address events that are

sent asynchronously for processing [10]. However, it does not

implement explicit filtering and instead relies on non-linear

filtering from parasitic capacitances in the front end.

In this work, we present a silicon retina model that closely

emulates the functions and characteristics of the natural retina.

Here, we adopted a current mode design approach to im-

plement the required functions and filters, as these make

it easy to implement some of the non-linear equations and

the linear filters. The development of accurate and energy-

efficient retinal circuits is important for advancements in reti-

nal implants. Despite the existence of various artificial retinal

implementations, the quest for a more realistic and precise

model remains crucial. The motivation behind this work is

to maximize information transmission or feature detection

and processing by successfully incorporating essential features

such as spatio-temporal band-pass filtering, luminance adapta-

tion, contrast gain control, tonic cells, and phasic cells. We aim

to enhance the sensory system’s capacity to detect stimulus

edges, maintain perceptual sensitivity in varying illumination

conditions, optimize information transmission, and extract

crucial visual features. The center-surround structure of the

receptive field plays a vital role in promoting lateral inhibition,

which improves the sensory system’s capacity to detect the

edges of stimuli. To maintain perceptual sensitivity in different

illumination conditions, the temporal dynamics and gain of

neural response must be adjusted through adaptations such as

luminance and contrast gain control. Emulating the behavior

of tonic and phasic cells is important to detect the presence

of the visual stimulus and detect important features from

it. Several studies have supported the importance of lateral

inhibition, luminance adaptation, contrast gain control, tonic

cells, and phasic cells [15]–[27]. The results of this study have

the potential to drive significant advancements in computer

vision, providing a solid foundation for the development of

more efficient and reliable visual recognition systems.

To replicate these biological features in hardware, analog

neuromorphic circuits can be the best option as supported

by the previous studies [4], [28]–[32]. The low power con-

sumption of neuromorphic circuits is attributed to their typical

operation on the principle of collective computations and

functioning within the weak inversion region of a transistor.

However, the circuit dynamics of a biological retina necessitate

relatively long time constants, which are difficult to achieve in

semiconductor-based integrated circuits. Furthermore, analog

circuits are not easily reconfigurable due to their reliance on

the precise tuning of circuit parameters and their sensitivity

to environmental factors, making it difficult to make changes

without significant redesign. This restricts their versatility to

perform different functions.

A novel bio-plausible spatio-temporal silicon retina is de-

veloped by employing neuromorphic analog VLSI circuits,

with the simplified schematic representation depicted in Fig. 1.

The design introduces novelties in both emulating biological

features on the chip and the circuit design. The following

elements are key contributions of this work:

• The analog silicon retina developed in this study fea-

tures a non-separable center-surround filter that takes

into account the natural delay of the surround signal

transmission observed in real retinas. The outer plexiform

layer (OPL) is spatially implemented as a difference of

Gaussians (DoG) and a biphasic filter temporally. As

a result, the spatio-temporal OPL filter can detect both

edges and movements simultaneously.

• Unlike a separable filter, this center-surround filter is

capable of detecting changes in luminosity even in a

region where the luminosity is uniform.

• Luminance adaptation is represented using a high-pass

filter.

• Contrast gain control properties of bipolar cells subject

to shunting inhibition, are modeled as a leaky integrator

with a leak conductance that is determined by the spatio-

temporal neighborhood of contrast magnitude.

• This retina involves adaptable band-pass temporal filter-

ing. Tonic cells and phasic cells are realized in this retina

by changing the time constant associated with the high-

pass filter.

• On the circuit side, a significant achievement is the

development of a novel absolute value circuit to develop

the contrast gain control mechanism between bipolar cells

and amacrine cells.

• The analog silicon retina that has been proposed is

capable of reconfiguration, offering a versatile platform

to explore the visual operations of retinal circuits in a

natural visual environment.

The remainder of this paper is structured as follows: Sec-

tion II and III provide a description of the retina architecture

and elaborate on the retinal pixel design. Results and discus-

sion are presented in Section IV, and the article concludes

with Section V.

II. RETINA ARCHITECTURE

The Convis retina model [33] serves as the basis for the

silicon retina architecture, which includes all major types of

neurons found in the layers of the biological retina, from

photoreceptors to ganglion cells. The absorption of photons

by photosensors is illustrated in the simplified schema of

the retina model presented in Fig. 1a. The lateral inhibition

is mediated by horizontal cells creating a center-surround

receptive field. The photoreceptors and horizontal cells are

collectively done by the OPL layer. The function of this OPL

layer is to operate as an edge and a movement detector at the

same time. It is implemented by using spatial filters, temporal

high-pass, and low-pass filters. The output of the OPL layer is
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Fig. 2. (a) CMOS implementation of photocurrent transduction circuit consisting of photodiode (PD) and a feedback loop implemented by M1, M5 to
increase the bandwidth as shown in [34]. (b) CMOS implementation of first-order log domain low-pass filter (tau-cell) as shown in [35] with N-Type
MOSFETs models EC and ES of Eq. (1) and (2); (c) Similar implementation shown with P-Type MOSFETs models EA from Eq. (14), Eq. (12) and (13);
(d) CMOS implementation of first-order log domain high-pass filter (tau-cell) as shown in [36] implements TC of Eq. (1); (e) Frequency response showing
low pass characteristic of first-order log domain low-pass filter (tau-cell) as shown in Fig. 2b; (f) Frequency response showing high pass characteristics of
first-order log domain high-pass filter (tau-cell) as shown in Fig. 2d.

a band-limited signal. This signal is fed into the contrast gain

control stage for adapting different levels of light contrast. At

the intersection of bipolar and amacrine cells, this gain control

mechanism occurs through the utilization of a spatial filter,

temporal low-pass filters, and a static activation function. The

output of this stage is rectified before feeding it to the LIF

neuron to generate spikes. The LIF neuron acts as a ganglion

cell in the biological retina. Subsequent subsections provide a

detailed description of each stage of the architecture.

A. Outer Plexiform Layer (OPL)

The OPL layer uses a collection of linear filters to transform

the luminance input into two distinct signals: the center

current IC, and the surround current IS. These two signals

are subsequently subtracted from each other to produce the

OPL current IOPL [27], [33] as

IC = GC ∗ TC ∗ EC ∗ L (1)

IS = GS ∗ ES ∗ IC (2)

IOPL = IC − IS (3)

where L represents the luminance input, while GC and GS

denote spatial (Gaussian) filters applied to the center and

surround areas, respectively. Additionally, TC denotes a high-

pass filter, while EC and ES represent low-pass filters. The

asterisk symbol (*) represents the convolution operation. The

center signal and surround signal are associated with the

activity of photoreceptors and horizontal cells in the biological

retina. The current-mode analog circuit realization of the OPL

elements is discussed below.

1) Luminance input (L): The circuit illustrated in Fig. 2a

transforms collected photons into an electric current, resulting

in the luminance input L. The transistor M1 is a common-

source amplifier, and M5 is a feedback transistor (a source

follower). The source follower detects photocurrent and es-

tablishes a feedback mechanism. As a result, the voltage

across the photodiode is clamped to the output voltage of

the common-source amplifier. The inclusion of this high-

gain negative feedback loop that connects the source and

gate of the current-sensing MOSFET in the source-follower

configuration can lead to an improvement in the response

speed of the photodiode [34]. The pMOS transistors M3 and

M4 mirror the generated photocurrent. In the absence of the

feedback transistor, the bandwidth provided by the photosensor

is severely limited due to the diode junction capacitance

and parasitic capacitance associated with the output node.

These capacitances need to be charged or discharged by the

very small photocurrent (in the order of pA). Because the

current flowing through the capacitors (i.e., the photocurrent)

is extremely small, the charging process of these capacitances

takes a significant amount of time. Hence, there is a delay
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Fig. 3. (a) Depiction of two-dimensional diffusion network, implemented for spatial filtering in retinal layers (OPL and Bipolar layers) where each element in
the horizontal surface (x-axis and y-axis where few elements are marked as red) represents resistance elements while the elements on the z-axis (one element
shown in blue) represent conductance, where both the elements are implemented using MOS transistors; (b) CMOS implementation of a cell (marked in red
and blue in Fig. 3a) builds spatial filtering operation as shown in [32] and the function of this circuit is to implement GC, GS, GA as described in Eq. (1), (2),
and (14); (c) Response of a signal(Iph(x, y)) injected into the 2D diffusion network shown in Fig. 3a showing the decays with distance from the reference
source node (0).

when we have a change in photocurrent due to the transient

of this photocurrent mirroring stage, which thus has a low-

pass-filtering effect on the photocurrent.

2) Temporal low-pass filter (E): The Log domain circuit

design approach is employed to create the temporal low-pass

filter in current-mode analog circuits [37]–[39]. It is the easiest

and most efficient way to describe the first-order differential

equation for a filter. The circuit diagram of the temporal low-

pass filter (nMOS-and pMOS-based) is depicted in Fig. 2b

and 2c. The transistors in the circuit are operating in the weak

inversion region. This circuit, also known as tau-cell, is built

around the translinear loop as defined in the below equation

as

iIN · ItauL = (ItauL + iC) · iOUT (4)

The loop comprises two current sources, ItauL and 2ItauL, as

well as a capacitor. Because the current source ItauL supplies

a constant current, Vgs9 remains constant in Fig. 2b, and

hence, changes in capacitor voltage appear as changes in Vg9.

This circuit includes programmable DC gain, which may be

increased or decreased by changing the currents ItauL or 2ItauL.

Voltage sources Vnbias and Vpbias are used in place of common

grounds in nMOS and pMOS tau-cell filters depicted in Fig.

2. In Fig. 2b, if the source terminal of M7 is connected to

the ground and both M7 and M8 carry the same currents,

then the source terminal of M8 is also ground. But the source

terminal of M8 is attached to a current source carrying the

current 2ItauL. If the current source is implemented using a

MOS transistor, then the potential of both the drain and source

is zero. In order to avoid the source of M8 going to zero

potential, Vnbias is used in Fig. 2b. The time constant of the

filter in this circuit is independent of the input signal, which is

a significant advantage. The equation describes the relationship

between the input and output currents as given by,

τl
diOUT

dt
+ iOUT = iIN (5)

τl =
C

gm9

where τl is the time constant and the transconductance gm9
is determined by ItauL, the current through the transistor M9.

This first-order linear differential equation implies that the

above circuit operates as a current domain first-order low-pass

filter. The time constant remains constant regardless of input

current change, and it is regulated by the external bias current

ItauL. These filters can achieve long-time constants similar

to those of the biological retina. Retinal processing involves

low-pass filtering, which begins at the photoreceptor level

with the complex phototransduction cascade and continues in

subsequent layers due to synaptic delays and the integration

of synaptic currents by the cell membranes. The frequency

response of the tau-cell low-pass filter is depicted in Fig. 2e.

The cut-off frequency is chosen based on the biological time

constant as in the software model.

3) A temporal high-pass filter (T ): The interaction between

inhibitory and excitatory cells within various layers of the

biological retina produces high-pass filtering behavior, as

explained in [40]. Inhibitory cells such as horizontal cells in

the outer plexiform layer (OPL) and amacrine cells in the

inner plexiform layer (IPL) contribute to this effect. The high-

pass response observed in a biological retina is influenced

by various control loops, including those related to photo-

transduction, synaptic receptor desensitization, as well as fast

and slow gain adaptation. Short-term luminescence adaptation

of photoreceptor cells is captured by the high-pass filter [33].

The analog retina circuit can replicate the functioning of tonic

and phasic cells that are present in the biological retina by
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Fig. 4. (a) CMOS implementation of a novel absolute-value circuit modeling the activation function Q(IBip) of the bipolar layer’s contrast gain control
mechanism; (b) Characteristic response of the absolute-value circuit shown in Fig. 4a showing an approximation of static activation function Q(IBip); (c) CMOS
current mode implementation of static nonlinearity function N(IBip); (d) Static nonlinearity function generated using the circuit shown in Fig. 4c to rectify
signal IBip before feeding it to ganglion cells for spike generation.

modifying the time constant of the high-pass filter [40]. Tonic

or sustained cells have a low activation threshold and respond

continuously to a stimulus for as long as it is present, making

them highly sensitive to low-contrast stimuli. Transient or

phasic cells, on the other hand, have a high activation threshold

and respond briefly to a stimulus before quickly adapting. They

are particularly sensitive to high-contrast stimuli [27].

In the low-pass filter circuit shown in Fig. 2b, the weight,

which is represented by the current ItauL acts as a scaling factor

that controls the strength of the filter. By varying the current,

we can adjust the amount of high-frequency components that

are removed from the signal. The log domain high-pass filter

circuit is shown in Fig. 2d. It is implemented by using a

tau-cell low-pass filter, subtracting the tau-cell low-pass filter

output from the original input signal. The input signal flows

through transistors M15 and M19, while the low-pass filter

output is obtained at transistor M18. The high-pass filter

current Iout flows out as the difference between the original

input current and the current from the tau-cell low-pass filter.

The transfer function of the high-pass filter circuit is defined

by,

Tω =
sτh

sτh + 1
(6)

where τh is the time constant of the high-pass filter circuit.

4) Spatial low-pass filters (G): Spatial filtering refers to

the filtering methods that are performed directly on the pixels.

The sum of products of the mask coefficients or weights

with the corresponding pixels right under the mask is all

that is required. In the biological retina, spatial low-pass

filtering encompasses electrical coupling through neighboring

cells and synaptic integration of dendrites of retina cells.

Mathematically, these biological processes can be viewed as

spatial averaging of the input signal. If I(x, y) is the pixel

intensity at position (x, y), then the sum of products of

all neighboring pixels connected to I(x, y), as well as the

corresponding weights of all edges, are described as

I(x, y) = w(x− 1, y) ∗ I(x− 1, y) + w(x+ 1, y)∗

I(x+ 1, y) + w(x, y − 1) ∗ I(x, y − 1)

+w(x, y + 1) ∗ I(x, y + 1)

(7)

This procedure applies to every pixel in an image. The

diffusion network, shown in Fig. 3a, computes Eq. (7) and

is employed in the construction of such a filtering process

[41]–[43], [44].

Current injected at a node in the diffusion network diffuses

laterally and decays at a distance defined by the diffusion

length L [32],

L = 1/
√
RG (8)

where R is horizontal resistance, and G is vertical grounded

conductance. Since the network is linear, the effects of currents

injected at different nodes superimpose in the resistive grid,

where resistance values correspond to the weights of the

equation. Since controlling diffusion length is challenging,

transistors that operate in the subthreshold region are used

to replace the resistors. This is illustrated in Fig. 3b.

Resistance or conductance between the nodes can be

changed by varying the transistor gate-to-source voltage. In

other words, the current between the drain and source termi-

nals Ids is used to define the weights. The equation for Ids is

written as,

Ids = Ioexp(
Vgs

ηUT

), (Vds>4UT ) (9)

where, Io represents the residual saturation drain current, η
denotes the slope factor, and UT represents the thermal voltage.

Since the transistors are operating in a weak inversion region,

the diffusion length can be rewritten as [45]

L = exp(
VCR − VCG

2ηUT

) (10)

=

√

ICR

ICG

(11)
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where ICR and ICG are control currents proportional to VCR

and VCG.

Gap junctions connect photoreceptors to each other in the

outer plexiform layer, and a spatial filter is employed to

incorporate the spatial blurring caused by these junctions. Hor-

izontal cells are closely interconnected through gap junctions

and synaptic pooling. They have larger receptive fields and

are specialized for pooling and processing visual information

over larger spatial scales. The larger receptive field and low-

pass nature of horizontal cells mean that they need to use a

spatial filter with a larger sigma value (standard deviation of

a 2D Gaussian function) to effectively capture and process

the visual information over these larger scales. In contrast,

photoreceptors, with their smaller receptive fields, do not need

such a large sigma value in their spatial filter as they are better

suited to detect fine details in the visual scene. In the biological

retina, horizontal cells receive signals from photoreceptors

with a delay. This delay is emulated using a temporal low-pass

filter. Even while the delay between the center and surround

signals is small, barely a few milliseconds in mammalian

retinas, it has major perceptual repercussions [40]. Due to the

delay in transmitting the surround signal, the center-surround

OPL filter can detect temporal changes in brightness, even in

areas that have uniform spatial characteristics. The exponential

filters and the difference of Gaussians (DoG) are used to

generate the OPL layer as shown in Eqs. (1-3).

B. Contrast Gain Control Mechanism in Bipolar Cells

The visual system must cope with a wide range of light

levels, spanning about 14 orders of magnitude [46]. Photore-

ceptors cannot cover such a range, hence our eyes need to

adapt to sudden changes in light levels. To address this issue,

the visual system employs multiple stages of gain control, in-

cluding iris constriction, photoreceptor adaptation, and cortical

lateral inhibition [47], [48]. The gain control between bipolar

cells and amacrine cells in the retina is referred to as contrast

gain control, whereby the output gain is controlled by the

input contrast. Experimental evidence demonstrated this by

presenting different contrast stimuli across the receptive field

of the cell and evaluating the input-output relationship.

The equation that models the mechanism of contrast gain

control [27], [33] is mentioned in the following text. It is a

non-linear feedback loop that adapts the gain according to

local contrast. Modeling the contrast gain control properties

of bipolar cells subject to shunting inhibition involves a leaky

integrator with leak conductance that depends on a spatio-

temporal neighborhood of contrast magnitude as given by,

I+Bip = C
dV +

Bip

dt
= IC − gAV

+

Bip (12)

Here, the center signal IC from the OPL layer is gain-

controlled by bipolar-amacrine synapses modeled as a leaky

integrator. Similarly, the surround signal IS is gain-controlled

by the equation as

I−Bip = C
dV −

Bip

dt
= IS − gAV

−

Bip (13)

The process of generating the gain-controlled currents I+Bip and

I−Bip are regulated by a feedback mechanism in bipolar cells.

This feedback loop adjusts the sensitivity of the visual system

to local contrast by integrating linear current IC and IS into

the bipolar cell with potential V +

Bip and V −

Bip. This feedback is

provided by the leak conductance gA as

gA = GA ∗ EA ∗Q(IBip) (14)

Since the leakage determines the gain of current integration,

gA has a divisive effect. At the same time, gA defines the time

constant of Eq. (12) and (13). gA is not the instantaneous input

from a single pixel, it is a spatially (GA) and temporally (EA)

smoothed version of the neighboring pixels and gA can vary

based on the static activation function Q.

Q(IBip) = g0A + λA(I
+

Bip · I
−

Bip) (15)

The Q function is the non-linearity that characterizes the

gain control behavior employed in the software model [33].

Q is assumed to have a parabolic shape, implying different

behaviors of the system, depending on the contrast. In high

contrast, Q enters into a high-value range, and the leakage

of the integrators shown in Eq. (12) and (13) is large. In

small contrast, the values of Q are small and the leakage

of the integrators is small. This way a cell is automatically

adapted to the contrast of the neighboring pixels. The contrast

of neighboring cells affects how a cell will respond to its

input. In Eq. (15), the variable g0A corresponds to the inert

leaks in the membrane integration process. Conversely, λA,

also present in Eq. (15), determines the magnitude of the gain

control feedback loop. This Q function is approximated by the

absolute value circuit which has the response of a full-wave

rectifier as shown in Fig. 4b.

We have designed a novel absolute value circuit to model

the Q function using current-mode circuits, as depicted in Fig.

4a. In this circuit, the input currents are I+Bip and I−Bip, and the

output current is Q(IBip). The voltage at the drain node of M30

is small when the current I+Bip>I−Bip. When the node voltage

is sufficiently small to turn the pMOS transistor M31 ON, the

diode-connected loop forms around the transistor M29. The

current I+Bip flows through M29, and it generates corresponding

voltage Vgs across the gate and source of M29. Note that Vgs

of M29 is shared with the gate and source of M30, and the

current I+Bip should flow through M30 as well. Since the current

I−Bip is sufficiently small, the transistor M30 pulls the current

through M34. The transistors M29 and M30 now operate as a

current mirror. When the current I+Bip is increased, the current

through M30 increases linearly via M34.

I34 =
(W30/L30)

(W29/L29)
I+Bip (16)

If I+Bip<I−Bip, the circuit operates in the same manner as in

the previous case and current through M33 is now increasing

linearly as I−Bip - I+Bip grows.

I33 =
(W29/L29)

(W30/L30)
I−Bip (17)

At the output node

Q(IBip) = I33 + I34 (18)
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Fig. 5. (a) Shows CMOS implementation of Mihalas-Niebur neuron model
mimicking ganglion cell of the biological retina as shown in [51]; (b) Depicts
the output spikes of Mihalas-Niebur neuron.

Hence, full wave-rectified response can be observed at

Q(IBip). The approximation in Eq. (18) is intended to capture

the essence of the nonlinearity described in Eq. (15) using a

simpler, circuit-friendly representation.

The gain-controlled center and surround currents are sub-

tracted and passed as a single signal from the bipolar layer,

IBip = I+Bip − I−Bip (19)

C. Inner Plexiform Layer (IPL) and Ganglion Cells

The second layer of synapses in the retina is represented by

the inner plexiform layer (IPL), where bipolar cells, amacrine

cells, and ganglion cells interact through synaptic connections.

Previous research [47], [49], [50], suggests that the IPL plays

a role in contrast gain control. The section below outlines the

process of converting the bipolar cell current (IBip) into an

excitatory current (IGang), which is then used to trigger output

spikes in a leaky integrate-and-fire neuron.

1) Synaptic current upon ganglion cells: The formula to

simulate the signal transformation from bipolar cells to gan-

glion cells is given by,

IGang = N(IBip) (20)

where IGang is the excitatory current on ganglion cells. IBip

is the bipolar layer output current and N(IBip) is the static

non-linearity function upon IBip. Ileak is the leak of the static

non-linearity function. In this function, the negative data are

chopped off. Saturations and synaptic transmissions are some

causes behind the static non-linearities of the biological retina.

The circuit implementation of the static non-linearity function

is shown in Fig. 4c, and it is formed by the diode-connected

transistors M37 and M38, as well as M35 and M36. The

diode-connected transistor M38 removes any negative samples

of the bipolar output. The half-wave rectification function is

performed by the diode-connected transistors M37 and M38.

The transistor M35 exhibits a leakage function, with a value

beyond which the transmission transitions to a linear state.

The response of the circuit implementation of the static non-

linearity function is as shown in Fig. 4d. The equation for the

current IGang from the circuit is written as

IGang =
(W36/L36)

(W37/L37)
[IBip + Ileak] (21)

2) Ganglion layer: Non-spiking neurons do most calcu-

lations in the biological retina up to this point. However, the

biological retina output is spike train and contains information

about the scene. Ganglion cells are responsible for generating

spikes in the actual retina, and LIF neurons are used to

mimic them in this retina implementation. The conversion

of the signal IGang that varies continuously over time, into

discrete sets of single spikes is achieved through the use of

the following formula as

dVn

dt
= IGang − gLVn (22)

where the cell potential is denoted by Vn, and the time

constant is represented by gL. When a neuron is in its

refractory period, Vn remains constant at 0. Once Vn surpasses

a specific limit, it is then reset to 0. Mihalas–Niebur neuron is

used for the spiking activity in this analog retina that comprises

a tau-cell to model leaky integrate-and-fire functionality of

the real neuron [51]. Mihalas-Niebur neuron model is im-

plemented using log-domain current-mode circuits [51], [53],

as shown in Fig. 5. To represent the leaky integration of a

neuron, a first-order low-pass filter configured as a tau-cell

is employed. This tau-cell is enclosed within a blue box and

formed by transistors M39 to M42. The filter creates a current

Imem at its output. To generate a spike, Imem is copied by

using the current mirror transistors M45 and M46 (yellow

box). It is compared using the constant threshold current Iφ.

Because Imem can be approximately close to Iφ, a current-

limited inverter, comprised of transistors M47 and M48 and

enclosed in a green box, is incorporated to bring down power

consumption. This inverter generates a digital value Vnspike, and

it results from a comparison between Imem and Iφ. The second

inverter pair (purple box) formed by M49 and M51 to generate

a positive voltage spike Vspike with a slight delay regarding

Vnspike. As indicated in the orange box, positive feedback is

implemented by employing PMOS transistors M45, M44, and

M43, with the feedback relying on Vnspike. The transistor M0

is used to reset the membrane current to a particular value,

and this value is regulated by VEL.

III. PIXEL CIRCUIT

The pixel circuit is implemented based on the retinal equa-

tions discussed in Section II. The silicon retina comprises
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Fig. 6. CMOS implementation of (a) outer plexiform layer (OPL) layer with (Iph(x, y)) to photoreceptor cells as the input and center signal, surround signal

as the corresponding outputs; (b) Bipolar layer with contrast gain control accepting center signal and surround signal as input from OPL layer and I+
Bip

, I−
Bip

as gain controlled outputs; (c) Static activation function passed as input to neuron model implemented in Fig. 5 generating spiking outputs.

0 50 100 150 200

4

0

4

8

12

16

C
ur

re
nt

 (n
A)

Time (ms)

Fig. 7. The impulse response of the center component (photoreceptor cell)
shown in Fig. 6a for a given impulse input (Iph) to the photoreceptor cell.
This response is close to that is seen by Schnapf [52] in the photoreceptor
cell of the macaque monkey and it is shown inside the blue box.

Fig. 8. A sample ”chirp” test stimulus is passed as input (Iph) to the pixel
circuit shown in Fig. 6a.

several pixel arrays, and each pixel models the complete set

of retina equations. The circuits discussed in section II are

the building blocks of each pixel circuit. The pixel circuit

is depicted in Fig. 6, and each pixel of the pixel array is

connected to its neighbors to perform spatial filtering. Incom-

ing light intensity is converted to electrical current using the

photosensor circuit shown in Fig. 2a. This equivalent current

of the light intensity is injected into the spatial filtering circuit

of the center component. This spatially-smoothed signal is

applied as the input of two series-connected filters, a high-

pass filter (TC), and a low-pass filter (EC), as depicted in Fig.

6a. The signal at this point is called the center signal. This

signal is further smoothed spatially by a spatial filter with a

big sigma value, and another low-pass filter (ES) delays it to

generate the surround signal.

The contrast gain control circuit in Fig. 6b receives input

from the OPL stage. Both the center signal (IC) and surround

signal (IS) are applied as input to two separate pMOS tau-cell

log domain low-pass filters. The tau-cell filter output for the

center signal is represented by the drain current of M4, and

the drain current of M5 is the filter output corresponding to

the surround signal.

These two filtered currents are designated as I+Bip and I−Bip,

respectively. Currents I+Bip and I−Bip are flowing through the

absolute value circuit formed by transistors M29-M34. The

rectified current of the absolute value circuit is then temporally

and spatially-smoothed by the temporal low-pass (EA) and

spatial low-pass filters. The filtered output current of the spatial

filter represents gA of the Eq. (14). Spatially filtered current

Itau adjusts the time constant of both the pMOS tau-cell filters.

This is how the contrast gain control circuit works in different

input contrast. The gain-controlled currents I+Bip and I−Bip are

subtracted at the output of M12 and M13 as shown in Fig. 6c,

and the resultant current then passes through the transistors

M14-M17 which implements N(IBip) function as depicted in

Fig. 4d. The current IGang obtained at the drain of M17 is the

input to the LIF neuron that generates spikes.
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Fig. 9. A comparison is made between the stages of the software retina model (Convis) and the analog retina circuit, utilizing a chirp stimulus input depicted
in Fig. 8. Specifically, (a) shows the OPL current IOPL, while (b) compares the software retina OPL current trace to that of the retina circuit. Likewise,
(c) shows the bipolar current IBip, and (d) compares the software retina bipolar current trace to the retina circuit. Additionally, (e) displays the excitatory
current on ganglion cells IGang, and (f) compares the trace of this current to that of the retina circuit. Fig. 9 also illustrates the responses of the software spike
generation in (g) and the circuit spike generation in (h).
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Fig. 10. Response showing structural similarity index measure (SSIM) to the sinusoidal grating stimulus (8×8) applied to both the photoreceptor cell in
the analog retina pixel array and the software model where (a) Depicts the moving grating stimulus; (b) Illustrates the output current of the ganglion cells
(IGang) for the software model (shown in nA scale); (c) Shows the analog circuit current response of the ganglion cells (IGang shown in nA scale); (d) Shows
the local SSIM map with global SSIM value=0.93; Response of the retina to a (32×32) image where (e) Shows the ganglion current IGang response to the
applied image into the software; (f) Shows the analog retina response of ganglion current IGang (shown in nA scale); (g) Shows the local SSIM map with
global SSIM value=0.91.
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Fig. 11. (a) PVT analysis is conducted on an 8×8 analog retina pixel array,
and the current IGang, associated with a pixel for the chirp stimulus shown in
Fig. 8, is graphed for the TT, SS, FF, SF, and FS process corners. The supply
voltage ranges between 1.6V and 2V, while the temperature spans from -40◦C
to 40◦C. (b) Shows the SS corner IGang current response of the ganglion cells
(shown in nA scale) for the given 8×8 grating stimulus; (c) Shows the FF
corner IGang current response of the ganglion cells for the same 8×8 grating
stimulus.

Fig. 12. Monte Carlo analysis is performed on the 8×8 retina pixel array,
producing a plot that corresponds to the IGang current of a pixel for the
chirp stimulus shown in Fig. 8. In this plot, the shaded region is indicative
of variance, with the blue waveform depicting the mean. The Monte Carlo
analysis involves selecting 200 iterations, utilizing a low-discrepancy sequence
as the sampling method, applying the TT process corner under a temperature
of 27◦C, and the supply voltage is 1.8V.

IV. RESULTS AND DISCUSSION

The response of the center-surround OPL filter to an impulse

input, as illustrated in Fig. 7, bears a striking resemblance to

the one quantified by Schnapf [52] in the retina of the macaque

monkey. To ensure that the analog retina circuit matches the

software retina model (Convis) [33], various stimuli and retina

configurations are compared. To establish the properties of

retinal ganglion cells and confirm that the temporal responses

obtained from the circuit simulation align with those obtained

from the software model, a chirp stimulus (shown in Fig. 8) is

used. At the start of the chirp stimulus, there is a pulse that ini-

tially decreases, then increases, and then decreases in activity.

This is followed by oscillations that grow in both frequency
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Fig. 13. Illustration of the impact of noisy images on the output of the retina
pixel array, with a varying standard deviation (σ) of the noise. The normalized
IGang output is shown in (a) in the absence of noise and (b)-(e) with a noise
standard deviation of 0.1, 0.2, 0.3 and 0.5, added to the sinusoidal grating
stimulus (8×8).

and amplitude, as described in [54]. Identical parameters are

used in both circuit simulation and software simulation. The

temporal comparisons of OPL, bipolar, and ganglion input

layers are shown in Fig. 9. These figures demonstrate that

the responses of the analog retina closely match those of

the software retina. In Fig. 9, the simulation results are

presented for a comparison of different architectures. The OPL

layer shows a variance fraction of 94.8%, while the bipolar

layer and the ganglion current demonstrate variance fractions

of 95.96% and 94.93%, respectively. These results indicate

that the output of the models is sufficiently similar that any

differences become imperceptible when generating spikes.

A spatial comparison between the analog retina array and

the software retina can be accomplished by employing a

sinusoidal grating stimulus, as illustrated in Fig. 10a. The

grating stimulus of size 8×8 is applied as the input to the 8×8

retina pixel array, and the corresponding IGang currents of the

array are recorded. The images generated from the recorded

outputs are compared against the software retina model using

similarity index measure (SSIM). The SSIM map [55] is

shown in Fig. 10d, along with the global SSIM value. This is a

metric for comparing two images spatially. In the local SSIM

map, small values of local SSIM appear as blue pixels. Areas

where the analog retina output image considerably differs from

the software output image correlate to regions with small local

SSIM values. Bright red pixels arise when the local SSIM

value is high. Large local SSIM regions correlate to uniform

portions of the software image, where blurring has a lesser

impact. The obtained SSIM value is 0.93. If the SSIM value

is close to 1 indicating that both images are similar [55]. A

Lena image of size 32×32 is applied as the input to the analog

pixel array (32×32) and the software retina model. The IGang

current resulting from this input is then plotted, as shown in
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Fig. 10e and 10f.

A. Performance Analysis

This section shows the performance analysis of the retina

pixel array (8×8) at 0.18µm technology node. Process, volt-

age, temperature (PVT) analysis, Monte Carlo analysis, and

noise analysis are reported in this section.

1) PVT Analysis: Fig. 11a presents an analysis of the

impact of supply voltage and temperature variation across five

process corners. The MOS transistor corners were typical-

typical (TT), slow-slow (SS), fast-fast (FF), slow-fast (SF),

and fast-slow (FS). The analysis was conducted on an 8×8

analog retina pixel array, specifically centering on the current

designated as IGang, which is associated with the response of

an individual pixel to the chirp stimulus depicted in Fig. 8.

This analysis covered a range of supply voltage between 1.6V

and 2V, and temperature variations from -40◦C to 40◦C were

considered.

2) Monte Carlo Analysis: To verify the robustness of the

design against process and mismatch variations, a Monte-Carl

(MC) analysis is conducted with 200 runs performed on the

8x8 retina pixel array. The analysis utilizes a low-discrepancy

sequence sampling method and considers the process corner

as TT at a temperature of 27°C. The resulting plot corresponds

to a pixel is shown in Fig. 12. The shaded region on the

plot indicates variance, while the blue waveform represents

the mean.

Fig. 11a shows clear distinctions between the plots of

process corners. To verify that the variations are within an

acceptable range, we applied the 8×8 grating stimulus to the

pixel array and plotted the IGang current at process corners SS

and FF as shown in Fig. 11b and 11c. These resulting images

exhibit visual similarities to the desired output displayed in

Fig. 10c, and their edges are distinguishable.

3) Noise Analysis: This analysis explores how the retina

responds to a simple visual stimulus (the sinusoidal grating)

under different levels of noise as shown in Fig. 13. The stan-

dard deviation (σ) values represent the intensity or magnitude

of noise added to the stimulus, simulating various levels of

noise interference that the retina might encounter in real-world

scenarios. In practical terms, it could represent various sources

of noise that affect the visual signal, including environmental

factors like random light fluctuations. As light is made up of a

large number of photons, light fluctuations can be modeled as

Gaussian noise. To model different scales of noise we vary the

σ of Gaussian noise. Lower values of σ imply cleaner visual

input, while higher values of σ indicate increased interference,

potentially making it harder for the visual system to extract

meaningful information.

Noise introduced by the circuit itself can negatively affect

the performance of a silicon retina by reducing its accuracy,

resolution, and reliability. In this silicon retina, the filters

implemented in the OPL stage can minimize the noise pro-

duced by the circuits operating within the same OPL stage.

Furthermore, in the later stage, the operation carried out at

Eq. (19) can further reduce the noise that propagates through

the subsequent stages of the silicon retina.

B. Measurement Results

A standard CMOS 0.18µm process technology from TSMC

was used to fabricate the single pixel of the retina, as depicted

in the die microphotograph shown in Fig. 14a. To evaluate

the functionality of the pixel circuit, a test measurement setup

was utilized, as illustrated in Fig. 14b. A custom IC test board

was used to mount the test chip, and an interface built using

Python programming language was employed to regulate the

inputs and outputs. The test chip was directly linked to a

high-precision analog testing equipment, which was operated

through the interface. The required currents to the chip are

supplied by current source equipment (Keithley 6221) and the

capacitors in the chip are implemented by using MOSCap. Fig.

15 shows the measured result of the ganglion current IGang for

the same chirp stimulus. Fig. 15 is plotted for the two values

of the high-pass filter biasing current Itauh. The result nearly

resembles the intended desired shape and magnitude of the

software output, as evidenced by the observation. The ratio

of variance obtained for the measured response in comparison

simulation with the software retina is 87.7%. To ascertain the

amount of delay present in the measured signal, the technique

of cross-correlating two signals is employed as stated in

[56]. By performing this procedure, a peak is generated that

represents the delay between the two signals. As illustrated in

Fig. 15c, the peak is located at 0 steps, indicating that there

is no time difference between the software and the measured

output.

To validate the spatial filtering operation, it is necessary to

place a pixel array on the chip. In this context, we initiated

a comparative analysis between the circuit simulation results

of the analog pixel array and the software retina array. We

believe that if we measure a single pixel and it matches the

corresponding pixel in the software-based retina, then when

we put the pixel array on the chip, it should work properly.

By comparing the simulation results of the analog pixel array

with the software retina array, we can establish a correlation

between the behavior of individual pixels. If the measured

pixel aligns with the corresponding software retina pixel, it

provides evidence that the pixel array, when implemented on

the chip, is expected to exhibit similar functionality. This

validation process helps to ensure the feasibility and effec-

tiveness of using the analog pixel array on the chip for spatial

filtering operations. However, while matching single-pixel

measurements to simulations is a positive indicator, it doesn’t

guarantee absolute certainty that the entire array will perform

precisely as predicted. Variations can still occur due to factors

such as offset, parasitics, edge effects, defects, crosstalk, and

environmental conditions. But if we take care of the matching,

offset cancellation, parasitic components, proper layout with

the guard ring to isolate pixels, and using calibration, we

believe that the results in array-level performance will match

simulation results reasonably well.

C. Reconfigurability

The functional model of a retina is largely represented by

linear filters, with temporal constants and spatial constants

being the most significant factors to reconfigure in order to
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TABLE I
COMPARISON OF THIS WORK WITH OTHER SILICON RETINAS.

Type [10] [8] [57] [58] [59] [60] This Work

Year 2006 2007 2010 2010 2014 2017 2022

Functionality
Temporal
contrast

Spatial
contrast

Temporal
contrast

Spatial
contrast

Temporal
contrast
+ APS

Spatio-
temporal

Spatio-
temporal

Technology 0.35µm 0.35µm 0.18µm 0.35µm 0.18µm + 0.18µm

Pixel complexity
26 transistors,

3C
104 transistors,

1C
77 transistors,

4C,2PD
131 transistors,

2C
47 transistors,

3C
+

83 transistors
5C

Array size 128×128 32×32 304×240 32×32
240×180(DVS)
240×180(APS)

128×128 1 pixel

Pixel size (µm) 40×40 58×56 30×30 81.5×76.5 18.5×18.5 178×154 51×114

Power/pixel 400nW 9.7µW 1.3µW 264nW 347nW 21.7µW 369nW@10nA

Operating regimes WI WI WI WI WI SI WI

Spatial contrast
computation

No
Diffusive grid
neighbourhood

No
Diffusive grid
neighbourhood

No
Resistive
network

Diffusive grid
neighbourhood

Design based on Voltage mode Current mode Voltage mode Current mode Voltage mode Voltage mode Current mode

Hardware Analog Analog Analog Analog Analog
Analog and

digital FPGA
Analog

Result Type Measured Measured Measured Measured Measured Measured Measured

Supply voltage (V) 3.3 3.3 1.8 and 3.3 3.3 1.8/3.3 + 1.8

Contrast gain control No No No No No No Yes

Luminescence
adaptation

No No No No No No Yes

Tonic
and phasic cells

No No No No No No Yes

+ The works did not include the corresponding values for the designs they presented.

(a)

(b)

Fig. 14. (a) The die micro-photograph of the fabricated test chip
pixel. (b) Measurement setup for the prototyped test chip.

compare different retinas. For example, the cat retina and

primate retina have different temporal and spatial constants.

The tau-cell filters have the flexibility to adjust the time

constants to desired values externally by varying the bias

currents. Similarly, the spatial constant of the spatial filter can

be adjusted outwardly by bias voltages [32]. This way, the

parameters of each retina model can be set on the retina chip.

D. Fill Factor

The number of transistors in this analog retina pixel is more

than the standard 3T or 4T CMOS image sensor pixel. Thus

it can reduce the fill factor and, thereby, the image quality.

This was a common disadvantage in analog retinas due to the

large size of retinal processing circuits. This issue can now

be overcome by the stacked chip method in which the entire

photodiodes are placed on one chip, and the retinal computing

circuits are on another chip. There will be interconnections

between these two chips. The stacked chip method allows

more complex retina models to be implemented while keeping

a near 100% fill factor.

E. Comparison

Table I presents a comparison between the measured per-

formance of a tau-cell-based analog silicon retina and designs

with comparable characteristics that have been documented in

previous literature. By examining the table, we can observe

that this particular retina possesses both luminance adaptation

and contrast gain control, which is not present in other

retinas. These mechanisms are crucial in enabling the retina

to process a diverse range of visual inputs. In addition, the

table demonstrates that the utilization of tonic and phasic
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Fig. 15. The measured response of the ganglion current IGang at two high-pass filter bias currents (Itauh) is depicted for the chirp input signal shown in Fig.
8 where (a) Shows the response for a bias current Itauh=1ρA; (b) Shows the response for a bias current Itauh=5ρA; (c) Depicts the time difference of the
measured current IGang with the software model.

cells within this retina exceeds current standards. Tonic cells

preserve a consistent portrayal of a stimulus, while phasic cells

demonstrate exceptional ability in detecting changes in the

stimulus. This allows the visual system to detect and respond

to a wide range of visual stimuli, from low-contrast, slowly

moving objects to high-contrast, rapidly changing objects.

Table I also shows that the implemented designs consume

a minimum number of transistors as compared with spatial

contrast retinas. In contrast to other analog silicon retinas, this

specific analog retina provides the advantage of reconfigura-

bility. This is important to test or compare other biological

retinas.

F. Limitations

The current version of the proposed silicon retina pixel is

rectangular, which is unconventional and should be avoided,

as it results in different spatial resolutions along the x- and y-

axes of the chip. The dimensions of the pixel are large, which

will limit the resolution of the image that can be processed.

In addition, large pixel arrays have significant parasitic due

to the long interconnections (rows or columns), resulting in

increased dynamic power consumption. Future versions of the

chip will take into consideration these factors and improve the

performance and power consumption.

V. CONCLUSION

In this paper, a novel bio-plausible reconfigurable analog

spatio-temporal retina design is presented. Our approach in-

volves taking an established software model of the retina

and implementing this in hardware. Building this model from

scratch, rather than modifying an existing design, gives us

complete control over the selection of building blocks to

use. This analog retina incorporates spatio-temporal band-pass

filtering in the OPL layer, luminance adaptation, contrast gain

control mechanism, tonic and phasic cells, and spiking. The

OPL layer filter exhibits a center-surround structure and is

a spatially DoG filter with temporal biphasic properties. As

a result, this filter can serve as both an edge and move-

ment detector, which is a crucial feature of this retina. To

accommodate varying levels of light contrast, the contrast

gain control mechanism is incorporated between bipolar and

amacrine cells. This mechanism is observed in the biological

retina and implemented through current-mode subthreshold

MOS circuits, utilizing a novel absolute value circuit. Ad-

ditionally, luminance adaptation at the photoreceptor level is

represented by a high-pass filter. The presence of both tonic

and phasic cells in the retina enables a diverse range of

visual processing capabilities. This high-performance silicon

retina can be utilized in various applications such as retinal

prostheses, autonomous vehicles, robots, and mobile devices,

to detect objects and track motion within a scene.
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