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Neuromorphic Computing with
Address-Event-Representation using Time-to-Event
Margin Propagation

Madhuvanthi Srivatsav R, Shantanu Chakrabartty, Chetan Singh Thakur

Abstract—Address-Event-Representation (AER) is a spike-
routing protocol that allows the scaling of neuromorphic and
spiking neural network (SNN) architectures. However, in con-
ventional neuromorphic architectures, the AER protocol and
in general, any virtual interconnect plays only a passive role
in computation, i.e., only for routing spikes and events. In
this paper, we show how causal temporal primitives like delay,
triggering, and sorting inherent in the AER protocol itself can
be exploited for scalable neuromorphic computing using our
proposed technique called Time-to-Event Margin Propagation
(TEMP). The proposed TEMP-based AER architecture is fully
asynchronous and relies on interconnect delays for memory
and computing as opposed to conventional and local multiply-
and-accumulate (MAC) operations. We show that the time-
based encoding in the TEMP neural network produces a spatio-
temporal representation that can encode a large number of
discriminatory patterns. As a proof-of-concept, we show that a
trained TEMP-based convolutional neural network (CNN) can
demonstrate an accuracy greater than 99% on the MNIST
dataset and 91.2% on the Fashion MNIST Dataset. Overall, our
work is a biologically inspired computing paradigm that brings
forth a new dimension of research to the field of neuromorphic
computing.

Index Terms—Neuromorphic Computing, Algorithms, Address
Event Representation, Spiking Neural Networks

I. INTRODUCTION

Address-Event-Representation (AER) is a widely-used
event-based asynchronous protocol used commonly in the
design of large-scale and re-configurable neuromorphic hard-
ware [1]-[3].A typical implementation of AER uses packet-
based switching and time-division-multiplexing to achieve
brain-scale connectivity on 2-dimensional and 2.5-dimensional
hardware platforms, which are limited by the number of
physical interconnects and routing pathways. In literature,
different variants of the AER communication protocol have
been proposed to improve channel capacity [2] and system
scalability by reducing memory requirements [3, 4]. In most
previous implementations, AER and other interconnect mech-
anisms (virtual and physical) have only played a passive
role, i.e., they only transmit signals. Spike-routing latency
is viewed as a nuisance or a source of system uncertainty
in these architectures. However, recent research has shown
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that neuronal dendrites, which can be viewed as the neu-
robiological equivalent of interconnects, exhibit a range of
linear and nonlinear mechanisms that allow them to implement
elementary computations [5]-[7]. These findings have inspired
spiking neural networks (SNNs) architectures using active
interconnects or interconnects with computational capabilities
[4, 7]-[9]. For instance, in [9], the researchers present a bio-
plausible columnar learning network (CLN) that is inspired
by the excellent spatio-temporal computing capabilities of the
dendrites of the cortical neurons. Also, a recently proposed
dendro-centric computing framework [10] extends the con-
cept of active interconnects further and proposes to encode
information spatio-temporally in the pulse or spike sequences.
These sequences can then be decoded using nano dendrites,
and this modality can be used to address specific neurons
using the sequences as addresses. From an energetic point of
view, this kind of information processing has been proposed
to scale linearly with the number of neurons, thus enabling
energy-efficient Al applications [10]. Another major argument
for incorporating processing-in-interconnects through axonal
or dendritic delays is the premise that both spatial and temporal
encoding can produce different groups of neurons that fire in
specific temporal sequences. Such networks with axonal delays
can exhibit an enormous memory capacity as they have more
groups than neurons (due to combinatorial factors) and thus
could exhibit a huge diversity in network responses [6].

In this paper, we present a spike computing framework called
time-to-event margin-propagation (TEMP) that exploits the
computational primitives inherent in AER and other spike-
routing or interconnect architectures. Margin-Propagation
(MP) is an approximate computing technique that has been
previously used for designing hardware-efficient neural net-
works using analog and digital circuits [11]-[15]. However,
the MP paradigm has not been applied to time-domain pro-
cessing where the MP primitives translate to delay, trigger
and sorting. This paper is the first attempt in combining
these two concepts to develop a novel AER architecture using
causal primitives like delay, trigger, and sorting operations, as
shown in Fig. 1(a)-(c). These operations can be easily imple-
mented using time-division-multiplexing and packet-switching
networks. For instance, the triggering operation illustrated
in Fig. 1(b) passes an input spike only if it arrives before
a specific time instant denoted by T. Similarly, the sorting
operation illustrated in Fig. 1(c) is naturally implemented
because of the temporal ordering of spikes. Using TEMP, we
show that these fundamental operations can be used to demon-
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strate non-linear classification abilities producing comparable
results to traditional multi-layer neural networks. Furthermore,
TEMP models the information in the precise timing of the
spikes, with the help of TTFS (Time to First Spike) encoding
Fig. 1(d). TTFS coding leads to a significant reduction in
network spiking activity, and hence reducing the overall energy
consumption. A hyper-parameter in the TEMP formulation
controls the network’s sparsity, latency, and accuracy, thus
ensuring its adaptability to diverse applications. As highlighted
in Fig. 1(e), by tuning the hyper-parameter v, a TEMP network
can control the number of output spikes/sparsity of a layer.
This formulation can be used to realize a much richer M-
of-N spike encoding [8] or K-based encoding strategies [10].
Such rank order encoding strategies are easy to implement
on neuromorphic hardware, have higher information content,
and promote energy-efficient sparse coding [10], [16]. Coding
information in spike order has been proven to be useful in
applications such as image recognition and reconstruction. The
first spike is generally considered to carry more information,
leading to the possibility of faster recognition and restoration
with few spikes [8]. Additionally, the asynchronous nature
of TEMP allows the network to encode information using
temporal dynamics that results in the spatio-temporal encoding
of features with potentially enormous memory capacity. This
is illustrated in Fig. 1(f), where a TEMP network trained
to discriminate digits exploits different spike-timing patterns
involving different groups of neurons for images of the same
digit.

II. EVENT-BASED MODEL FOR A TEMP NEURON

At the core of TEMP is margin propagation which is
a piece-wise-linear approximate computing technique intro-
duced in [11, 12] and extended in [13, 14]. TEMP extends
margin propagation into the time-domain where a TEMP
neuron generates a spike/event at time instant ¢ when the
following condition is satisfied

Dl -t = (1)
J

Here ¢; denotes the arrival time of the 4t pre-synaptic
spike/event, v+ > 0 denotes the firing threshold, and [.];
denotes a ReLU function. Fig. 2(a,b) shows a possible mech-
anism for implementing equation 1. An internal state variable
(for example, a counter or a capacitor) stores the membrane
potential, which starts increasing as soon as a pre-synaptic
spike/event occurs. However, at the j th ayent, the state variable
or the counter update rate is increased by j. Thus, as more
events arrive, the state-variable increases at a faster rate.
When the state variable reaches the threshold value +, say
at time instant ¢,, the TEMP neuron emits a spike. The ReLU
operation in equation 1 is naturally implemented due to time-
causality - that is, any spikes that arrive after ¢, are ignored
during the computation as shown in Fig. 2(a). Also, every
neuron is associated with a time,,,; factor at which it will reset
its counter or state variable. If the neuron’s potential does not
reach the threshold or v before the time,,:, the neuron will
no longer spike, and will be reset. Note that while there could

be several techniques to implement TEMP on digital, analog,
electronic, and non-electronic hardware, this paper focuses on
the system architecture and not on specific implementation
details.

III. TEMP-BASED SPIKING NEURAL NETWORK

Like other SNN architectures, two TEMP neurons ¢ and
j can be connected to each other using a synaptic weight
w; ;. However, unlike the conventional SNN formulations, the
role of synaptic weights in the TEMP network is to delay
the input spikes. Following a differential margin-propagation
architecture proposed in [14], [13] to approximate inner-
products, a similar mapping is also applied to equation 1.
The output of an i*” neuron in a TEMP network is two
spikes/events denoted by their respective time of occurrence
t;-" and ¢; . These occurrences are computed according to the
following:

DOl = W)+ 1 (G w)l =T
J
DIt =t A w + 1~ (G F el =T @)
J
Here, the synaptic weights are represented as differential
quantities as w;; = w:; — wi_j, with w;g,wl_j > 0. Both the
positive quantities w;;, w;; are time-delays which ensures that
the equation ( 2) is causal. Similarly tj' and t;" represent the
pre-synaptic arrival times in differential form. The occurrence
times tj and ¢; are then processed according to a differential
ReLU operator, which is given by

+ 4=Y  if 4t =
ooy ) G5 it >
(tt)= { (t;,t;) otherwise ©)

Note that in TEMP-based networks, there is no distinction
between spike delays and synaptic modulation, as a result,
the formulation allows incorporating phase (or spike timing)
information into the overall network dynamics. In fact, there
exists an equivalence between TEMP-based networks and Inte-
grate and Fire (IF) spiking neural networks. In Supplementary
Appendix I, we show the mathematical equivalence for both
leaky and non-leaky IF neurons.

TEMP can exhibit both leaky as well as non-leaky behavior.
In the non-leaky model, input is retained until the neuron
spikes, unlike the leaky version, where the potential starts
to decay after reaching its peak. Fig. 3 demonstrates the
leaky and non-leaky dynamics of the TEMP neuron which is
subjected to input spike train 6(¢ — ¢;) of varying frequencies.
The top two plots resemble the non-leaky approach for an
input pre-synaptic spiking frequency of 50Hz and 20Hz,
respectively, whereas the bottom two plots depict the leaky
approach for an input pre-synaptic spiking frequency of 10Hz
and 5Hz, respectively. The threshold + is varied for each of
the figures in the 4 subsections. The threshold ~ decides the
potential at which the neuron fires. It can also be observed
that if the v value is higher, the time the membrane potential
takes to reach that threshold increases, leading to a decrease in
the firing frequency. Also, note that the leakage dynamics are
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Fig. 1. Proposed TEMP-based computing paradigm: Virtual interconnects (AER) can only a) delay pulses (spikes) or b-c) determine causal relationships
between pulses (triggering and time-based sorting). d) The formulation of TEMP incorporates the TTFS encoding scheme, where the post-synaptic neuron
processes the information from the pre-synaptic spikes and encodes its output in the precise spiking time of one spike. e) The application-specific tunable ~y
parameter controls the sparsity in encoding information. Here y; > 2, and it can be observed that as -y is increased, sparsity is enhanced. f) The time-domain
computations in TEMP bring forth spatio-temporal encoding of input patterns. Diverse encoding patterns can be observed for images of the same class in a
network trained on the MNIST dataset. This diversity can be attributed to the fact that the information is encoded in the group of neurons that fire and the
order in which they fire.
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Fig. 2. Computational model of TEMP-based neurons: a) As the post-synaptic neuron receives pre-synaptic spikes at time ¢; and t2, its membrane
potential starts rising with increasing slopes determined by the number of pre-synaptic neurons that it encounters. b) a network representation of TEMP based
neurons. c¢) Every TEMP neuron is associated with a time-out, after which it will no longer spike and will reset.
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Fig. 3. Dynamics of a single TEMP neuron in non-leaky (a,b) and leaky (c,d) mode for a pre-synaptic spike train generated at a frequency of 50 Hz (a),
20 Hz (b), 10 Hz (c) and 5 Hz (d). When the membrane potential reaches the threshold ~y, an output spike is generated. The sub-plots show the variability
of the output spike rate (output spike generation is marked as black dots) with respect to « and input spike rate. PSP represents the postsynaptic potential of

a neuron.

linear in TEMP-based neurons. This can be attributed to the
fact that the derivation of the leaky dynamics in TEMP is based
on the piece-wise linear approximation of the exponential
function as depicted by Eq 3 in Appendix 1. In this work,
we have shown the working of the non-leaky implementation
of the TEMP neuron model, in which the spikes that arrive
early have a higher contribution. However, similar analysis is
possible for the leaky implementation too, where the neurons
that fire further in the past will have lesser contribution.

IV. AER REALIZATION OF TEMP NETWORKS

Here we describe a possible mechanism to implement
TEMP networks using the AER protocol. The trained param-
eters w;; will be assumed to be quantized or can assume
only specific values. It has been observed that post-training
quantized weights (at a precision equal to or greater than
8 bits) provide the same level of recognition accuracy as
a network with full-precision weights. Therefore, for g-bit
quantization, each of the weights can assume 2? possible
values. For the proposed implementation, we will instantiate
29 routing tables of size N x M, where N is the number of
post-synaptic/receiver neurons and M is the number of pre-
synaptic/sender neurons. This is shown in Fig. 4(a), where
an entry in each of the routing tables is a 1 or 0 entry
indicating if a sender neuron emits a spike, the event is
routed to the destination neuron after a fixed delay. Note that
the delay corresponding to each routing table is fixed, and
all routing tables share a common output bus/interconnect.

The AER protocol is then used by the destination (or post-
synaptic) TEMP neurons to receive the event, which then
process information according to equation 1. The fixed delay
in Fig. 4(a) could be implemented using physical interconnects
or using time-outs. Specific implementation details will be a
topic for another paper.

V. EXPERIMENTAL RESULTS

To demonstrate the advantages achieved with the proposed
TEMP framework when applied to machine learning tasks,
a population of TEMP neurons are connected with each
other in a feed-forward fashion. The results are based on the
implementation of TEMP as given by Eq. 2 in the spiking
network using a standard deep learning framework. Spatio-
temporal input stimuli are interfaced to the network through
a population of neurons which we call sensory neurons. The
sensory layer is projected onto the subsequent layer through
learnable conduction delays, which enable learning multiple
tasks.

A. Non-linear Classification using TEMP Networks

1) XOR Classification task: We begin by validating the
proposed TEMP with a classic linearly non-separable XOR
task (Illustrated in Fig. 5). This has been done to verify the
nonlinear classification capability of the proposed solution.
XOR data has been generated from the uniform distribution
U(—1,1) and encoded as differential spikes. The architecture
we have set up has a dense layer with ten TEMP and
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Fig. 4. Realization of TEMP in AER: a) As represented in the connectivity representation figure (b), the i** sender neuron with address i, sends out a
spike, which needs to be transmitted to the j** receiver neuron with a delay of 2-time units. The sender’s spike event is broadcasted to the 29 (N x M) binary
routing tables, which contain the connectivity information. In the second routing table (Grid:2), a 1 is present at the grid (i,j), which indicates a connection
between the it"sender neuron and the 5% receiver neuron (0 indicates no connection). Accordingly, a spike event with the receiver’s address is sent to the
digital bus after a delay of 2-time units. b) Connectivity information representing the connectivity between the it* and j* neuron with an interconnect delay

of 2-time units.

a classification layer with two TEMP, which is tasked to
signal the true class. The network is initialized with values
drawn from a normal distribution. Learning loss is defined
such that TEMP belonging to true class fires ¢t~ far earlier
than ¢*. Loss is binary cross entropy loss between softmax
activation of the classification layer and true class labels. After
training 20 epochs with 60000 samples (batch size of 128)
with Adam optimizer and an initial learning rate of 0.001,
the network successfully learned the XOR classification task
with an accuracy of 99.6%. The good classification accuracy
proves that the non-linearity induced by the TEMP enables the
classification of non-linearly separable XOR data (The results
are presented in Fig. 5).

2) MOON classification task: To further understand the
effect of adding layers to classify non-linearly separable data,
we have investigated the classification performance of the pro-
posed TEMP solution with a synthetic two-dimensional binary

classification dataset popularly known as the MOON dataset
(Illustrated in Fig 5). We have implemented the following
spiking network for this purpose: 2 — 10 — 20 — 2.
The weights were initialized by drawing from the normal
distribution.

Training samples of 20000 were presented to the network
as mini-batches of size 128 for 20 epochs. The optimizer was
set to Adam with a learning rate of 0.03. It was necessary
to include standardization (%) as part of the loss function
to sustain the propagation of gradients across the network
during training. The proposed TEMP demonstrated success
in fitting the data with a test accuracy of 99.25 + 0.03%,
thereby emphasizing the capability of the proposed TEMP to
estimate optimal nonlinear boundary on test data (The results
are presented in Fig. 5).

3) MNIST and Fashion-MNIST Classification tasks: To
investigate the credibility of the proposed TEMP network
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in terms of generalization capability, we applied it to the
prevalent MNIST [17] and Fashion MNIST [18] classification
tasks. The network architectures used consist of TEMP-based
fully-connected layers and convolution layers. Pixel intensities
were translated to differential spike trains.

For the architecture implementing a 784 — 100 — 10
network, the dense layer was trained in an end-to-end su-
pervised fashion with a batch size of 32 using the ADAM
optimizer with an initial learning rate of 0.001 to minimize
the standardized categorical entropy loss. Training converges
in 30 epochs, reaching a best test accuracy of 97.7% on the
MNIST dataset. Fig. 6b gives insight into the distribution of
delay learned by the synapses connecting 100 hidden nodes
and 10 class nodes for MNIST data. It brings out the class-

specific distribution of delay.

Further, we implemented a TEMP-based CNN network
with two convolutions consisting of 16 and 32 channels and
two fully-connected layers with 500 and 10 nodes. Each
convolution layer was implemented using 3x3 kernels and
was followed by a max pooling layer. Further, batch nor-
malization was introduced between every successive layer for
faster convergence. The network was trained with mini-batches
of size 16 for 30 epochs with Adam optimizer. We were
able to achieve 99.1% accuracy on the MNIST Dataset and
91.27% accuracy on the Fashion MNIST dataset. A time-based
learning rate decay scheduler was used for all the training runs.
A brief description of the network architectures describing the
type of layer and its corresponding gamma value is presented
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in Table I.

Comparison with state-of-the-art: There exists an ex-
tensive body of literature in designing and training SNNs
that encode information in the relative timing of individual
neuron spikes [19]-[24]. These works focus on training multi-
layered LIF and n-LIF neuron based SNN models using back-
propagation and STDP techniques, and emphasize on the
evident advantages of temporal coding schemes in terms of
sparsity, energy efficiency, and the ease of implementation
on neuromorphic hardware. For comparison with TEMP, we
consider the results obtained with other spiking architectures
which follow temporal and rate-based encoding. Table II
displays MNIST classification accuracy at par with that of
state-of-the-art spiking architectures. Additionally, a recently
published work on columnar learning networks [9], which
incorporates dendritic dynamics and promotes spatio-temporal
data processing, achieved an accuracy of 95% on the MNIST
dataset. Further, [25] follows a rate-based coding approach
and achieves a classification accuracy of 94.5 % using a 6-
layer CNN architecture on the Fashion-MNIST dataset, while
[26] achieves an accuracy of 86.5 % using a 2 convolution
layer SNN with TTFS encoding. Note that rate-based ap-
proaches display better accuracy but with sacrifice in latency,
sparsity, and energy efficiency when compared to TTFS-based
approaches.

B. Effects of Weight Quantization

The weights of the TEMP-based MLP and CNN networks
trained on the MNIST dataset were subject to different levels
of quantization and the results are reported in Fig. 7. It can
be observed that up to 4 bits of quantization, there is no
significant drop in the test accuracy for the MLP and CNN
architectures. This property can be exploited in reducing the
routing table overheard in the proposed AER architecture.

TABLE I
NETWORK ARCHITECTURES FOR DIFFERENT DATASETS
Dataset Network Architecture
XOR Input_layer (2) - FC_MP (15,1) - FC_MP (2,0.5)
MOON Input_layer (2) - FC_MP (10,1) - FC_MP (20,0.5) -
FC_MP (2,1)
MNIST Input_layer (784) - FC_MP (100,22) - FC_MP (10,15)
Fashion MNIST | Input_layer (28x28x 1) - Conv_MP (3x3x16,8) -
and MNIST MaxPool - BatchNorm - Conv_MP (3x3x32,8) -
CNN model MaxPool - BatchNorm - FC_MP (500,11) - BatchNorm
- FC_MP (10,50)

Key: Input layer - Input_layer (no of nodes), Fully connected, dense
TEMP layer - FC_MP (no of nodes, gamma), TEMP convolutional
layer - Conv_MP (kernel size x kernel size x no of channels, gamma),
Batchnorm - batch normalization layer, MaxPool - Max-pooling layer

TABLE 11
COMPARISON OF PROPOSED TEMP WITH EXISTING SPIKING
ARCHITECTURES ON MNIST CLASSIFICATION TASK. TEMP! AND
TEMP?2 ARE SPIKING NETWORKS WITH FULLY-CONNECTED AND
CONVOLUTIONAL LAYERS, RESPECTIVELY.

Method  Accuracy [ Method Accuracy
Rate coding
[27] 0.91 [28] 0.975
[29] 0.984 [30] 0.95
TTFS coding
[19] 0.97 [20] 0.99
[21] 0.99 [22] 0.984
[23] 0.979 [24] 0.97
TEMP! 0.977 TEMP? 0.991

Key: [27] - LIF neurons trained using STDP

[28] -N-LIF rate encoding using DFA/SDFA

[29] - N-LIF trained using Backpropagation

[30] - LIF trained using unsupervised Contrastive Divergence rule
[19] - N-LIF rate encoding using Backpropagation

[20] - LIF trained using DNN-SNN conversion

[21] - N-LIF using backpropagation

[22] - N-LIF trained using STDP

[23] - Spike Response model trained using backpropagation

[24] - LIF trained using backpropagation
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Fig. 7. Results of post-training quantization on the TEMP based MLP and
CNN networks trained on the MNIST dataset. The dashed lines represent the
floating-point baseline accuracies.
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Fig. 8. Effect of noise on inference Accuracy of TEMP based networks:
When a naively trained network is subject to a random 10% packet loss and
Gaussian noise of varying standard deviations o, ¢, the inference accuracy
of the network drops (As shown by the Naive plot). Test accuracy on MNIST
obtained for the networks trained with dropout layer and noise with different
standard deviations (o¢,) as a function of the noise injected during inference
characterized by o, 5 is plotted. On performing variation aware training to
compensate for packet loss and stochastic delay, the robustness of the network
can be enhanced. VAT is performed on top of the trained network with a
dropout layer (of probability = 0.1) and Gaussian noise of standard deviation
varying between 0.01,0.05 and 0.1. The average inference accuracy over 10
inference runs is reported.

C. Robustness Analysis

In this paper, we have proposed an AER network, imple-
mented using the TEMP formulation, where the interconnect
delays play a major role in computation. However, in the
current communication networks, the interconnect delay is not
deterministic. The performance degradation in networks can be
mainly attributed to packet loss [31] and delay variability or
jitter which is usually modeled using Gaussian, exponential
and Weibull probability density functions [32]-[34].

In an attempt to understand the effect of the stochastic delay
and packet loss on the inference accuracy of TEMP-based
networks, we consider the 3-layer MLP architecture and add

a Gaussian noise and dropout layer between the hidden and
output layers. The dropout layer is added to model random
packet loss, and the noise layer is added to model stochastic
delay in the arrival time of the spikes that are transmitted to
the output layer.

Assuming 10 % of the spikes are dropped randomly, and the
standard deviation (0, s) of the Gaussian noise varies between
0.01, 0.05 and 0.1, the drop in the inference accuracy of a
naively trained network can be observed in Fig. 8. However,
this drop in inference accuracy can be compensated by a
variation aware training (VAT) technique, where the network
is re-trained with the dropout and the noise layer of varying
o, thus making it more robust to packet losses, and stochastic
delays.

D. Analysis of Spatio-Temporal encoding in TEMP Networks

By virtue of axonal delays, TEMP-based networks exhibit
rich spatio-temporal encoding, which is well-known for their
enhanced combinatorial representational capabilities. As the
network becomes structured with learning, certain stimuli-
specific patterns emerge as portrayed in Fig. 9, validating
the combinatorial representational capability of these encoding
patterns.

As noticed in Fig. 9a, though there exists a similarity
between patterns that belong to the same class, patterns that
emerged in response to different stimuli do exhibit variance.

Fig. 9b shows the spike-raster plot (Time of firing vs.
Neuron Number) of a dense layer. This experiment is an
indication of the fact that there will be no ambiguity even
if a set of neurons is shared across multiple spatio-temporal
patterns. This is owing to the fact that a single neuron can fire
with different patterns at different times, and these patterns
are not only defined by their constituent neurons but also by
their precise firing time.

E. The Effect of the Hyper-parameter v on Computation

Sparsity in causal spikes: The majority of energy is
consumed by signaling, which could be regulated by sparse
coding, where M out of total N neurons (M < N) are
active. Sparse coding is an energy-saving neural coding along
the lines of neural signal transmission theory and energy
utilization rate theory.

The formulation of TEMP neuron includes a hyper-
parameter named <y, which regulates the number of post-
synaptic neurons that fires (Fig. 10a). Thus, TEMP exhibits an
adaptive sparse coding strategy, which enables it to generate
sparse M of N spike codes. The proposed TEMP has adaptive
delay plasticity, thus introducing a scheme where the order
of arrival of pre-synaptic spikes at a post-synaptic neuron
is governed by their information content. In this study, we
highlight the effect of delay plasticity and - on the processing
ability of TEMP (Fig. 10 b,c).

Fig. 10d displays the distribution of pre-synaptic spikes
required to fire each of the hidden layer neurons. It could be
verified that, an average neuron fires with 16% of total pre-
synaptic spikes, thereby validating that the spikes representing
critical information reach the neuron early and thus achieve the
desired result with as few spikes as possible.
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Fig. 9. Combinatorial representational capability of spatio-temporal patterns. (a) Spatio-temporal patterns emerged from the TEMP-based convolution
layer in response to samples from input stimuli representing classes 2 and 7. This shows the intra-class similarity and inter-class variability learned by
the patterns. Despite the intra-class similarity, unique spatio-temporal firing patterns can be observed for each stimulus, thus bringing out the combinatorial
representational capability of TEMP. (b) Spike raster plot of the learned spatio-temporal patterns. It could be seen that patterns share neurons, but the neuronal
firing order differs across the patterns. This adds to the combinatorial representational capability of TEMP-based networks.

E Tunable latency (TT scaling)

The hyperparameter « plays a notable role in tuning the
tradeoff between latency and accuracy. We could achieve a
notable reduction in latency () with a slight degradation in
performance as provided in Fig. 10(f). With increase in latency
(7). the recognition capability of TEMP improves. However,
as -y is increased further, we notice the drop in accuracy,
owing to the fact that the non-linearity exhibited by the TEMP
neuron is causality-induced (y dependent) non-linearity. An
increase in -y is limited by the fact that the causality should
induce sufficient non-linearity to generate separable patterns.
However, there is an optimal value of ~, where we can obtain
both competitive accuracies as well as reasonable latency.

VI. DISCUSSION & CONCLUSION

We have proposed a time-based spike computing paradigm
TEMP. This builds on a principle known as Margin Propa-
gation (MP), which has been introduced to approximate log-
sum-exp as a piecewise linear function. We remark that TEMP
involves only primitive operations such as time-based addition,
subtraction, threshold operation, etc.

TEMP is built on delay plasticity, which contributes towards
a unique implementation of the popular AER protocol. By
modeling synaptic strength as interconnect delay, TEMP re-
duces the demands on neuromorphic hardware by completely
eliminating synaptic circuits, thus favoring the construction
of highly reconfigurable large-scale neuromorphic spiking
architectures.

The property of learnable delay, inherent to TEMP, has led
to the emergence of spatio-temporal patterns in the network.
The combinatorial representational capability of these patterns
has been demonstrated for different classes of stimuli. Further,
through experiments, the benefits of the tunable hyperparam-
eter v inherent to TEMP have been demonstrated. v can be
used to control the latency, accuracy, and sparsity in TEMP-
based networks. This application-specific tunable property
of ~ enables widespread application of TEMP from ultra-
fast differential sensing systems to highly accurate visual
recognition systems.

Many novel approaches for training SNNs encoding infor-
mation temporally have been explored extensively. Some of
the gradient-based learning methods to train LIF or n-LIF
based SNNs are presented in [19, 23, 24]. By incorporating
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Fig. 10. Effect of hyperparameter v on computation (a,b,c) Sparse coding:
(a) The hyperparameter v determines the number of nodes that fire, which is a
crucial factor in achieving desirable sparsity. (b) Based on -, the causal set of
pre-synaptic spikes varies, which determines the number of pre-synaptic spikes
involved in the firing of the post-synaptic neuron. The delay plasticity ensures
that most informative pre-synaptic neurons get to deliver their spikes early to
post-synaptic neurons. This results in minimal computation. (c) Sparse coding
vs. accuracy analysis. Ay, is the percentage of active nodes, which is controlled
by the hyperparameter . TrAcc and TeAcc are training and test accuracy at
various sparsity coefficients. (d) This gives the plot of the distribution of the
number of causal pre-synaptic spikes required by the TEMP neurons to fire.
The total number of pre-synaptic spikes was 784. It could be seen that, on
average, the hidden layer TEMP neurons require only ~ 16% of total pre-
synaptic spikes to get triggered. This proves that delay plasticity results in the
early arrival of most informative spikes, hence reducing the computations to
as minimal as possible. (e,f) Tunable latency vs. accuracy: Analysis of latency
and accuracy of TEMP network trained over different values of  : [1...35].
As 7y increases, latency increases as expected. However, classification accuracy
reaches its maximum for a particular value of ~ as the latter is the critical
factor in tuning the non-linearity induced by the TEMP. Thus, + acts as a
hyperparameter for the latency vs. accuracy tradeoff.

temporal coding into differentiable non-leaky TEMP formula-
tion, we showed that we were able to define a continuously
differentiable expression between input and output spike times.
This enabled exact error backpropagation through a network of
neurons. The derivations of the gradients is very similar to the
equations derived for the margin propagation (MP) networks
as presented in [14].

We showed that the network constructed with the proposed
spike computing model could solve non-linear classification
tasks with accuracy comparable to that of the state-of-the-
art. For training TEMP-based networks, we used TensorFlow
libraries and ran the models on Nvidia A100 GPU. We
observed the training process to be highly memory intensive.

10

As portrayed in Eq. 2, the large memory requirements of
TEMP-based networks can be attributed to the presence of
differential weights and inputs, and the inherent computation
necessary to find the post synaptic spiking times (t;-" and t;
in Eq. 2). These variables must also be stored for gradient
calculation. With these implementation intricacies, the GPU’s
utilization reaches 100% even for a 3-layer network with 1000
hidden nodes for the MNIST dataset trained with a batch
size of 128. For CNN networks trained on the MNIST and
Fashion-MNIST datasets we had to use a batch size of 16
to circumvent this issue. Thus, we could not experiment well
on large and complex datasets due to these hardware resource
constraints, and we are currently working towards developing
sustainable training solutions to overcome these challenges,
such as directly training in the spike domain using custom
libraries and designing custom accelerators for training.

DATA AVAILABILITY

The code for implementing the TEMP inference en-
gine is available at https://github.com/NeuRonICS-Lab/
temp-framework.
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