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Abstract—Hand gesture recognition (HGR) plays a pivotal
role in improving human-machine interaction across domains
like smart homes/vehicles and wearable devices. While vision-
based HGR systems encounter challenges with lighting, complex
backgrounds, and occlusion, radar-based systems overcome these
limitations by harnessing electromagnetic principles. This paper
presents tinyRadar, a real-time, low-power, single-chip radar
solution for HGR. By leveraging miniaturized mmWave radar
hardware, tinyRadar offers a compact and cost-effective HGR
solution. The Texas Instruments IWRL6432 radar is utilized,
achieving a total power consumption of less than 80mW and
a memory footprint of ∼ 11 KB for the quantized inference
model and < 256 KB for the entire system. The solution utilizes
quantized depthwise separable convolutions and integrates a
hardware accelerator and Cortex®-M4 microcontroller for real-
time inference. With its small form factor and low power require-
ments, tinyRadar facilitates on-edge implementation, delivering
95% real-time inference accuracy for six gestures. This paper
contributes to developing wearable gadgets and IoT devices that
seamlessly incorporate HGR technology.

Index Terms—hand gesture recognition, IWRL6432 single-
chip mmWave radar, depthwise separable convolution, edge
computing, low power, velocity-time map, angle-time map

I. INTRODUCTION

Hand gesture recognition (HGR) is a highly desirable com-
ponent of human-machine interaction (HMI) systems, enabling
intuitive and natural communication between humans and ma-
chines. HGR has gained extensive applications across various
domains, including virtual reality (VR), augmented reality
(AR), smart homes/vehicles, and Internet of Things (IoT)
devices, by eliminating the reliance on traditional controls,
enhancing convenience, accessibility, and the overall user
experience in smart living environments [1]–[3]. The potential
of HGR with advancements in machine learning (ML) has
led researchers to develop novel recognition systems using
different sensing modalities such as cameras, radar, ultrasound,
inertial measurement unit (IMU) sensors, and many more [4]–
[7].

Vision-based HGR systems leverage RGB or infra-red (IR)
cameras and employ computer vision algorithms [8]. However,
accurately detecting gestures poses challenges attributed to
factors such as varying illumination, shadows, complex back-
grounds, and spatiotemporal variations in hand postures [9].
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Moreover, these systems necessitate a structured environment,
entail high computational complexity and exhibit sensitivity
to partial occlusion [10]. Also, vision-based machine learning
is susceptible to adversarial attacks, enabling malicious visual
inputs that compromise the system’s integrity [11] and privacy
invasion. Wearable-based HGR systems address the limitations
of vision-based sensors but can result in user discomfort and
restricted movement, such as when incorporating IMUs into
hand gloves [12], [13].

In contrast to vision-based systems, radar-based systems
leverage electromagnetic principles, enabling them to over-
come challenges associated with illumination and spatiotem-
poral variations [14]. These systems prioritise user privacy by
processing sparse point cloud data while maintaining efficient
computational performance [15], [16]. Moreover, radar waves
have the ability to penetrate certain materials such as curtains,
paper, fog, and smoke, ensuring robust performance even
in occluded environments [17]. In recent years, there has
been significant progress in miniaturizing mmWave radar-
based hardware [18], developing compact and cost-effective
ML solutions that offer high flexibility. This makes mmWave
radar optimal for implementing HGR systems.

Several research studies in HGR using mmWave radar
have primarily focused on utilizing range, doppler, and angle
information, either individually or in combination, for feature
generation. These studies have explored various deep learning
(DL) models, such as convolutional neural networks (CNN)
and long short-term memory (LSTM), to improve the accuracy
of gesture classification [14], [19], [20]. However, only a few
of these approaches have successfully demonstrated on-edge
implementation for real-time, on-device gesture recognition
[19], [21], [22]. The emerging trend in HGR is integrat-
ing this technology into wearable gadgets and IoT devices.
Thus, demanding compact form-factor solutions that can be
deployed on microcontrollers with limited power and memory
resources. Previous work by Soli [22], [23] utilized over 600
MB of memory and consumed 300 mW of power, making
it unsuitable for low-memory microcontrollers and devices
with limited power. In contrast, tinyRadarNN [21] improved
upon this by deploying a model with ∼ 90 KB of memory
and < 120 mW power consumption. However, their approach
involved separating the sensing element, mmWave radar, from
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Fig. 1. Block diagram of tinyRadar based HGR system (a) IWRL6432 radar board comprising two transmit and three receive antennas along with HWA
and Cortex®-M4. (b) A person performing a gesture in front of tinyRadar. (c) Block diagram indicating the signal and implementation flow from sensing the
target environment using the RF front-end to VT and AT map generation and classification.

the processing element, the GAP8 development board.
We propose tinyRadar, a low-power, real-time, on-edge

single-chip radar solution for HGR based on the Texas In-
struments IWRL6432 radar [24]. Our solution achieves a
total power consumption (including the sensor and model)
of less than 80mW at 160 MHz and has a compact memory
footprint of ∼ 11 KB for the quantized model and less than
256 KB for the entire system. Through leave-one-out cross-
validation (LOOCV), we achieve real-time inference accuracy
of 95% for six different gestures trained on a dataset collected
from 9 users. Our solution leverages quantized depthwise
separable convolutions to achieve a compact model size while
harnessing the capabilities of the hardware accelerator (HWA)
and Cortex®-M4 microcontroller integrated in the radar board.
This integration enables the simultaneous execution of sensing
and processing functions, facilitating the implementation of
complex algorithmic flows in real-time while operating at low
power.

This paper is organized as follows: Section II introduces
the mmWave radar-based HGR system. Section III provides
information about the collected dataset. Section IV outlines the
signal processing flow, followed by Section V, which describes
the classification model. The results are presented in Section
VI, and Section VII concludes the paper.

II. SYSTEM DESCRIPTION

Figure 1 illustrates the operation of tinyRadar, where
frequency-modulated continuous wave (FMCW) signals,
known as chirps, are generated using a ramp generator and

transmitted through two TX antennas. The user’s hand re-
flects the chirps during gesture performance, and three RX
antennas receive the reflected signals. The radar operates
in time division multiplexing multiple input multiple output
(TDM-MIMO) mode, where each TX antenna sequentially
transmits. After down-conversion to intermediate frequency
(IF), digitization, and storage in a buffer, the received signals
undergo a series of signal processing steps in the HWA,
described in Section IV. These steps yield velocity-time (VT)
and angle-time (AT) maps, which are fed to a quantized depth-
wise separable convolution network deployed on Cortex®-M4
microcontroller for real-time inference. The VT and AT maps
were generated directly on the radar board for data collection
and network training on six distinct gestures: slow swipe, fast
swipe, push, circle, cross, and rest. The ”rest” gesture indicates
no activity or when the hand is stationary. Compared to our
prior work [15], [16], using the TDM-MIMO technique for
generating AT maps alongside VT maps boosts accuracy while
minimizing memory and power consumption using a quantized
depthwise separable convolution network.

III. DATASET DESCRIPTION

The dataset used in this study consists of recordings of hand
gestures performed by 9 participants. Each participant per-
formed six gestures. The data was collected using IWRL6432,
which was programmed to generate VT and AT maps through
an onboard signal processing pipeline. Figure 2 shows the
VT and AT maps corresponding to each gesture. The radar
board was positioned on a table of height ∼ 1.5m, and



the participants performed the gestures at various distances,
ranging up to a maximum of 1m, and varying angles from the
radar while in a sitting position. Each gesture was recorded in
two separate sessions, each lasting 3 minutes. A total of 324
minutes of data was collected, equivalent to 1,55,520 frames
of data. The recorded data was then streamed from the radar
board to a local PC for offline training. After the data cleaning
process, a set of 9,680 VT and AT maps were generated, each
sized 32 x 16.
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Fig. 2. Gesture types and their feature maps: Snapshots of gesture performed
by the user (right) and corresponding normalized VT and AT map (left,
middle), each of size 32 x 16. The gestures are as follows: (a) slow swipe (b)
fast swipe (c) push (d) circle (e) cross (f) rest

The data collection process for this application involved
selecting specific chirp configurations outlined in TABLE I.
The choice of frequency slope and ADC sampling rate was
made to enable high signal-to-noise ratio (SNR) detection up
to a range of 1m. By using 128 chirps in a burst with a
burst periodicity of 200µs, a velocity resolution of ∼ 5 cm/s
was achieved, resulting in high-resolution VT maps. Send-
ing more chirps reduces the processing time budget within
a frame. To maintain adequate processing time, a 125 ms
frame duration was selected. The utilization of TDM-MIMO
technique allowed for the synthesis of six antenna elements,
providing enhanced angular resolution (θres = 2

N = 0.33
radian) compared to the baseline configuration with only three
receive antennas (θres = 0.67 radian).

TABLE I
CHIRP PARAMETERS

Parameter Value
Start frequency 60 GHz

Idle time 6 µs
Ramp end time 30 µs

Chirp frequency slope 90 MHz/µs
ADC samples 128

ADC sampling rate 5500 ksps
Bursts per frame 128
Chirps per burst 2

Burst period 200 µs
Frame duration 125 ms

Tx antennas used 2
Rx antennas used 3
Azimuth FFT size 16

IV. ONBOARD SIGNAL PROCESSING

During the data acquisition process, the HWA reads data
from the ADC buffer to extract the range information of the
user’s hand. This is accomplished by applying the fast fourier
transform (FFT) on the chirp samples, known as Range-FFT.
The FFT is performed on each chirp of length 128, which is
then reduced to 64 by considering only the real part. Once
a complete data frame is received, the HWA applies FFT
across the chirps of the frame, referred to as Doppler-FFT.
Incoherent addition is performed across the receive channels to
generate range-doppler (RD) heatmaps of size 64 x 128, which
contain information about the range and velocity of objects.
The zero doppler bins in the RD heatmaps are discarded to
eliminate static clutter. Subsequently, incoherent addition is
performed across doppler bins, followed by a 16-point FFT
across the 6 synthetic antenna channels. This process results
in the generation of range-angle heatmaps sized 64 x 16.
These heatmaps are stored in the L3 memory, which is shared
between the processors.

The Cortex®-M4 processor accesses these heatmaps and
performs incoherent addition across the range bins. This
process generates a doppler column of length 128 and an
angle column of length 16. Since the majority of the velocity
information is concentrated within ±16 bins from the zero
doppler bin, the velocity column is cropped to 32 bins. To
match the shape with the VT column, the AT column is
expanded to a length of 32 by duplicating its values. By
concatenating these columns across 16 frames, VT and AT
feature maps are generated, which are then fed to the inference
engine for classification.

V. GESTURE RECOGNITION NETWORK: ML-BASED
CLASSIFICATION ENGINE

In order to accurately classify the hand gestures captured by
tinyRadar, we employed a depthwise separable convolution
network as described in Figure 3. The depthwise separable
convolution model starts with a 2D convolution filter of
size 3 x 3, generating seven output feature maps. Depthwise
convolution is then applied to each feature map to capture
temporal features, followed by max pooling. This helps reduce
the number of parameters. A separable convolution is then
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Fig. 3. Gesture recognition architecture based on depthwise separable convolutions

performed, combining depthwise and pointwise convolutions.
This approach allows independent learning of each feature
map, which are subsequently merged to create an optimized
representation. Instead of using a dense layer, the resulting
features are directly passed to a softmax classifier for classi-
fication, thereby saving memory. This network architecture is
designed for efficient computation and parameter usage, mak-
ing it suitable for real-time inference on resource-constrained
devices.

For training the network, we utilized data from eight indi-
viduals for training and data from the remaining one individual
for testing. The training process involved 200 epochs using
the Tensorflow-Lite framework with quantize aware training,
where we quantized the network to 8-bit precision. The input
feature maps were normalized to signed 8-bit, ensuring con-
sistent representation across the training data. We employed
categorical cross-entropy loss with L2 regularization and the
Adam optimizer. This combination of techniques improved
the network’s performance and generalization ability during
the training process. To further enhance performance and
robustness, we employed an ensemble training approach. This
involved training multiple instances of the network while
shuffling the users in the training and testing datasets. The
predictions of these individual networks were combined by
averaging them, resulting in a final network that exhibits
improved performance and enhanced robustness.

VI. RESULTS

The radar signal processing and classification network were
successfully implemented on the IWRL6432 platform. The
signal processing chain utilized ∼ 232 KB of memory in the
L3RAM, while the classification network required ∼ 11 KB
of memory on the Cortex®-M4 microcontroller. Classification
results were obtained using a sliding window technique with
a window size of 4 frames, enabling output generation every
513ms (125ms x 4 frames + 13ms latency). More detailed in-
formation about the memory footprint and processing latency
for each stage can be found in TABLE II.

When assessed on seven test participants, the quantized
inference engine achieved a real-time classification accuracy
of 95%. The accuracy per gesture class for recognition on

TABLE II
HARDWARE RESULTS

Processing
Stage Core Memory

(KB)
Latency

(ms)
Range processing HWA 192 ∼25.6
Doppler & Azimuth processing HWA 36 ∼18
Feature map generation M4 3.75 ∼2.1
Classification
network

Parameters M4 1.55 ∼13Activation 9.6

TABLE III
CONFUSION MATRIX IN PERCENTAGE

Predicted →
Actual↓ A B C D E F

(A) Circle 93.73 1.14 1 0.71 0.71 2.71
(B) Slow swipe 2.29 91.43 4.56 0.43 1.29 0
(C) Fast swipe 0 1 97.57 0.14 1.29 0

(D) Push 0.29 0.86 0 95.42 2.57 0.86
(E) Cross 0.14 0.29 1.56 0.71 97.3 0
(F) Rest 4.56 0.29 0 0.29 0 94.86

the hardware platform can be observed in TABLE III, which
showcases the confusion matrix results. The entire system,
comprising the radar frontend, signal processing chain, and
classification engine, operated within a power consumption of
< 80mW.

VII. CONCLUSIONS

We presented the tinyRadar solution, a low-power, real-
time, on-edge radar-based HGR system. The integration of
a compact depthwise separable convolution network with the
Texas Instruments IWRL6432 radar board enabled accurate
and efficient gesture recognition. The system achieved a real-
time inference accuracy of 95% for six gestures, with power
consumption below 80mW and a total memory footprint of
less than 256 KB. tinyRadar framework can be used in
smart home automation systems, and interactive IoT devices,
and for enhancing accessibility for individuals with limited
mobility. We are the first ones, to the best of our knowledge,
to develop a low-power ML solution on the IWRL6432
board. We have also developed a working demonstration of
our tinyRadar solution for controlling a video interface. To
see our solution in action, please visit the following link:
https://www.youtube.com/watch?v=RMG7ha1RNHk.



REFERENCES

[1] L. Chen, F. Wang, H. Deng, and K. Ji, “A survey on hand gesture
recognition,” in 2013 International conference on computer sciences and
applications. IEEE, 2013, pp. 313–316.

[2] S. Anwar, S. K. Sinha, S. Vivek, and V. Ashank, “Hand gesture
recognition: A survey,” in Nanoelectronics, Circuits and Communication
Systems: Proceeding of NCCS 2017. Springer, 2019, pp. 365–371.

[3] A. K. H. Al-Saedi and A. H. H. Al-Asadi, “Survey of hand gesture
recognition systems,” in Journal of Physics: Conference Series, vol.
1294, no. 4. IOP Publishing, 2019, p. 042003.

[4] Y. Murhij and V. Serebrenny, “Hand gestures recognition model for
augmented reality robotic applications,” in Proceedings of 15th Inter-
national Conference on Electromechanics and Robotics” Zavalishin’s
Readings” ER (ZR) 2020, Ufa, Russia, 15–18 April 2020. Springer,
2021, pp. 187–196.

[5] A. Khurshid, R. Grunitzki, R. G. Estrada Leyva, F. Marinho, and
B. Matthaus Maia Souto Orlando, “Hand gesture recognition for user
interaction in augmented reality (ar) experience,” in Virtual, Augmented
and Mixed Reality: Design and Development: 14th International Con-
ference, VAMR 2022, Held as Part of the 24th HCI International Con-
ference, HCII 2022, Virtual Event, June 26–July 1, 2022, Proceedings,
Part I. Springer, 2022, pp. 306–316.

[6] H. Liu, Y. Wang, A. Zhou, H. He, W. Wang, K. Wang, P. Pan, Y. Lu,
L. Liu, and H. Ma, “Real-time arm gesture recognition in smart home
scenarios via millimeter wave sensing,” Proceedings of the ACM on
interactive, mobile, wearable and ubiquitous technologies, vol. 4, no. 4,
pp. 1–28, 2020.

[7] M. Oudah, A. Al-Naji, and J. Chahl, “Hand gesture recognition based
on computer vision: a review of techniques,” journal of Imaging, vol. 6,
no. 8, p. 73, 2020.

[8] R. E. Nogales and M. E. Benalcázar, “Hand gesture recognition us-
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