
LATEX template

Neuromorphic Computing with AER using

Time-to-Event-Margin Propagation

Madhuvanthi Srivatsav R1, Shantanu Chakrabartty2* and Chetan Singh Thakur1*

1Department of Electronic Systems Engineering, Indian Institute of Science, India.
2 Department of Electrical Engineering and Systems Engineering, Washington University, St. Louis, USA.

*Contact Address: shantanu@wustl.edu and csthakur@iisc.ac.in.

Abstract

Address-Event-Representation (AER) is a spike-routing protocol that allows the scaling of neuromor-
phic and spiking neural network (SNN) architectures to a size that is comparable to that of digital
neural network architectures. However, in conventional neuromorphic architectures, the AER pro-
tocol and, in general, any virtual interconnect plays only a passive role in computation, i.e., only
for routing spikes and events. In this paper, we show how causal temporal primitives like delay,
triggering, and sorting inherent in the AER protocol itself can be exploited for scalable neuromor-
phic computing using our proposed technique called Time-to-Event Margin Propagation (TEMP).
The proposed TEMP-based AER architecture is fully asynchronous and relies on interconnect
delays for memory and computing as opposed to conventional and local multiply-and-accumulate
(MAC) operations. We show that the time-based encoding in the TEMP neural network produces
a spatio-temporal representation that can encode a large number of discriminatory patterns.
As a proof-of-concept, we show that a trained TEMP-based convolutional neu-
ral network (CNN) can demonstrate an accuracy greater than 99% on the MNIST
dataset. Overall, our work is a biologically inspired computing paradigm that
brings forth a new dimension of research to the field of neuromorphic computing.

1 Introduction

Address-Event-Representation (AER) is a
popular event-based asynchronous protocol used
commonly in the design of large-scale and re-
configurable neuromorphic hardware [1–3]. AER
uses packet-based switching and time-division-
multiplexing to achieve brain-scale connectivity
on 2-dimensional and 2.5-dimensional hardware
platforms, which are limited by the number of
physical interconnects and routing pathways. In

All correspondence for this work should be addressed to
shantanu@wustl.edu and csthakur@iisc.ac.in

literature, different variants of the AER commu-
nication protocol have been proposed to improve
channel capacity [2] and system scalability by
reducing memory requirements [3, 4]. However, in
most previous implementations, AER and other
interconnect mechanisms (virtual and physical)
have only played a passive role, i.e., they only
transmit signals. In such architectures, spike-
routing latency is viewed as a nuisance or a
source of system uncertainty. But neurobiology
suggests otherwise. Recent research has shown
that neuronal dendrites, which can be viewed as
the neurobiological equivalent of interconnects,
exhibit a range of linear and nonlinear mecha-
nisms that allow them to implement elementary

1

ar
X

iv
:2

30
4.

13
91

8v
1

 [
cs

.N
E

]
 2

7
A

pr
 2

02
3

LATEX template

2 Article Title

computations [5–7]. These findings have inspired
spiking neural networks (SNNs) architectures
using active interconnects or interconnects with
computational capabilities [7, 8]. Also, a recently
proposed dendro-centric computing framework
[9] extends the concept of active interconnects
further and proposes to encode information
spatio-temporally in the pulse or spike sequences.
These sequences can then be decoded using nano
dendrites, and this modality can be used to
address specific neurons using the sequences as
addresses. From an energetic point of view, this
kind of information processing has been proposed
to scale linearly with the number of neurons,
thus enabling energy-efficient AI applications
[9]. Another major argument for incorporating
processing-in-interconnects through axonal or
dendritic delays is the premise that both spatial
and temporal encoding can produce different
groups of neurons that fire in specific temporal
sequences. Such networks with axonal delays have
enormous memory capacity as they have more
groups than neurons (due to combinatorial fac-
tors) and thus could exhibit a massive diversity
in network responses [6]. Further, by introducing
re-configurable and trainable axonal delays, we
can eliminate the need for synaptic circuits, thus
ensuring compact hardware architectures.

In this paper, we present a spike com-
puting framework called time-to-event margin-
propagation (TEMP) that exploits the compu-
tational primitives inherent in AER and other
spike-routing or interconnect architectures. These
are generally causal primitives like delay, trigger,
and sorting operations, as shown in Fig. 1(a)-(c),
which can be easily implemented using time-
division-multiplexing and packet-switching net-
works. For instance, the triggering operation illus-
trated in Fig. 1(b) passes an input spike only if it
arrives before a specific time instant denoted by
T. Similarly, sorting Fig. 1(c) is naturally imple-
mented because of the temporal ordering of spikes.
Using TEMP, we show that these fundamen-
tal operations can be used to demonstrate non-
linear classification abilities producing competi-
tively comparable results to traditional multi-layer
neural networks. Further, TEMP models the infor-
mation in the precise timing of the spikes, with

the help of TTFS (Time to First Spike) encod-
ing Fig. 1(d). TTFS coding leads to a prominent
reduction in inter-neuron spikes, thus curtailing
the energy consumption in information transmis-
sion. A hyper-parameter in the TEMP formula-
tion controls the network’s sparsity, latency, and
accuracy, thus ensuring its adaptability to diverse
applications. As highlighted in Fig. 1(e), by tun-
ing the hyper-parameter γ, a TEMP network can
control the number of output spikes/sparsity of a
layer. This formulation can be used to realize a
much richer M-of-N spike encoding [8] or K-based
encoding strategies [9]. Additionally, the asyn-
chronous nature of TEMP allows the network to
encode information using temporal dynamics that
results in spatio-temporal encoding of features,
which exhibits enormous memory capacity. This
is illustrated in Fig. 1(f), where a TEMP network
trained to discriminate digits exploits different
spike-timing patterns involving different groups of
neurons for images of the same digit.

2 Results

Event-based Model for a TEMP Neuron

At the core of TEMP is margin propagation which
is a piece-wise-linear approximate computing tech-
nique introduced in [10, 11] and extended in
[12, 13]. TEMP extends margin propagation into
the time domain where a TEMP neuron generates
a spike/event at time instant t when the following
condition is satisfied∑

j

|t− tj |+ = γ (1)

Here tj denotes the arrival time of the jth

pre-synaptic spike/event, γ > 0 denotes the fir-
ing threshold, and [.]+ denotes a ReLU function.
Fig. 2(a,b) shows a possible mechanism for imple-
menting equation 1. An internal state variable (for
example, a counter or a capacitor) stores the mem-
brane potential, which is updated every instant
a pre-synaptic spike/event occurs t1, t2, How-
ever, at the jth event, the state variable or the
counter update rate is increased by j. Thus, as
more events arrive, the state-variable increases
at a faster rate. When the state variable reaches
the threshold value γ, say at time instant tz, the
TEMP neuron emits a spike. The ReLU opera-
tion in equation 1 is naturally implemented due

LATEX template

Article Title 3

Fig. 1: Proposed TEMP-based computing paradigm: Virtual interconnects (AER) can only a)
delay pulses (spikes) or b-c) determine causal relationships between pulses (time-based sorting). d) The
formulation of TEMP incorporates the TTFS encoding scheme, where the post-synaptic neuron processes
the information from the pre-synaptic spikes and encodes its output in the precise spiking time of one
spike. e) The application-specific tunable γ parameter controls the sparsity in encoding information.
Here γ1 > γ2, and it can be observed that as γ is increased, sparsity is enhanced. f) The time-domain
computations in TEMP bring forth spatio-temporal encoding of input patterns. Diverse encoding patterns
can be observed for images of the same class in a network trained on the MNIST dataset. This diversity
can be attributed to the fact that the information is encoded in the group of neurons that fire and the
order in which they fire.

to time-causality - that is, any spikes that arrive
after tz are ignored during the computation as
shown in Fig. 2(c). Also, every neuron is associ-
ated with a timeout factor at which it will reset
its counter or state variable. If the neuron’s poten-
tial does not reach the threshold or γ before the
timeout, the neuron will no longer spike and will
be reset. Note that while there could be several
techniques to implement TEMP on digital, ana-
log, electronic, and non-electronic hardware, this
paper focuses on the system architecture and not
on specific implementation details.

TEMP spiking neural network

Like other SNN architectures, two TEMP neu-
rons i and j can be connected to each other
using a synaptic weight wij . However, unlike the
conventional SNN formulations, the role of synap-
tic weights in the TEMP network is to delay
the input spikes. Following a differential margin-
propagation architecture proposed in [13], [12] to
approximate inner-products, a similar mapping is
also applied to equation 1. The output of an ith

neuron in a TEMP network is two spikes/events
denoted by their respective time of occurrence t+i

LATEX template

4 Article Title

Fig. 2: Computational intricacies of TEMP-based neurons: a) As the post-synaptic neuron
receives pre-synaptic spikes at time t1 and t2, its membrane potential starts rising with increasing slopes
determined by the number of pre-synaptic neurons that it encounters. b) Network representation of
TEMP-based neurons. c) Every TEMP neuron is associated with a time-out, after which it will no longer
spike and will reset.

and t−i . These occurrences are computed accord-
ing to the following:

∑
j

|t+i − (t+j + w+
ij)|+ + |t+i − (t−j + w−

ij)|+ = τm∑
j

|t−i − (t+j + w−
ij)|+ + |t−i − (t−j + w+

ij)|+ = τm

(2)

Here, the synaptic weights are represented as
differential quantities as wij = w+

ij − w−
ij , with

w+
ij , w

−
ij ≥ 0. Both the positive quantities w+

ij , w
−
ij

are time-delays which ensures that the equations 2
are causal. The occurrence times t+i and t−i are
then processed according to a differential ReLU
operator, which is given by

(t+i , t
−
i) =

{
(t+i , t

−
i) if t+ ≥ t−

(t−i , t
−
i) otherwise

(3)

There exists some equivalence/correspondence
between the TEMP event-based model and the
leaky-integrate-fire (LIF) neuronal network, which
is described in A (Appendix I).

AER Realization of TEMP networks

Here we describe a possible mechanism to imple-
ment TEMP networks using the AER protocol.
We will assume access to the trained parameters
wij , which is assumed to be quantized (or can
assume only specific values). It has been observed
that post-training quantized weights (at a pre-
cision equal to or greater than 8 bits) provide
the same level of recognition accuracy as a net-
work with full-precision weights. Therefore, for
q-bit quantization, each of the weights can assume
2q possible values. For the proposed implemen-
tation, we will instantiate 2q routing tables of
size N × M , where N is the number of post-
synaptic/receiver neurons and M is the number
of pre-synaptic/sender neurons. This is shown in
Fig. 3(a), where an entry in each of the rout-
ing tables is a 1 or 0 entry indicating if a sender
neuron emits a spike, the event is routed to the
destination neuron after a fixed delay. Note that
the delay corresponding to each routing table is
fixed, and all routing tables share a common out-
put bus/interconnect. The AER protocol is then
used by the destination (or post-synaptic) TEMP
neurons to receive the event, which then process
information according to equation 1. The fixed
delay in Fig. 3(a) could be implemented using
physical interconnects or using time-outs. Specific

LATEX template

Article Title 5

Fig. 3: Realization of TEMP in AER: a) As represented in the connectivity representation figure
(b), the ith sender neuron with address i, sends out a spike, which needs to be transmitted to the jth

receiver neuron with a delay of 2-time units. The sender’s spike event is broadcasted to the 2q (N x M)
binary routing tables, which contain the connectivity information. In the second routing table (Grid:2),
a 1 is present at the grid (i,j), which indicates a connection between the ithsender neuron and the jth

receiver neuron (0 indicates no connection). Accordingly, a spike event with the receiver’s address is sent
to the digital bus after a delay of 2-time units. b) Connectivity information representing the connectivity
between the ith and jth neuron with an interconnect delay of 2-time units.

implementation details will be a topic for another
paper.

Network topology constructed with TEMP

To demonstrate the advantages achieved with
the proposed TEMP framework when applied to
machine learning tasks, a population of TEMP
neurons are connected with each other in a feed-
forward fashion. The results are based on the
implementation of TEMP as given by Eq. 2 in the
spiking network using a standard deep learning
framework.

Spatio-temporal input stimuli are interfaced
to the network through a population of neurons
which we call sensory neurons. The sensory layer is
projected onto the subsequent layer through learn-
able conduction delays. Multitude sets of neurons
in this layer respond to unique sequences in the
stimulus, resulting in high dimensional spatio-
temporal firing patterns. To verify the represen-
tational capability, the generated spatio-temporal
patterns are projected onto the neurons of the
recognition layer. The classifier TEMP neuron
that fires differential spikes with minimal delay
between them is declared the winner class.

LATEX template

6 Article Title

Non-linear Classification using TEMP

MNIST classification task. To investigate
the credibility of the proposed TEMP network
in terms of generalization capability, we applied
it to the prevalent MNIST classification task.
The network architectures used consist of TEMP-
based fully-connected layers and convolution lay-
ers. Pixel intensities were translated to differential
spike trains.

For the architecture implementing a 784 →
100→ 10 network, the dense layer was trained in
an end-to-end supervised fashion with a batch size
of 32 using the ADAM optimizer with an initial
learning rate of 0.001 to minimize the standard-
ized categorical entropy loss. Training converges in
30 epochs, reaching a best test accuracy of 97.7%.

For the architecture implementing a
(28x28x1)→(3x3x6)→15→10 convolution net-
work, training was done with mini-batches of size
32 for 30 epochs with Adam optimizer and an
initial learning rate of 0.00005. Batch normaliza-
tion was implemented at the output layer. This
network achieved a best accuracy of 97.71% when
projected onto the classifier layer. By introducing
batch normalization between successive layers
as well, we were able to achieve 99.1% accuracy
with two convolution layers (3x3 kernels with 16
and 32 channels) followed by a hidden layer with
500 and 10 nodes. Each convolution layer was
followed by a max pool layer. The 2-convolution
layer network was trained with an ADAM opti-
mizer with an initial learning rate of 0.001 and a
batch size of 16. A time-based learning rate decay
scheduler was used for all the training runs.

Comparison with state-of-the-art. For com-
parison, we consider the results obtained with
other spiking architectures. Table. 1 displays accu-
racy at par with that of state-of-the-art spiking
architectures. Note that rate-based approaches
display better accuracy but with sacrifice in
latency, sparsity, and energy efficiency when com-
pared to TTFS-based approaches. Note that we
were able to achieve good accuracy with 100 hid-
den nodes in a fully connected spiking network and
6 channels with 15 hidden nodes in a convolutional
spiking network.

Method Accuracy Method Accuracy
Rate coding

[14] 0.91 [15] 0.98
[16] 0.984 [17] 0.95

TTFS coding
[18] 0.97 [19] 0.99
[20] 0.99 [15] 0.97
[21] 0.979 [22] 0.97

TEMP1 0.977 TEMP2 0.991/0.999

Table 1: Comparison of proposed TEMP with
state-of-the-art spiking architectures on MNIST
classification task. TEMP1 and TEMP2 are spik-
ing networks with dense and convolutional layers,
respectively. TEMP2 (test/train) is the result
obtained with normalized spatio-temporal pat-
terns. Rate-based approaches (top 2 rows) lack the
benefits such as sparsity, energy efficiency, etc.,
which are inherent to TTFS-based approaches.

Analysis of Spatio-Temporal encoding in
TEMP Networks

By virtue of axonal delays, TEMP-based networks
exhibit rich spatio-temporal encoding, which is
well-known for their enhanced combinatorial rep-
resentational capabilities. As the network becomes
structured with learning, certain stimuli-specific
patterns emerge as portrayed in Fig. 4, validat-
ing the combinatorial representational capability
of these encoding patterns.

As noticed in Fig. 4a, though there exists a
similarity between patterns that belong to the
same class, patterns that emerged in response to
different stimuli do exhibit variance.

Fig. 4b shows the spike-raster plot (Time of
firing vs. Neuron Number) of a dense layer. This
experiment is an indication of the fact that there
will be no ambiguity even if a set of neurons is
shared across multiple spatio-temporal patterns.
This is owing to the fact that a single neuron can
fire with different patterns at different times, and
these patterns are not only defined by their con-
stituent neurons but also by their precise firing
time.

The Effect of the Hyper-parameter γ on
Computation.

Sparsity in causal spikes. The majority of
energy is consumed by signaling, which could be
regulated by sparse coding, where M out of total
N neurons (M ≤ N) are active. Sparse coding
is an energy-saving neural coding along the lines

LATEX template

Article Title 7

a)

b)

Fig. 4: Combinatorial representational capability of spatio-temporal patterns. (a) Spatio-
temporal patterns emerged from the TEMP-based convolution layer in response to samples from input
stimuli representing classes 2 and 7. This shows the intra-class similarity and inter-class variability learned
by the patterns. Despite the intra-class similarity, unique spatio-temporal firing patterns can be observed
for each stimulus, thus bringing out the combinatorial representational capability of TEMP. (b) Spike
raster plot of the learned spatio-temporal patterns. It could be seen that patterns share neurons, but the
neuronal firing order differs across the patterns. This adds to the combinatorial representational capability
of TEMP-based networks.

of neural signal transmission theory and energy
utilization rate theory.

The formulation of TEMP neuron includes a
hyper-parameter named γ, which regulates the
number of post-synaptic neurons that fires (Fig.
5a). Thus, TEMP exhibits an adaptive sparse cod-
ing strategy, which enables it to generate sparse
M of N spike codes.

The proposed TEMP has adaptive delay plas-
ticity, thus introducing a scheme where the order
of arrival of pre-synaptic spikes at a post-synaptic
neuron is governed by their information content.
In this study, we highlight the effect of delay plas-
ticity and γ on the processing ability of TEMP
(Fig. 5c).

Fig. 5d displays the distribution of pre-
synaptic spikes required to fire each of the hidden
layer neurons. It could be verified that an aver-
age neuron fires with 16% of total pre-synaptic
spikes, thereby validating that the spikes repre-
senting critical information reach the neuron early
and thus achieve the desired result with as few
spikes as possible.

In Appendix B, we have provided additional
experiments on a simulated dataset to substanti-
ate the mentioned claim.

Tunable latency (TT scaling). The hyper-
parameter γ plays a notable role in tuning the
tradeoff between latency and accuracy. We could
achieve a notable reduction in latency (γ) with

LATEX template

8 Article Title

Fig. 5: Effect of hyperparameter γ on computation (a,b,c) Sparse coding: (a) The hyperparameter
γ determines the number of nodes that fire, which is a crucial factor in achieving desirable sparsity. (b)
Sparse coding vs. accuracy analysis. Ah is the percentage of active nodes, which is controlled by the
hyperparameter γ. TrAcc and TeAcc are the train and test accuracies at various sparsity coefficients.
(c,d) Sparse causal spikes: (c) Based on γ, the causal set of pre-synaptic spikes varies, which determines
the number of pre-synaptic spikes involved in the firing of the post-synaptic neuron. The delay plasticity
ensures that most informative pre-synaptic neurons get to deliver their spikes early to post-synaptic
neurons. This results in minimal computation. (d) This gives the plot of the distribution of the number
of causal pre-synaptic spikes required by the TEMP neurons to fire. The total number of pre-synaptic
spikes was 784. It could be seen that, on average, the hidden layer TEMP neurons require only ∼ 16%
of total pre-synaptic spikes to get triggered. This proves that delay plasticity results in the early arrival
of most informative spikes, hence reducing the computations to as minimal as possible. (e,f) Tunable
latency vs. accuracy: Analysis of latency and accuracy of TEMP network trained over different values of
γ : [1 . . . 35]. As γ increases, latency increases as expected. However, classification accuracy reaches its
maximum for a particular value of γ as the latter is the critical factor in tuning the non-linearity induced
by the TEMP. Thus, γ acts as a hyperparameter for the latency vs. accuracy tradeoff.

a slight degradation in performance as provided
in Fig. 5(e,f). With an increase in latency (γ),
the recognition capability of TEMP improves.
However, as γ is increased further, we notice
the drop in accuracy, owing to the fact that
the non-linearity exhibited by the TEMP neuron
is causality-induced (γ dependant) non-linearity.
An increase in γ is limited by the fact that
the causality should induce sufficient non-linearity

to generate separable patterns. However, there
is an optimal value of γ, where we can obtain
both competitive accuracies as well as reasonable
latency.

3 Discussion

We have proposed a time-based spike comput-
ing paradigm TEMP. This builds on a principle

LATEX template

Article Title 9

known as Margin Propagation (MP), which has
been introduced to approximate log-sum-exp as a
piecewise linear function. We remark that TEMP
involves only primitive operations such as time-
based addition, subtraction, threshold operation,
etc.

TEMP is built on delay plasticity, which con-
tributes towards a unique implementation of the
popular AER protocol. By modeling synaptic
strength as interconnect delay, TEMP reduces
the demands on neuromorphic hardware by com-
pletely eliminating synaptic circuits, thus favoring
the construction of highly reconfigurable large-
scale neuromorphic spiking architectures.

Gradient based-learning approaches have
remained incompatible [23] [24] [25] [26] with
spiking models until recently [18] [15]. By incor-
porating temporal coding into a differentiable
non-leaky TEMP formulation, we showed that
we were able to define a continuously differen-
tiable expression between input and output spike
times. This enabled exact error backpropagation
through a network of neurons, unlike the con-
ventional spiking domain where direct learning is
still an open research problem [25] [27] [28] [29]
[30] [23] [24] [31] [26].

We showed that the network constructed with
the proposed spike computing model could solve
non-linear classification tasks with accuracy com-
parable to that of the state-of-the-art. The prop-
erty of learnable delay, inherent to TEMP, has led
to the emergence of spatio-temporal patterns in
the network. The combinatorial representational
capability of these patterns has been demon-
strated for different classes of stimuli.

Further, through experiments, the benefits of
the tunable hyperparameter γ inherent to TEMP
have been demonstrated. γ can be used to control
the latency, accuracy, and sparsity in TEMP-
based networks. This application-specific tunable
property of γ enables widespread application of
TEMP from ultra-fast differential sensing systems
to highly accurate visual recognition systems.

A Appendix I

TEMP Formulation

Similar to [11], the exponential function f =
e−(t−ti) can be approximated using Piecewise
Linear (PWL) approximation as follows:

Differentiating f with respect to t, it becomes

df

dt
= −e−(t−ti) (4)

Approximating −e−(t−ti) for t ≥ ti with the
Heaviside step function, −θ(t − ti), we get the
approximated differentiation as

dfa
dt

= −θ(t− ti) (5)

Integrating the above equation we get,

fa = c− (t− ti)θ(t− ti)
= c− |t− ti|+ (6)

Where c is the integration constant. Hence fa
turns out to be the approximation for e−(t−ti).

Relation of TEMP with non-Leaky
Integrate and Fire (n-LIF) Networks

In this section, we mathematically show the con-
nection between the TEMP formulation and n-LIF
SNNs. The differential equation governing the
dynamics of an n-LIF neuron [32, 33] is given by

Cm
du

dt
= I(t) (7)

Here, Cm is the membrane capacitance, u is
the membrane potential and I(t) is the current
injected into the neuron.
When pre-synaptic neurons i emit a spike δ(t),
they pass through their respective synaptic con-
nections, where their strength gets modified by
synaptic strengths wi and convolved with the
following exponential synaptic kernel function,

κ(t) = θ(t)e−
t
τs (8)

Here τs is the synaptic time constant and θ(t)
is the Heaviside step function.
Inputs are received in the form of spikes that
induce a synaptic current. The full synaptic cur-
rent is given by a weighted sum over the synapses
from pre-synaptic neurons (denoted by index i)
to the post-synaptic neuron with the respective
weight wi. Accordingly, the total pre-synaptic cur-
rent amounts to Isyn(t) =

∑
i wiκ(t− ti). Assum-

ing a 0 initial condition on the membrane poten-
tial, the response of the n-LIF can be expressed as
[33]:

LATEX template

10 Article Title

u(t)
Cm
τs

=
∑
i

wiθ(t− ti)(1− e−
t−ti
τs) (9)

Approximating Eq. 9 with the approximation
in Eq. 6, we get

u(t)
Cm
τs

=
∑
i

wiθ(t− ti)(1− c+ |t− ti|+) (10)

For simpler computation, consider wi = 1 for all i,
and c = 0. At the threshold voltage vth, attained
at time tz, the neuron spikes, and Eq 10 simplifies
to

vth
Cm
τs

=
∑
i

(1 + |t− ti|+) (11)

Relation of TEMP with Leaky Integrate
and Fire Networks

In this section, we mathematically show the con-
nection between the TEMP formulation and the
Leaky Integrate and Fire (LIF) SNNs. The differ-
ential equation governing the dynamics of an LIF
neuron [32, 34] is given by

Cm
du

dt
=

1

R
[urest − u] + I(t) (12)

Here, Cm is the membrane capacitance, u is
the membrane potential, R is the membrane resis-
tance, urest is the resting potential, I(t) is the
current flowing into the neuron.

The total pre-synaptic current can be denoted
as Isyn(t) =

∑
i wiκ(t− ti), which represents the

weighted sum over the synapses from pre-synaptic
neurons (denoted by index i) with weights wi.
Assuming a 0 initial condition on the membrane
potential, the response of the LIF neuron for
an exponential synapse kernel (Eq 8) can be
expressed as [32]:

u(t) =
1

Cm

τmτs
τm − τs

∑
i

wiθ(t− ti)(e−
t−ti
τm − e−

t−ti
τs)

(13)
On approximating, the exponential terms in

Eq 13 using Eq 6, we get

u(t) =
K1

Cm

∑
i

wiθ(t− ti)(c1−
|t− ti|+
τm

+ c2 +
|t− ti|+

τs
)

(14)

Here K1 = τmτs
τm−τs .

Assuming the constants c1 and c2 are 0, and wi is
1 for all i, for simpler computation, Eq 14 can be
expressed as

u(t) =
K1

Cm

∑
i

|t− ti|+(
1

τs
− 1

τm
)

=
1

Cm

∑
i

|t− ti|+ (15)

At the threshold voltage vth, attained at the
time tz when the neuron spikes, Eq 15 simplifies
to

vthCm =
∑
i

|tz − ti|+ (16)

LIF Neuron dynamics with a Dirac-Delta
Synaptic Kernel

For urest = 0 and an input current I(t) = δ(t),
the impulse response of a LIF neuron (from Eq
12) becomes,

u(t) =
1

Cm
θ(t)e−

t
τm (17)

Where τm = RmCm is the membrane time
constant and θ(t) is the Heaviside step func-
tion. Assuming the synaptic impulse response to
be a Dirac delta function and wi to be small,
the response of the LIF neuron to a weighted
sum of pre-synaptic spikes (from Eq. 13) can be
approximated as

u(t) =
1

Cm

∑
j

θ(t− tj)
[
e−

(t−tj−wj)
τm

]
(18)

Substituting the exponential term with its
approximation fa, we get,

u(t) =
1

Cm

∑
j

θ(t− tj) [c− |t− tj − wj |+] (19)

When the neuron fires at u(t) = vth,

vth =
1

Cm

∑
j

[c− |tz − tj − wj |+] (20)

Eq. 20 can be simplified as,

LATEX template

Article Title 11

∑
j

|tz − tj − wj |+ = γ =
∑
j

c− Cmvth (21)

Note in Eq. 21 the synaptic connectivity
between neurons has become axonal delay.

Inter-neuron connectivity of Temp

Temp with synaptic connectivity is defined by the
following transfer function,

φ

(∑
j

wjtj

)
= −τm log

∑j e
−(tj+wj)

τm + e
−(−tj−wj)

τm∑
j e

−(tj−wj)
τm + e

−(−tj+wj)
τm


(22)

Converting tj and wj into differential domain
as w+

j = a+wj , w
−
j = a−wj and t+j = a+tj , t

−
j =

a− tj , which enables canceling of inherent device
noise, we get

φ

(∑
j

wjtj

)
= −τm log

∑j e
−(t

+
j

+w
+
j

)

τm + e
−(t

−
j

+w
−
j

)

τm∑
j e

−(t
+
j

+w
−
j

)

τm + e
−(t

−
j

+w
+
j

)

τm


(23)

The numerator and denominator can be writ-
ten as,

∑
j

e
−(t

+
j

+w
+
j

)

τm + e
−(t

−
j

+w
−
j

)

τm = e−
t+

τm

∑
j

e
−(t

+
j

+w
−
j

)

τm + e
−(t

−
j

+w
+
j

)

τm = e−
t−
τm (24)

Substituting the approximation fa, we get,

∑
j

|t+ − (t+j + w+
j)|+ + |t+ − (t−j + w−

j)|+ = τm∑
j

|t+ − (t+j + w−
j)|+ + |t+ − (t−j + w+

j)|+ = τm

(25)

Hence, the output t of the TEMP neuron
implementing the transfer function given in Eq. 11
is

t =

{
t+ − t− if t+ ≥ t−

0 otherwise
(26)

B Appendix II

Neuronal Dynamic of TEMP

Note that TEMP can exhibit both leaky (c −∑
j |t− ti|+) as well as non-leaky (c+

∑
j |t− ti|+)

behavior. In the non-leaky model, input is retained
until the neuron spikes, unlike the leaky version,
where the potential starts to decay after reaching
its peak.

Fig. 6 demonstrates the trajectories of the neu-
ral dynamics of TEMP, where we have evaluated
the dynamics of the membrane potential of TEMP
to input spike train δ(t − ti) of varying frequen-
cies. For each frequency, γ has been varied and
demonstrated that the relationship between the
former and membrane potential is responsible for
different spiking patterns.

Extension of Non-linear classification
abilities of TEMP

Exclusive OR (XOR). We begin by validat-
ing the proposed TEMP with a classic linearly
non-separable XOR task. This has been done to
verify the nonlinear classification capability of the
proposed solution. XOR data has been gener-
ated from the uniform distribution U(−1, 1) and
encoded as differential spikes.

The architecture we have set up has a dense
layer with ten TEMP and a classification layer
with two TEMP, which is tasked to signal the true
class.

The network is initialized with values drawn
from a normal distribution. Learning loss is
defined such that TEMP belonging to true class
fires t− far earlier than t+. Loss is binary cross
entropy loss between softmax activation of the
classification layer and true class labels.

After training 20 epochs with 60000 samples
(batch size of 128) with Adam optimizer and an
initial learning rate of 0.001, the network success-
fully learned the XOR classification task with an
accuracy of 99.6%. The good classification accu-
racy proves that the non-linearity induced by the
TEMP enables the classification of non-linearly
separable XOR data (The results are presented in
Fig. 7).

LATEX template

12 Article Title

a) b)

c) d)

Fig. 6: Neuronal dynamics of the proposed TEMP in non-leaky (a,b) and leaky (c,d) mode for
a pre-synaptic spike train generated at a frequency of 50 Hz (a), 10 Hz (b,c) and 5 Hz (d). When
the membrane potential reaches the threshold γ, an output spike is generated. The sub-plots show the
variability of the output spike rate (output spike generation is marked as black dots) with respect to γ
and input spike rate.

MOON classification task. To further under-
stand the effect of adding layers to classify non-
linearly separable data, we have investigated the
classification performance of the proposed TEMP
solution with a synthetic two-dimensional binary
classification dataset popularly known as the
MOON dataset. We have implemented the follow-
ing spiking network for this purpose: 2 → 10 →
20 → 2. The weights were initialized by drawing
from the normal distribution.

Training samples of 20000 were presented to
the network as mini-batches of size 128 for 20
epochs. The optimizer was set to Adam with a
learning rate of 0.03. It was necessary to include
standardization (x−µσ) as part of the loss func-
tion to sustain the propagation of gradients across
the network during training. The proposed TEMP
demonstrated success in fitting the data with a
test accuracy of 99.25 ± 0.03%, thereby empha-
sizing the capability of the proposed TEMP to
estimate optimal nonlinear boundary on test data
(The results are presented in Fig. 7).

Additional experiments for sparsity in
causal spikes

Fig. 8a shows the dynamics of TEMP for a sam-
ple set of XOR data input spike train. With all
the other conditions remaining the same, the input
spike train was delayed with random and learned
delay. Randomly delayed scenarios mandated two
spikes to trigger firing, whereas spikes delayed
with learned w could go into firing mode with
the arrival of a single spike. Delays, when applied
to input spikes, shift the effect of a less infor-
mative input spike to a later time (before which
TEMP is triggered), thus reducing the number
of required spike processing. The introduction of
delay in TEMP helps to remove undesired input
spikes from the output spike generation process.

Learning of class-specific delay

Fig. 8b gives insight into the distribution of delay
learned by the synapses connecting 100 hidden
nodes and 10 class nodes for MNIST data. It
brings out the class-specific distribution of delay.

LATEX template

Article Title 13

Fig. 7: Classification of XOR and MOON data set. Top row: plots 1 and 3 - Illustration of XOR
and MOON dataset. The input times tx and ty correspond to input spike train time corresponding to the
x and y axes. Plot 2 and 4 - training progress in terms of loss on train and validation dataset for different
runs (with different initializations) (XOR and MOON). Middle row: plots 1 and 3 - Classification result
on XOR and MOON datasets. The color of each sample indicates the class predicted by the proposed
solution. Plots 2 and 4 - confusion matrix of XOR and MOON. Bottom row: plots 1 and 3 - spike times
of the two different class neurons. Our learning has induced a clear separation between the firing time
of the two classes. Plots 2 and 4 - correlation between the firing time of 10 hidden neurons of XOR and
MOON dataset estimated across test samples. Very less value in non-diagonal elements indicates nearly
zero correlation between the firing time of hidden neurons.

C Data Availability

The code for implementing the TEMP infer-
ence engine is available at https://github.com/
NeuRonICS-Lab/temp-framework.

References

[1] Boahen, K. A. Point-to-point connectivity
between neuromorphic chips using address
events. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Pro-
cessing 47 (5), 416–434 (2000) .

https://github.com/NeuRonICS-Lab/temp-framework
https://github.com/NeuRonICS-Lab/temp-framework

LATEX template

14 Article Title

a)

b)

Fig. 8: Benefits of the proposed TEMP. (a): shows the membrane potential of 6 different stimuli from
the XOR dataset. Before learning, these stimuli required two input spikes to trigger the post-synaptic
neuron, whereas learning has reduced the number of spikes to one to reach the threshold. This indicates
achieving the desired results with minimal spike computation. (b) the histogram plot of the delay (after
learning) between hidden neurons to the 10 class nodes of the network trained on the MNIST dataset.
The difference in the delay distributions depicts the class-specific learning of delays.

[2] Bamford, S. A., Murray, A. F. & Willshaw,
D. J. Large developing receptive fields using
a distributed and locally reprogrammable
address–event receiver. IEEE transactions on
neural networks 21 (2), 286–304 (2010) .

[3] Rathi, N. et al. Exploring neuromorphic
computing based on spiking neural networks:
Algorithms to hardware. ACM Computing
Surveys (2022) .

[4] Jongkil, P., Theodore, Y., Siddharth, J. &
et. al. Hierarchical address event routing for
reconfigurable large-scale neuromorphic sys-
tems. IEEE transactions on neural networks
and learning systems (2017) .

[5] Michael, L. & Michael, H. Dendritic com-
putation. Annual Review of Neuroscience

28 (1), 503–532 (2005) .

[6] Izhikevich, E. M. Polychronization: computa-
tion with spikes. Neural computation 18 (2),
245–282 (2006) .

[7] Sun, P., Zhu, L. & Botteldooren, D. Axonal
delay as a short-term memory for feed for-
ward deep spiking neural networks 8932–8936
(2022) .

[8] Galluppi, F. & Furber, S. Representing
and decoding rank order codes using poly-
chronization in a network of spiking neurons
943–950 (2011) .

[9] Boahen, K. Dendrocentric learning for syn-
thetic intelligence. Nature 612 (7938), 43–50
(2022) .

LATEX template

Article Title 15

[10] Chakrabartty, S. & Cauwenberghs, G. Mar-
gin propogation and forward decoding in
analog vlsi. Proc. IEEE Int. Symp. Circuits
and Systems. (2004) .

[11] Ming, G. & Shantanu, C. Synthesis of bias-
scalable cmos analog computational circuits
using margin propagation. IEEE Transac-
tions on Circuits and Systems. (2012) .

[12] Nair, A. R., S, C. & Thakur, C. S. In-filter
computing for designing ultra light acoustic
pattern recognizers. IEEE internet of Things
Journal. .

[13] Nair, A. R., Nath, P. K., S, C. & Thakur,
C. S. Multiplierless mp-kernel machine for
energy efficient edge devices. IEEE transac-
tions on very large scale integration systems.
(2022) .

[14] Lee, C., Srinivasan, G., Panda, P. & et,
a. Deep spiking convolutional neural net-
work trained with unsupervised spike-timing-
dependent plasticity. IEEE Transactions on
Cognitive and Developmental Systems 384–
394 (2018) .

[15] Kheradpisheh, S. R., Ganjtabesh, M.,
Thorpe, S. J. & et, a. Stdp-based spik-
ing deep convolutional neural networks for
object recognition. Neural Networks (2018) .

[16] Wu, J., Chua, Y., Zhang, M. & et, a.
Deep spiking neural network with spike count
based learning rule. International Joint Con-
ference on Neural Networks (IJCNN) (2019)
.

[17] Stromatias, E. & et, a. Scalable energy-
efficient, low- latency implementations of
trained spiking deep belief networks on spin-
naker. International Joint Con- ference on
Neural Networks (2015) .

[18] Mostafa, H. Supervised learning based on
temporal coding in spiking neural networks.
IEEE transactions on neural networks and
learning systems 3227–3235 (2017) .

[19] Zhang, L., S, Z., Zhi, T. & et, a. Tdsnn:
From deep neural networks to deep spike

neural networks with temporal-coding. Pro-
ceedings of the AAAI Conference on Artificial
Intelligence 1319–1326 (2019) .

[20] Zhou, Shibo & et, a. Temporal-coded deep
spiking neural network with easy training and
robust performance. Proc. AAAI Conf. Artif.
Intell. (2021) .

[21] Comsa, I. M. & et, a. Temporal coding in
spiking neu- ral networks with alpha synaptic
function. International Conference on Acous-
tics, Speech and Signal Processing (2020)
.

[22] Goltz, Julian & et, a. Fast and energy-
efficient neuromorphic deep learning with
first-spike times. Nature machine intelligence
823–835 (2021) .

[23] Shulz, D. & Feldman, D. Spike timing-
dependent plasticity. Neural Circuit Devel-
opment and Function in the Brain 155–181
(2013) .

[24] Morrison, A., Aertsen, A. & Diesmann,
M. Spike-timing-dependent plasticity in bal-
anced random networks. Neural Comput.
1437–1467 (2007) .

[25] Diehl, P. U. et al. Fast-classifying, high-
accuracy spiking deep networks through
weight and threshold balancing. Proc. Int.
Joint Conf. Neural Netw. 1–8 (2015) .

[26] Falez, P., Tirilly, P., Marius Bilasco, I., Devi-
enne, P. & Boulet, P. Multi-layered spiking
neural network with target timestamp thresh-
old adaptation and stdp. Proc. Int. Joint
Conf. Neural Netw. 1–8 (2019) .

[27] Rueckauer, B. & Liu, S. Conversion of ana-
log to spiking neural networks using sparse
temporal coding. ISCAS (2018) .

[28] Deng, S. W. & Gu, S. Optimal conver-
sion of conventional artificial neural networks
to spiking neural networks. ArXiv, vol.
abs/2103.00476 (2021) .

[29] Ding, J., Yu, Z., Tian, Y. & Huang, T. Opti-
mal ann-snn conversion for fast and accurate

LATEX template

16 Article Title

inference in deep spiking neural networks.
Proc. 13th Int. Joint Conf. Artif. Intell.
2328–2336 (2021) .

[30] Shrestha, S. & Orchard, G. Slayer: Spike layer
error reassignment in time. Proc. NeurIPS
1–10 (2018) .

[31] Diehl, P. & Cook, M. Unsupervised learn-
ing of digit recognition using spike-timing-
dependent plasticity. Frontiers Comput. Neu-
rosci. 99 (2015) .

[32] Göltz, J. Training deep networks with
time-to-first-spike coding on the brainscales
wafer-scale system. Masterarbeit, Universität
Heidelberg, April (2019) .

[33] Mostafa, H. Supervised learning based on
temporal coding in spiking neural networks.
IEEE transactions on neural networks and
learning systems 29 (7), 3227–3235 (2017) .

[34] Rathi, N., Srinivasan, G., Panda, P. & Roy,
K. Enabling deep spiking neural networks
with hybrid conversion and spike timing
dependent backpropagation. arXiv preprint
arXiv:2005.01807 (2020) .

	Introduction
	Results
	Event-based Model for a TEMP Neuron
	TEMP spiking neural network
	AER Realization of TEMP networks
	Network topology constructed with TEMP
	Non-linear Classification using TEMP
	MNIST classification task
	Comparison with state-of-the-art

	Analysis of Spatio-Temporal encoding in TEMP Networks
	The Effect of the Hyper-parameter on Computation
	Sparsity in causal spikes
	Tunable latency (TT scaling)

	Discussion
	Appendix I
	TEMP Formulation
	Relation of TEMP with non-Leaky Integrate and Fire (n-LIF) Networks
	Relation of TEMP with Leaky Integrate and Fire Networks
	LIF Neuron dynamics with a Dirac-Delta Synaptic Kernel
	Inter-neuron connectivity of Temp

	Appendix II
	Neuronal Dynamic of TEMP
	Extension of Non-linear classification abilities of TEMP
	Exclusive OR (XOR)
	MOON classification task

	Additional experiments for sparsity in causal spikes
	Learning of class-specific delay

	Data Availability

