
1

tinyRadar for Fitness: A Contactless Framework for
Edge Computing

Satyapreet Singh Yadav1⋆, Radha Agarwal1⋆, Kola Bharath1, Sandeep Rao2, Chetan Singh Thakur1

{satyapreets, radhaagarwal, kolabharath, csthakur}@iisc.ac.in, s-rao@ti.com
1Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India, 560012

2Texas Instruments, Bangalore, India, 560093

Abstract—Healthcare technology is evolving from a conven-
tional hub-based system to a personalized healthcare system
accelerated by rapid advancements in smart fitness trackers.
Modern fitness trackers are mostly lightweight wearables and can
monitor the user’s health round the clock, supporting ubiquitous
connectivity and real-time tracking. However, prolonged skin
contact with wearable trackers can cause discomfort. They are
susceptible to false results and breach of privacy due to the
exchange of user’s personal data over the internet. We propose
tinyRadar, a novel on-edge millimeter wave (mmWave) radar-
based fitness tracker that solves the issues of discomfortness, and
privacy risk in a small form factor, making it an ideal choice for
a smart home setting. This work uses the Texas Instruments
IWR1843 mmWave radar board to recognize the exercise type
and measure its repetition counts, using signal processing and
Convolutional Neural Network (CNN) implemented on board.
The radar board is interfaced with ESP32 to transfer the results
to the user’s smartphone over Bluetooth Low Energy (BLE). Our
dataset comprises eight exercises collected from fourteen human
subjects. Data from ten subjects were used to train an 8-bit
quantized CNN model. tinyRadar provides real-time repetition
counts with 96% average accuracy and has an overall subject-
independent classification accuracy of 97% when evaluated on
the rest of the four subjects. CNN has a memory utilization of
11.36 KB, which includes only 1.46 KB for the model parameters
(weights and biases) and the remaining for output activations.

Index Terms—tinyRadar, IWR1843, CNN, VT map, tinyML,
CMSIS-NN, fitness tracker, edge computing, ESP32

I. INTRODUCTION

Regular exercising is essential for physical and mental well-
being [1]. Personalized insights such as step count, calories
burnt, and distance travelled motivate people to exercise regu-
larly and set higher fitness goals [2]. Fitness trackers help self-
health management in clinical settings [3] for people suffering
from lifestyle diseases like obesity and diabetes. Smart fitness
trackers require features such as real-time activity recognition
with privacy preservation [4], [5], and compact form factor.

Wearable fitness trackers are commonly used, but they
are uncomfortable to wear for prolonged use, potentially
causing skin irritation and rashes [6]–[8]. Wearable trackers
are attached to one part of the body and might track only
that location, sometimes providing false results since they
cannot capture the whole-body movement, especially when
other limbs are moving [9], [10]. Also, false results occur
when the device loses contact with the skin when the user
begins to sweat during exercise [11].

⋆Equal contribution

We can classify the data collected through modern fitness
trackers into three broad categories based on the sensitivity of
the information: Personal Data (PD), Activity Data (AD), and
Geolocation Data (GD) [12]. PD comprises personal attributes
like name, age, and gender, which a user usually fills in the
tracker at the time of tracker activation. AD includes health-
related details like step counts and calories burnt measured by
the tracker. GD contains information about the user’s mobile
and its location. We understand that modern wearable trackers
are susceptible to privacy violations since they collect PD, AD,
and GD, which can be leaked through the tracker [13], [14].
Wearable fitness tracker vendors might gain data (PD, AD,
and GD) ownership and might also collect more information
without the user’s awareness [12]–[14], which can later be
stored on a cloud server or sold to third-party vendors [12],
[15].

Camera-based fitness trackers used to monitor human ac-
tivity generally pose privacy concerns [16]. Or they require
complex algorithms to protect privacy by blurring the face of
the user in the video [10], at the cost of additional computation
overhead. We understand these trackers require extra hardware
for processing, like a PC/cloud server. Thus, limiting the
portability and scalability of the system. These trackers might
fail in low light conditions (e.g., shadows, foggy conditions).

tinyRadar, a radar-based fitness tracker, can overcome the
shortcomings mentioned above through contactless sensing
and tracking the whole body motion providing accurate results
compared to wearable trackers. It gives compact point cloud
data which inherently protects user privacy. Also, it collects
only Activity Data (AD), preserving the user’s anonymity. Pre-
vious works [17]–[19] propose using mmWave radar for fitness
or human activity tracking, where they use an external PC
for real-time processing. Using an external PC for processing
increases power consumption and limits the portability and
scalability of the system. [5], [20], [21] highlights the impor-
tance of on-edge systems providing real-time, fast, portable,
and secure solutions on resource constraint hardware.

We propose tinyRadar as a fitness tracker, with IWR1843
mmWave radar as a sensing and processing modality and
ESP32 for wireless data transmission. IWR1843 mmWave
radar operates in the frequency range of 76-81 GHz and
provides high-resolution point cloud data of the target envi-
ronment, which helps to differentiate various human activities.
It has an on-chip Hardware Accelerator (HWA), a Cortex®-
R4F microcontroller which runs at 200 MHz, and a Digital

2

RX waves

TX waves

Synthesizer
TX1

RX1

RX2

RX3

RX4

Velocity-Time
Map

Generation

Classification
Engine

mmWave Radar Board (TI's IWR1843)

BLE

ESP32

Exercise
class

UART

Exercising
human

Repetition
count

UART

RF Front End Processing Module Transmission Module

ADC

Repetition
Counting

(b)

(d)

ESP32

R4F

DSP C674x

(a)

4 RX antennas

3 TX antennas

HWA+ R4F
+ DSP C674x

IWR1843

(c)

Wall-mounted
radar sensor

Human
exercising at

~7m from radar

Fig. 1. Top-level block diagram of tinyRadar fitness tracker comprising IWR1843 mmWave radar (we used one TX and four RX antennas) as sensing and
processing modality and ESP32 for wireless transmission. (a) An operational scenario of wall-mounted tinyRadar with a human exercising at ∼ 7m. (b)
Zoomed view of tinyRadar with IWR1843. (c) Opened view of tinyRadar showing the ESP32 integrated with the radar board. (d) Block diagram indicating
the signal and implementation flow from sensing the target environment using the RF front-end to VT map generation, classification, repetition counting and
transmission of results.

Signal Processor (DSP) C674x, which runs at 600 MHz. The
availability of these processors on a single chip enables the
on-edge implementation of signal processing algorithms and
deep-learning models in real-time.

This work is an extension of our previous work [5], where
we showed the applicability of mmWave radar for human
activity classification by deploying a quantized CNN model
on board for classification on the IWR6843 board. We have
extended this work by developing an end-to-end, complete
plug-and-play system using mmWave radar IWR1843, ESP32,
and a mobile application. We performed hardware integra-
tion between IWR1843 and ESP32 boards using a separate
daughter board. We performed software integration and syn-
chronization between modules running on different processors,
where the CNN-based classification network runs on Cortex-
R4F, and the repetition counter runs on DSP C674x. We
implemented an onboard repetition counting algorithm which
involves heavy signal processing techniques from scratch with
efficient utilization of resources to count the number of times
the user performs a particular exercise. We have optimized the
onboard processing chain using task parallelization and ring
buffer implementation to decrease the system’s latency and
memory footprint, respectively. We extended the number of
classes from four in the previous work to eight to showcase

the system’s scalability. We also generated our own dataset
from 14 (10 for training + 4 for testing) human subjects for
eight exercises, available at [22].

II. SYSTEM DESCRIPTION

A Frequency-Modulated Continuous Wave (FMCW) radar
continuously transmits chirps in the form of Radio Frequency
(RF) waves. A chirp is a signal whose frequency increases
linearly with time, and a collection of chirps constitutes a
frame. The radar is configured with the desired chirp and frame
parameters for the target application.

As shown in Fig. 1, the radar is configured to use one
TX and four RX antennas. The processing starts by mixing
the transmitted chirp with the received chirp to generate an
Intermediate Frequency (IF) signal, which is later digitized
using the onboard Analog-Digital Converter (ADC). The range
information of the target is directly related to the frequency
of the IF signal. Hence, Fast Fourier Transform (FFT) is
performed on the digitized data across the samples of each
IF signal to extract range information. Range processing is
performed in HWA during the acquisition phase. The phase
differences among the consecutive IF signals contain the
velocity information. Hence, FFT is performed on the Range-
Time maps across the IF signals resulting in Range-Velocity

3

maps. The Range-Velocity maps (for each frame) across the
four receive antennas are later converted into a velocity column
by performing incoherent addition across the receive antennas
and range bins. The velocity columns are stitched across
multiple frames to create a Velocity-Time map (VT map).
VT maps contain unique activity signatures and are used for
classification and repetition count computation. The onboard
DSP C674X is used to generate the Range-Velocity and VT
maps.

The classification network for exercise recognition and
repetition counting algorithm is deployed on Cortex®-R4F and
DSP C674x, respectively, with VT map as input. The classifi-
cation network classifies eight exercises using a lightweight
CNN model deployed using the Common Microcontroller
Software Interface Standard - Neural Network (CMSIS-NN)
framework [23]. The radar communicates the classification
result and repetition counts to ESP32 via Universal Asyn-
chronous Receiver Transmitter (UART), which is transferred
to a smartphone over BLE for monitoring. The BLE mobile
application is built using MIT APP Inventor, an open-source
web-based application for building android applications.

III. DATASET DESCRIPTION

The chirp configurations of tinyRadar are shown in TABLE
I. For our application, the radar was configured to sample each
chirp at a rate of 3000 Ksps with 241 samples to measure
activities up to a maximum distance of ∼ 8 m. The maximum
measurable range of the radar depends on peak power, the gain
of the transmit and receive antenna, the effective aperture of
the antenna, Radar Cross Section (RCS), which is the effective
area of the target from which reflections are received, and the
frequency of operation of the radar. We kept the maximum
measurable range to ∼ 8 m since tinyRadar is a wall-mounted
tracker, and the user would perform activity inside his personal
space by remaining close to the sensor. The bandwidth of a
chirp is the product of frequency slope and ramp end time.
The range resolution of radar is inversely proportional to its
bandwidth. The bandwidth of the radar was set to 3.969 GHz
to achieve a range resolution of ∼ 4 cm.

Increasing the number of chirps in a frame or the chirp
duration improves the velocity resolution. But, increasing chirp
duration also decreases the maximum measurable velocity.
Each frame was configured with 124 chirps, each chirp with a
time duration (ramp end time + idle time) of 287 µs to achieve
a velocity resolution of 6 cm/s and a maximum measurable
velocity of 4.23 m/s. The frame duration was set to 70 ms to
keep the duty cycle of the radar within 50% to meet hardware
constraints. All four receive antennas were utilized for VT
map generation to increase the system’s Signal-to-Noise Ratio
(SNR).

Training data comprising VT maps of eight exercises across
10 people was collected using the mmWave radar board. The
radar was placed at the height of ∼ 1 m, and exercises were
performed by the people in the line of sight of the radar.
The measured velocity is close to the target velocity when
the activity is performed in the line of sight and gradually
decreases as the user moves away from the line of sight. Each

TABLE I
CHIRP CONFIGURATIONS

Symbol Parameter Value
S Frequency slope 45.624 MHz/µs
Tidle Idle time 199.8 µs
Nr ADC samples 241
Fs Sample rate 3000 Ksps
Tend Ramp end time 87 µs
Nc Chirps per frame 124
Tfr Frame periodicity 70 ms
Ntx TX antennas 1
Na RX antennas 4
Rmax Maximum range 7.89 m
Rres Range resolution 4.09 cm
Vmax Maximum velocity 4.23 m/s
Vres Velocity resolution 6 cm/s

exercise was performed in two sessions of 2.5 minutes. Thus,
we collected training data of 10 persons x 8 activities x 2
sessions x 2.5 minutes = 400 minutes of data (∼ 3, 43, 000
frames of data). The data was transferred via UART to a local
PC using a Python-based script for offline training. After data
cleaning, a total of 4, 461 VT maps were generated, each of
size 64 x 64.

(f) Hand rotation(b) Crunches

(c) Jogging

(d) Lateral squats (h) Rest

(e) Lunges

(g) Squats

(a) Crossover toe touch

 1

 0

 0.5

 0.25

 0.75

Fig. 2. Exercise types and their VT maps: Snapshots of exercise performed
by the user (left) and corresponding normalized VT map (right). In VT maps,
the x-axis represents time ranging from 0 to 4.5 seconds, and the y-axis
represents velocity ranging from −2 to +2 m/s.

Fig. 2 highlights the eight different exercises: Crossover
toe touch, Crunches, Jogging, Lateral squats, Lunges, Hand
rotation, Squats, and Rest, with corresponding normalized VT
maps. The eighth activity, ‘Rest’, corresponds to when the
person is idle or is not present in front of the radar.

4

EDMAADC Buffer HWA Local
Memory EDMA

Radar Cube

data in L3RAM

Static Clutter
Removal

Velocity column

Velocity-Time map

HWA

EDMA
HWA Local

Memory

DSP L1/L2
Memory

Chirps

RX

 DSP C674x

Range-FFT

FFT across

Samples of Chirp

R
an

ge

Velocity

RX

A
m

pl
itu

de

Samples

Incoherent
Addition across

RX

Range Velocity
map in L3RAM EDMA FFT across Chirps

in a Frame

Doppler-FFT

Ve
lo

ci
ty

Frames
Range-Velocity map

DSP C674x

RX

R
an

ge

R
an

ge

Velocity

RX

Velocity

(A) Range Processing

(B) Doppler Processing(C) VT map generation

DSP L1/L2
Memory

Incoherent
Addition across

Range bins

Concatenation
of 64 Velocity

Columns

Fig. 3. Flow chart showing radar signal processing steps, the intermediate outputs, and the data flow among different cores of radar board for generation of
the VT map. The white blocks symbolize the different memory elements of the radar board. (A) Range processing on the ADC samples of a single chirp for
all the RX at a time. (B) Doppler processing on the chirps of a single range bin for all the RX at a time. (C) Velocity-Time map generation.

IV. RADAR SIGNAL PROCESSING

The radar signal processing is performed onboard to gener-
ate VT maps. It starts with range processing, followed by static
clutter removal, doppler processing and incoherent addition
of the Range-Velocity maps across the receive antennas and
range bins to provide a velocity column for each frame.
Concatenation of velocity columns across multiple frames
creates a VT map. A detailed explanation of each processing
step is provided in the following sub-sections.

A. Range Processing
As shown in Fig. 3, the samples of a chirp are stored in

the ADC buffer after digitization for all the RX antennas.
Enhanced Direct Memory Access (EDMA) transfers the chirp
samples to HWA’s local memory from the ADC buffer. HWA
applies blackman window and performs FFT across the
samples of the chirp in a 16-bit fixed-point format as described
in (1). This operation is called Range-FFT.

Xr(a, r) =

Nr−1∑
s=0

x(a, s) ·Wb(s) · exp
(
−i2πrs

Nr

)
(1)

Here x(a, s) denotes the ADC data with ath receiver and
sth sample of the chirp, where s ∈ [0, Nr) , and a ∈ [0, Na) .
Xr(a, r) denotes range processed data of ath receiver, and rth

range bin, where r ∈ [0, Nr) . Wb denotes blackman window
of length Nr as described in (2).

Wb(s) = 0.42− 0.5 cos

(
2π

s

Nr − 1

)
+0.08 cos

(
4π

s

Nr − 1

) (2)

EDMA transfers the processed data from HWA’s local memory
to L3RAM after the completion of Range-FFT of each chirp.
A radar data cube of dimension Nc x Na x Nr is formed in
the L3RAM after the completion of range processing for all
the chirps in a frame.

B. Doppler Processing

EDMA transfers one range bin at a time from L3RAM to
DSP local L1/L2 memory, on which the DSP C674x performs
the rest of the signal processing during the inter-frame period,
which begins with static clutter removal.

1) Static Clutter Removal: Static clutter removal is ex-
plained in (3), where averaging is performed on all the
chirps of a range bin for each receive antenna, followed by
subtraction of the obtained average from the corresponding
range bin of radar cube data.

Xrm(a, r) =
1

Nc

Nc−1∑
c=0

Xr(c, a, r)

Xscr(c, a, r) = Xr(c, a, r)−Xrm(a, r)

(3)

Here Xr, Xrm, Xscr represent the radar cube data, chirp
averaged data, and radar cube data with static clutter removed,
respectively, where a ∈ [0, Na) , and c ∈ [0, Nc) . Xscr

contains information on moving objects.
2) Doppler FFT: After static clutter removal, DSP C674x

applies a hanning window and performs 16-bit fixed-point
FFT across the chirps of a range bin as described in (4). This
operation is called Doppler-FFT.

5

Xd(v, a, r) =

Nc−1∑
c=0

Xscr(c, a, r)·Wh(c)·exp
(
−i2πvc

Nc

)
(4)

Here Xscr(c, a, r) denotes the radar cube data after static
clutter removal with cth chirp, ath receiver, and rth range bin,
where a ∈ [0, Na) , and c ∈ [0, Nc) . Xd denotes the doppler
processed data, and Wh denotes hanning window of length
Nc as described in (5).

Wh(c) =
1

2

(
1− cos (2πcNc)

)
(5)

3) Incoherent addition across RX: After completing
Doppler-FFT for all the receive antennas of range bin r,
incoherent addition across RX is performed as described in
(6).

Yd(v, r) =
1

Na

Na−1∑
a=0

∣∣Xd(v, a, r)
∣∣ (6)

Here Xd(v, a, r) denotes the doppler processed data with
vth velocity bin, ath receiver, and rth range bin, where
a ∈ [0, Na) , and v ∈ [0, Nc) . Yd denotes the Range-Velocity
map, and |.| denotes the log magnitude operation. EDMA
then transfers Yd(v, r) from DSP’s local memory (L1/L2) to
L3RAM for range bin r. A Range-Velocity map of dimension
Nr x Nd is formed in L3RAM after completing doppler
processing for all the range bins.

C. Velocity-Time Map Generation

The incoherent addition of range bins in the Range-Velocity
map creates a velocity column on DSP C674x as described in
(7) and is stored in L3RAM.

Yd(v) =
1

Nr

Nr−1∑
r=0

∣∣Yd(v, r)
∣∣ (7)

Here Yd(v, r) denotes the Range-Velocity map with vth

velocity bin, and rth range bin, where r ∈ [0, Nr) . Yd

denotes the velocity column, and |.| denotes the log magnitude
operation.

Each velocity column is subjected to FFT-shift followed by
a cropping operation. The FFT-shift operation brings the zero

velocity bin to the centre. We observed that the dominant
signatures were present Nc

4 bins above and below the zero
velocity bin. Cropping operation as described in (8) is per-
formed to reduce the memory footprint by half for the CNN
network.

Ydr = Yd

(
Nc

4
− 1 : 3

Nc

4

)
(8)

Here Yd, Ydr denote the original and reduced velocity
columns, respectively.

The velocity column generated per frame is stored in
the ring buffer, allocated on L3RAM. Concatenation of Ydr

velocity columns across multiple frames generates a 16-bit
fixed-point VT map in the ring buffer. The ring buffer is shared
between DSP C674x and Cortex®-R4F for easy access to data,
using which Cortex®-R4F accesses the VT map to perform the
classification task.

V. CNN BASED ACTIVITY CLASSIFICATION

CNN is a data-driven classification network that learns
the features through the training process, unlike traditional
algorithms, such as Support Vector Machine (SVM), requiring
hand-engineered feature selection. VT maps contain unique
signatures for different human activities. With a VT map as
input, a CNN can be trained to understand the representations
for identifying various human activities and provide excel-
lent classification performance with relatively few trainable
parameters. The details of the proposed CNN architecture and
training parameters are listed in the following sub-sections.

A. Data Normalization

The 16-bit fixed-point input VT map is normalized to 8-bit
fixed-point format using (9).

x(m,n) = 255

(
x(m,n)− xmin

xmax − xmin

)
− 128 (9)

Here x, xmin and xmax represent the VT map, minimum and
maximum values of the VT map respectively, where m,n ∈
[0, 64) .

Fig. 4. Proposed CNN architecture

6

B. Training, Quantization and Deployment

Fig. 4 shows the network architecture of the onboard CNN
model to recognise the eight exercise types mentioned in
Section III. Training data collection across ten human subjects
for the eight activities resulted in 4,461 VT maps. The CNN is
trained on 5000 epochs for multinomial logistic loss function
using Adam optimizer with L2 regularisation, a learning rate
of 0.001, a momentum of 0.9, and a batch size of 64. The
trained CNN network contains only 1,496 32-bit parameters
(weights and biases).

The offline training and post-training quantization are per-
formed using Convolutional Architecture for Fast Feature
Embedding (Caffe) [24] framework. 8-bit quantization of CNN
parameters provides a four-fold advantage in terms of memory
saving and speed. The 8-bit quantized CNN is deployed on
the Cortex®-R4F board using CMSIS-NN custom Application
Programming Interfaces (APIs) and is tested on four subjects
who were not a part of the training session to evaluate the
subject-independent accuracy of the trained model.

VI. REPETITION COUNTS ALGORITHM

A VT map shows periodicity related to the repetition counts
of the exercise. Intuitively, performing 2D FFT on the VT
map and finding the index of the maximum peak can give the
repetition counts. However, computing 2D FFT on the board
can be expensive in resource utilization. The algorithm shown
in Fig. 5 computes the repetition counts by deriving a one-
dimensional envelope from the VT maps. Four consecutive VT
maps of size 64 x 64 are concatenated to form an observation
window of size 64 x 256. The observation window is converted
to a one-dimensional envelope, and counts are computed
from its magnitude spectrum. The observation window of
256 frames helps improve the FFT resolution compared to
a window of 64 frames. A detailed explanation of each step
implemented on DSP C674x is provided in the following sub-
sections.

A. Normalization

Normalization as a first step provides full-scale contrast to
the observation window realized using (10) to get an unsigned
8-bit fixed-point representation.

x(m,n) = 255

(
x(m,n)− xmin

xmax − xmin

)
(10)

Here x, xmin and xmax represent the observation window,
the minimum and maximum value of the observation window,
respectively, where m ∈ [0, 64) , and n ∈ [0, 256) .

B. Splitting of the Observation Window

Spurious signatures in the observation window can often
lead to miscalculating repetition counts since the calculation
is based on the FFT method. We observed that the spurious
signatures were not simultaneously present in positive and
negative velocity bins. Thus, the observation window is split
into two halves across the zero velocity axis as described in
(11). The count with the maximum confidence level out of

Normalization

 Splitting
 Velocity-Time Map

Binarization

Envelope Generation

EWMA Low Pass
Filtering

Detrending Using
Windowed Mean

FFT and Confidence
Computation

64 x 256 Observation Window

32 x 256 Negative half32 x 256 Positive half

32 x 256 Binarized Window32 x 256 Binarized Window

 1 x 256 Envelope 1 x 256 Envelope

 1 x 256 Filtered Envelope 1 x 256 Filtered Envelope

 1 x 256 Detrended Envelope 1 x 256 Detrended Envelope

 Magnitude Spectrum Magnitude Spectrum

Count Selection

Counts Confidence

Fig. 5. Repetition counts algorithm flowchart showing each step and the
corresponding output.

the two is chosen as the repetition count described in section
VI-H.

xP (m,n) = x(m,n)

xN (m,n) = x(m+ 32, n)
(11)

Here x, xP and xN represent the observation window, its
positive and negative half, respectively, where m ∈ [0, 32) ,
and n ∈ [0, 256) . Both xP and xN will be represented as y
in the subsequent sub-sections.

C. Binarization

Binarization assigns equal value to the effective pixels in
the observation window, which helps to provide a smooth one-
dimensional envelope. Each observation window is binarized
to unsigned 8-bit fixed-point format by thresholding it against
its mean value as described in (12).

y(m,n) =

{
255, if y ≥ ymean

0, otherwise
(12)

where ymean is the average value of the observation window,
y.

D. Envelope Generation

Computing the average velocity across each frame of the
binarized observation window generates the one-dimensional
envelope as described in (13).

ye(n) =
1

M

M−1∑
m=0

y(m,n) (13)

Here y and ye represent the observation window and its
envelope, respectively, where M = 32 and n ∈ [0, 256) .

7

E. Low Pass Filtering
The envelope is low-pass filtered using an Exponentially

Weighted Moving Average (EWMA) filter. EWMA filter
eliminates the high-frequency contents by taking a weighted
average as described in (14).

ŷe(n) = α ye(n) + (1− α) ŷe(n− 1) (14)

Here ye and ŷe are the original and low pass filtered envelope,
respectively, where n ∈ [0, 256) and α is the smoothing
parameter between zero and unity.

F. Detrending
The filtered envelope might have a trend due to the varying

rate at which the user exercises. Subtracting the local mean
computed over a sliding window of the length of 16 samples
removes the trend from the filtered envelope as described in
(15).

yd(m) = ŷe(m)− ŷemean (15)

Here ŷe, ŷemean , and yd represent the filtered envelope, its
mean computed within the window length and detrended en-
velope, respectively, where m ∈ [i, i+ 16) , and i ∈ [0, 242) .

G. FFT and Confidence Computation
Performing FFT on the detrended envelope and finding the

index corresponding to the maximum peak in the magnitude
spectrum determines the repetition counts in the observation
window. The confidence β in the detected peak is computed
as described in (16).

β =
Ep

Es
(16)

where,

Ep =

i+M∑
n=i−M

|Yd(n)|2

Es =

N−1∑
n=0

|Yd(n)|2
(17)

Here Yd represents the magnitude spectrum of the detrended
envelope yd of length N(= 256), Ep represents the energy in
the peak with index i within a window of length 2M +1, and
Es represents the energy in the entire spectrum.

H. Repetition Counts Computation
Each half of the observation window provides a count and

its confidence value. The count with maximum confidence is
chosen as the repetition count of the exercise in the current
observation window. Repetition counts from multiple obser-
vation windows of the same exercise with a sliding window
of length 16 are stored in a buffer cnts to compute the actual
repetition counts Reps as described in (18).

Reps =

∑
cnts

Nw

Ld

Lw
(18)

where cnts, Nw, Ld, and Lw denote the counts’ buffer,
the number of observation windows, total data length, and
observation window length (Lw = 256) of the exercise
respectively.

VII. HARDWARE IMPLEMENTATION

The real-time hardware implementation of tinyRadar works
by proper integration and synchronization of signal processing
chain running on HWA and DSP C674x and CNN-based
inference engine running on Cortex-R4F.

 R

ad
ar

 F
ro

nt
-e

nd Cortex R4F

mssDataPathTaskInferenceTask

DSP C674x

dssDataPathTask

 All_chirps_Range_FFT_done

 Results_ready
Read Results from Shared

memory (L3RAM)

 Results_exported

 Classify Signal Post Inference

 Semaphore

 Classify Signal Post Inference

 Semaphore

Frame Event 1
Frame Event 1

ObjectDetection_frameStart

Execute
Range Processing

Chirp Event 2

Chirp Event 1

ObjectDetection_frameStart

Execute
Doppler Processing

Velocity Column Generation

Send Velocity Column to
Data UART

Initialization

CreateCreate

Initialization
Create

 Frame 1 End

 Send repCounts to MSS

 Send repCounts to MSS
Add repCounts to
detected exercise

Yes

No

Range Processing

Frame 2 Processing

Fr
am

e
Pr

oc
es

si
ng

Chirp Event 128 Range Processing

.....

 Frame 1 Start

First Repetition count:

After processing 256 frames

Frame 64 Processing

Sliding window for rep count: After
processing every 16 frames

First classification:

After processing 64 frames

Repetition Count Algorithm

Sliding Window for classification
after processing of every 3 frames

C
la

ss
ifi

ca
tio

n
an

d
R

ep
et

iti
on

 C
ou

nt
in

g

Add repCounts to
detected exercise

Classification on Last 64
Frames

Send Classification Result
to User UART

Send the repetition count to
User UART and reset

Is Exercise
Changed?

Frame 3 Processing

Ve
lo

ci
ty

-T
im

e

M

ap
 G

en
er

at
io

n

Fig. 6. Hardware implementation flowchart showing the sequential flow
from initialization, frame processing, VT map generation to classification
& repetition counting. Synchronization between different tasks is achieved
through flags (shown in cyan).

A. Initialization

RF front-end, UART, ESP32, and other drivers are con-
figured and initialized when the board is powered ON.
After all the drivers are initialized, the highest priority
mssDatapathTask is created on Cortex®-R4F to man-
age the datapath and handle the signals sent to and re-
ceived from DSP C674x. Similar to mssDatapathTask,

8

dssDatapathTask is created on DSP C674x to manage
the datapath and handle the signals sent to and received from
Cortex®-R4F. InferenceTask is created on Cortex®-R4F
for classification inference implementation.

B. Frame Processing

Once the radar front-end has been configured and
all the tasks have been created and synchronized,
mssDatapathTask calls the Execute API on every
frame event, where HWA performs Range-FFT on the chirp
data during the acquisition period. dssDatapathTask
remains in a pending state during range processing. After
the range processing is completed, upon reception of
All chirps Range FFT done flag from mssDatapathTask,
dssDatapathTask calls the Execute API to perform
doppler processing and velocity column generation on the
radar cube.
dssDatapathTask stores the velocity column in ring

buffer and sends Results ready flag to mssDatapathTask
after completion of signal processing chain on DSP C674x.
mssDatapathTask sends the velocity column to the DATA
UART port after reception of Results ready signal and ac-
knowledges dssDatapathTask with a Results exported
flag. DATA UART port is used for logging velocity column
data. As seen in Fig. 6, this part of the execution phase is
called frame processing and repeats for every frame event.

C. Classification and Repetition Counting

A ring buffer is implemented to store the velocity columns
for every frame sequentially. After processing the first 64
frames, dssDatapathTask sends the address of the latest
VT map and Classify signal to mssDatapathTask, which
then posts the inference semaphore to the InferenceTask
for classification. The above process repeats itself with every
three new frames of sliding window implemented on the ring
buffer. InferenceTask writes the exercise label on the
USER UART port when the inference engine detects a change
in exercise.

The repetition Counting algorithm runs on DSP C674x in
the dssDatapathTask. It starts after processing the first
256 frames and repeats after every 16 frames. The calculated
counts are sent to mssDatapathTask and accumulated for
the current exercise reported by CNN. The total repetition
counts for a particular exercise are calculated from the accu-
mulated sum using (18) and are written on the USER UART
port when the user changes the exercise. The ESP32, which
is interfaced with the radar board, receives the exercise type
and repetition count through the USER UART port and sends
the same to a mobile application via BLE.

VIII. RESULTS AND DISCUSSION

The radar signal processing, repetition counting and classi-
fication pipeline are implemented on IWR1843. The memory
consumption, processing latency, implementation results, com-
parative study and limitations of the system are described in
the subsequent subsections.

A. Memory Utilization and Processing Latency

TABLE II contains the memory required to store the CNN’s
parameters and output activations, output buffers of each signal
processing stage and the corresponding processing latency.
The processing latency includes the time required for memory
read/write, data transfer and signal processing. The velocity
column generation and repetition counting chains have a total
memory footprint of 560.13 KB and 40 KB on L3RAM,
respectively. The CNN-based inference engine implemented
on Cortex®-R4F uses 11.36 KB of memory space, utilizing
∼ 5.76% of total available data RAM.

TABLE II
MEMORY CONSUMPTION AND PROCESSING LATENCY

Processing Stage Core
Memory

Consumption

Processing
Latency

(ms)
Velocity
Column
Generation

Range processing HWA 496 KB ∼ 6.66
Doppler processing

C674x
64 KB ∼ 4.73

Incoherent addition
of range bins

128 B ∼ 2.97

Repetition Counting Chain 40 KB ∼ 3.69

CNN
Parameters

R4F
1.46 KB ∼ 69

Output activation 9.9 KB

B. Power Consumption

The Cortex®-R4F, DSP C674x, and HWA consume 80 mW,
350 mW, and 100 mW of power, respectively. tinyRadar at
present consumes a total of ∼1W power with the RF front
end. The CNN-based inference engine uses 60.8% of CPU
resources, resulting in 48.64 mW (0.608 x 80 mW) power
consumption out of 80 mW.

C. Classification Results

The 8-bit quantized CNN engine correctly classified 97% of
the exercises in real-time when tested on the rest of the four
human subjects who were not a part of the training session.
The confusion matrix described in TABLE III highlights the
accuracy achieved per class by the onboard CNN network.
Jogging and Lunges were classified with 100% accuracy,
whereas Crunches was classified with an accuracy of 90.6%.

TABLE III
CONFUSION MATRIX IN PERCENTAGE

Predicted →
Actual ↓ A B C D E F G H

(A) Crossover
toe-touch 98 0 0 0 0 2 0 0

(B) Crunches 1.2 90.6 1.2 0 0 7 0 0
(C) Jogging 0 0 100 0 0 0 0 0
(D) Lateral
squats 0 0 0 97.2 2.9 0 0 0

(E) Lunges 0 0 0 0 100 0 0 0
(F) Hand
rotation 1 0 0 0 0 95.2 3.8 0

(G) Squats 1 0 0 0 0 0 99 0
(H) Rest 0 1 0 0 0 0 0 99

9

D. Repetition Counts Results

Using the repetition counting algorithm, we obtained an
average counting accuracy of 96% on 80 test cases where users
performed exercises with repetition counts ranging from 20 to
120. As shown in Fig. 7, we measured a maximum median
error of 2.2% in the case of Crunches and a minimum of 0%
in cases of Jogging, Lateral squats, and Squats.

Exercise Class

Pe
rc

en
ta

ge
 E

rro
r

8

6

4

2

0

Fig. 7. Box plot representing the error percentage of repetition counts against
the exercise classes. The white dot represents the median error percentage.

E. Comparison

We measured the system performance of different fitness
trackers using metrics like primary sensors present, features
measured, on-edge model presence and accuracy. To the
best of our knowledge, a qualitative comparison to evaluate
tinyRadar against other similar fitness-tracking technologies
is presented in TABLE IV. Wearable fitness trackers contain
many sensors and provide rich information with moderate
accuracy. Other works in non-contact technology give a result
with high accuracy but at the cost of computational overhead
by performing inference on a PC. Though the types of exer-
cise classified by each work are different, tinyradar performs
better using a compact onboard classification model with high
accuracy.

F. Limitations

tinyRadar is a wall-mounted system designed for person-
alised spaces such as rooms and gardens. At present, it can
detect the activity of a single person up to a distance of ∼ 8
m and provides the best classification accuracy when exercise
is performed in the line of sight of radar. Large deviations
from the line of sight could decrease the system’s classification
accuracy.

IX. CONCLUSION

We have presented tinyRadar as a contactless, edge-enabled
real-time mmWave radar-based fitness tracker. It offers several
advantages over wearable fitness trackers, such as contactless
sensing, privacy preservation, and provides accurate data by
tracking whole-body motion. It gives excellent real-time clas-
sification accuracy of 97% and average counting accuracy of

TABLE IV
COMPARISON OF TINYRADAR WITH OTHER EXISTING TECHNOLOGIES

Device Primary
Sensors

Features
Measured

On-edge
Models
Present

Accuracy

Fitbit* [25]

Accelerometer
Heart meter

Altimeter
Gyroscope

Steps count

Yes ModerateHeart rate
Calories

burnt
Sleep cycle

mmFit [19] Radar
Exercise

classification No** High
User

identification

mmFiT [17] Radar Exercise
classification

and
Repetition
counting

No** High

GymCam [10] Camera No** High

tinyRadar
(this work) Radar Yes High

* Fitbit symbolises the different wearable trackers with most common
features and sensors
** indicates inference is performed on a PC

96%. tinyRadar, compared to other non-contact technologies
like camera-based trackers, offers significant advantages like
robustness to low light conditions. Also, it processes sparse
and compact point cloud data which inherently preserves
users’ privacy which is not the case with conventional camera-
based trackers.

The proposed architecture can be scaled to detect multiple
people, and classify more activities, such as fall detection,
to remotely monitor patients suffering from diseases such as
dementia and Alzheimer’s in a healthcare setting. To the best
of our knowledge, our work on human activity classification
and the present work on tinyRadar as a fitness tracker are the
first to demonstrate tinyML-based CNN implementation on
mmWave radar boards using VT maps.

REFERENCES

[1] Lawton, E., Brymer, E., Clough, P., amp; Denovan, A. (2017). The rela-
tionship between the physical activity environment, nature relatedness,
anxiety, and the psychological well-being benefits of regular exercisers.
Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01058

[2] Shin, G., Jarrahi, M. H., Fei, Y., Karami, A., Gafinowitz, N., Byun, A.,
Lu, X. (2019). Wearable activity trackers, accuracy, adoption, acceptance
and health impact: A systematic literature review. Journal of biomedical
informatics, 93, 103153. https://doi.org/10.1016/j.jbi.2019.103153

[3] Thomas, J. G., Raynor, H. A., Bond, D. S., Luke, A. K., Cardoso, C.
C., Foster, G. D., Wing, R. R. (2017). Weight loss in Weight Watchers
Online with and without an activity tracking device compared to control:
A randomized trial. Obesity (Silver Spring, Md.), 25(6), 1014–1021.
https://doi.org/10.1002/oby.21846

[4] B. R. Pradhan, Y. Bethi, S. Narayanan, A. Chakraborty and C. S. Thakur,
”N-HAR: A Neuromorphic Event-Based Human Activity Recognition
System using Memory Surfaces,” 2019 IEEE International Symposium
on Circuits and Systems (ISCAS), 2019, pp. 1-5, doi: 10.1109/IS-
CAS.2019.8702581.

[5] S. S. Yadav, R. Agarwal, K. Bharath, S. Rao and C. S. Thakur,
”tinyRadar: mmWave Radar based Human Activity Classification for
Edge Computing,” 2022 IEEE International Symposium on Circuits
and Systems (ISCAS), Austin, TX, USA, 2022, pp. 2414-2417, doi:
10.1109/ISCAS48785.2022.9937293.

[6] Balbim, G. M., Marques, I. G., Marquez, D. X., Patel, D., Sharp, L. K.,
Kitsiou, S., Nyenhuis, S. M. (2021). Using Fitbit as an mHealth Inter-
vention Tool to Promote Physical Activity: Potential Challenges and So-
lutions. JMIR mHealth and uHealth, 9(3). https://doi.org/10.2196/25289

10

[7] Kasparian, A. M., Badawy, S. M. (2022). Utility of Fitbit devices among
children and adolescents with chronic health conditions: a scoping
review. mHealth, 8, 26. https://doi.org/10.21037/mhealth-21-28

[8] Khatsenko, K., Khin, Y., Maibach, H. (2020). Allergic Contact
Dermatitis to Components of Wearable Adhesive Health Devices.
Dermatitis : contact, atopic, occupational, drug, 31(5), 283–286.
https://doi.org/10.1097/DER.0000000000000575

[9] Boudreaux, B. D., Hebert, E. P., Hollander, D. B., Williams, B. M.,
Cormier, C. L., Naquin, M. R., Gillan, W. W., Gusew, E. E., Kraemer,
R. R. (2018). Validity of Wearable Activity Monitors during Cycling
and Resistance Exercise. Medicine and science in sports and exercise,
50(3), 624–633. https://doi.org/10.1249/MSS.0000000000001471

[10] Rushil Khurana, Karan Ahuja, Zac Yu, Jennifer Mankoff, Chris Har-
rison, and Mayank Goel. 2018. GymCam: Detecting, Recognizing
and Tracking Simultaneous Exercises in Unconstrained Scenes. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 4, Article 185
(December 2018), 17 pages. https://doi.org/10.1145/3287063.

[11] Fitbit ECG App Instructions for Use, Fitbit, San Francisco, California,
United States, Version AM. Accessed: January 24, 2023. [Online].
Available: https://help.fitbit.com/manuals/manual ecg en US.pdf

[12] Mendoza, F., Alonso, L., López, A., & And Patricia Arias Cabarcos,
D. (2018). Assessment of Fitness Tracker Security: A case of study.
UCAmI 2018. https://doi.org/10.3390/proceedings2191235

[13] Greig Paul and James Irvine. 2014. Privacy Implications of Wear-
able Health Devices. In Proceedings of the 7th International Con-
ference on Security of Information and Networks (SIN ’14). Asso-
ciation for Computing Machinery, New York, NY, USA, 117–121.
https://doi.org/10.1145/2659651.2659683

[14] Olabenjo, B., Makaroff, D. (2019). Information Leakage in Wearable
Applications. In: Wang, G., Feng, J., Bhuiyan, M., Lu, R. (eds) Security,
Privacy, and Anonymity in Computation, Communication, and Stor-
age. SpaCCS 2019. Lecture Notes in Computer Science(), vol 11611.
Springer, Cham. https://doi.org/10.1007/978-3-030-24907-6 17

[15] P. Harvey, O. Toutsop, K. Kornegay, E. Alale and D. Reaves, ”Se-
curity and Privacy of Medical Internet of Things Devices for Smart
Homes,” 2020 7th International Conference on Internet of Things:
Systems, Management and Security (IOTSMS), 2020, pp. 1-6, doi:
10.1109/IOTSMS52051.2020.9340231.

[16] J. Bugeja, D. Jönsson and A. Jacobsson, ”An Investigation of Vul-
nerabilities in Smart Connected Cameras,” 2018 IEEE International
Conference on Pervasive Computing and Communications Work-
shops (PerCom Workshops), 2018, pp. 537-542, doi: 10.1109/PER-
COMW.2018.8480184.

[17] Tiwari, Girish; Bajaj, Parveen; Gupta, Shalabh (2021): mmFiT:
Contactless Fitness Tracker Using mmWave Radar and Edge
Computing Enabled Deep Learning. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.16574588.v1

[18] Tiwari, Girish & Gupta, Shalabh. (2021). An mmWave Radar Based
Real-Time Contactless Fitness Tracker Using Deep CNNs. IEEE Sensors
Journal. PP. 1-1. 10.1109/JSEN.2021.3077511.

[19] Y. Xie, R. Jiang, X. Guo, Y. Wang, J. Cheng and Y. Chen, ”mmFit: Low-
Effort Personalized Fitness Monitoring Using Millimeter Wave,” 2022
International Conference on Computer Communications and Networks
(ICCCN), 2022, pp. 1-10, doi: 10.1109/ICCCN54977.2022.9868878.

[20] H. R. Sabbella, A. R. Nair, V. Gumme, S. S. Yadav, S. Chakrabartty
and C. S. Thakur, ”An Always-On tinyML Acoustic Classifier for Eco-
logical Applications,” 2022 IEEE International Symposium on Circuits
and Systems (ISCAS), Austin, TX, USA, 2022, pp. 2393-2396, doi:
10.1109/ISCAS48785.2022.9937827.

[21] P. Goswami, S. Rao, S. Bharadwaj and A. Nguyen, ”Real-Time Multi-
Gesture Recognition using 77 GHz FMCW MIMO Single Chip Radar,”
2019 IEEE International Conference on Consumer Electronics (ICCE),
2019, pp. 1-4, doi: 10.1109/ICCE.2019.8662006.

[22] “mmWave Radar Human Exercise Dataset v1,” NeuRonICS
Lab, Indian Institute of Science. [Online]. Available:
https://labs.dese.iisc.ac.in/neuronics/datasets/mmwave-radar/.
[Accessed: 13-Oct-2022].

[23] Lai, L., Suda, N., Chandra, V. (2018). CMSIS-NN: Effi-
cient Neural Network Kernels for Arm Cortex-M CPUs. ArXiv.
https://doi.org/10.48550/arXiv.1801.06601

[24] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., Darrell, T. (2014). Caffe:
Convolutional Architecture for Fast Feature Embedding. arXiv.
https://doi.org/10.48550/ARXIV.1408.5093

[25] Fitbit Versa 3 User Manual, Fitbit, San Francisco, California, United
States, Version 1.13. Accessed: January 24, 2023. [Online]. Available:
https://help.fitbit.com/manuals/manual versa 3 en US.pdf

Satyapreet Singh Yadav is a PhD student in Brain
and Artificial Intelligence program at Indian Institute
of Science, Bangalore, India. She has a Master’s
degree from the same institute and a Bachelor’s
degree in Electronics and Communication from the
National Institute of Technology Calicut, Kerala,
India. She has 8 years of experience in the aerospace
and space sector, having worked as a scientist at
Indian Space Research Organization (ISRO). Her
research interests include brain-inspired computing,
machine learning, embedded systems, and radar sig-

nal processing.

Radha Agarwal is a radar software developer at
Texas Instruments in Bangalore, India. She has a
Master’s degree from the Department of Electronic
Systems Engineering at the Indian Institute of Sci-
ence, Bangalore, India and a Bachelor’s degree in
Electronics and Communication from the Institute
of Engineering and Technology, Lucknow, India.
Her research interests include embedded systems,
hardware implementation of algorithms, and edge-
enabled deep learning architectures.

Kola Bharath is a GPU Architect at NVIDIA in
Bangalore, India. He holds a Master’s degree in
Electronic Systems Engineering from the Indian In-
stitute of Science, Bangalore, India and a Bachelor’s
degree in Electronics and Communication Engineer-
ing from Rajiv Gandhi University of Knowledge
Technologies, Nuzvid, India. He has worked for 3
years in mobile communication at Bharat Sanchar
Nigam Limited (BSNL). His research interests in-
clude computer architecture for high-performance
computing and deep learning applications.

Sandeep Rao is with Texas Instruments, where he
leads the mmWave sensing Algorithm group. His
current research interests are in the area of Radar
Signal Processing including Automotive radar, In-
terference mitigation strategies and classification.
Prior to TI, Sandeep was with Hughes Network
Systems where he worked on modems for Satellite
Communication. He has more than 30 patents in the
area of mmWave Radar and GNSS positioning. He
has a masters from the University of Maryland and
a bachelor’s from IIT Madras.

Chetan Singh Thakur joined the Indian Institute of
Science, Bangalore, India as an Assistant Professor
in 2017. He received his PhD in neuromorphic engi-
neering at the MARCS Research Institute, Western
Sydney University and did his postdoc at the Johns
Hopkins University, USA. He also worked for a few
years with Texas Instruments Singapore as a senior
Integrated Circuit Design Engineer. His research
interest is to understand the computing principles of
the brain and apply those to build novel intelligent
VLSI systems. He has received several awards, such

as Pratiksha Trust young investigator award and Inspire Faculty Award from
DST for brain-inspired computing.

	Introduction
	System Description
	Dataset Description
	Radar Signal Processing
	Range Processing
	Doppler Processing
	Static Clutter Removal
	Doppler FFT
	Incoherent addition across RX

	Velocity-Time Map Generation

	CNN Based Activity Classification
	Data Normalization
	Training, Quantization and Deployment

	Repetition Counts Algorithm
	Normalization
	Splitting of the Observation Window
	Binarization
	Envelope Generation
	Low Pass Filtering
	Detrending
	FFT and Confidence Computation
	Repetition Counts Computation

	Hardware Implementation
	Initialization
	Frame Processing
	Classification and Repetition Counting

	Results and Discussion
	Memory Utilization and Processing Latency
	Power Consumption
	Classification Results
	Repetition Counts Results
	Comparison
	Limitations

	Conclusion
	References
	Biographies
	Satyapreet Singh Yadav
	Radha Agarwal
	Kola Bharath
	Sandeep Rao
	Chetan Singh Thakur

