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Abstract— Analog computing is attractive compared to digital
computing due to its potential for achieving higher computational
density and higher energy efficiency. However, unlike digital
circuits, conventional analog computing circuits cannot be easily
mapped across different process nodes due to differences in
transistor biasing regimes, temperature variations and limited
dynamic range. In this work, we generalize the previously
reported margin-propagation-based analog computing frame-
work for designing novel shape-based analog computing (S-AC)
circuits that can be easily cross-mapped across different process
nodes. Similar to digital designs S-AC designs can also be scaled
for precision, speed, and power. As a proof-of-concept, we show
several examples of S-AC circuits implementing mathematical
functions that are commonly used in machine learning architec-
tures. Using circuit simulations we demonstrate that the circuit
input/output characteristics remain robust when mapped from a
planar CMOS 180nm process to a FinFET 7nm process. Also,
using benchmark datasets we demonstrate that the classification
accuracy of a S-AC based neural network remains robust when
mapped across the two processes and to changes in temperature.

Index Terms— Machine learning, process scalability, approxi-
mate computing, margin propagation, shape-based computing.

I. INTRODUCTION

ANALOG computing techniques are attractive for imple-
menting machine learning (ML) architecture because

of the potential to achieve high computational density and
high energy-efficiency when compared to an equivalent digital
implementation. ML training also allows for offline and online
calibration which can compensate for analog artifacts due to
device mismatch and non-linearity [1]. Examples of previous
analog ML implementations include [2], [3], [4], and [5].
However, one of the key advantages of digital implementa-
tion is its process scalability where a digital circuit module
designed in one process node (typically with a larger feature
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Fig. 1. Plot of transconductance efficiency (gm/Id ) as a function of Vgs −Vth
at different process nodes [11]. The plot also shows the product of gm/Id and
speed ( fT ), denoting the efficiency peak obtained in moderate inversion. Plots
are shown for n-type planar CMOS and FinFET at different process nodes.
Here the maximum supply voltages of each process node can be noted as
1.8V , 0.8V and 0.7V for 180nm, 22nm and 7nm, respectively.

size) can be mapped to a more advanced process node (with
a smaller feature size) with minimal to no circuit modifica-
tion [6], [7]. Due to process scalability, digital implementa-
tions (both ML and non-ML architectures) can benefit from
sub-10nm technology scaling in terms of improved speed,
power and compute density. On the other hand, scaling analog
computing circuits across process nodes has been difficult
due to several reasons [8], [9] and can be highlighted using
Fig. 1. The figure compares transistor performance using the
product of transconductance efficiency and speed as a figure-
of-merit (FOM) [10] for a 180nm planar CMOS process and
for a 7nm FinFET process [11], [12]. The FOM is shown in
Fig. 1 for three different biasing regimes, weak-inversion (WI),
moderate-inversion (MI), and strong-inversion (SI). Note that
in Fig. 1, biasing regimes can be differentiated from each other
by their respective transconductance efficiencies (gm/Id ). For
Vgs − Vth < 0, transistors are operating in WI while the
transition slope denotes MI regime. It can also be seen from
Fig. 1 that for 7nm FinFET process, the highest dynamic
range and the best FOM is achieved in the moderate inversion
regime. As the feature size is scaled to a more advanced
process node (7nm feature size), the moderate inversion region
dominates the transistor dynamic range. Whereas, most analog
computing circuits that exploit the large-signal transistor I-V
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characteristics operate either in the weak-inversion regime [13]
or in the strong-inversion regime [14]. These circuits cannot
be directly scaled to the sub-10nm process nodes without
significant performance degradation.

In this paper, we propose analog computing circuits that are
process scalable and hence similar to digital designs, can be
used as synthesizable analog standard cells. At the core of the
proposed circuits is a generalization of the previously reported
bias scalable analog computing framework called margin prop-
agation [15]. In this work, we show that generalized margin
propagation leads to a novel shape-based analog computing
(S-AC) framework where circuit accuracy can be traded off
with speed and power, like digital designs. Furthermore,
S-AC circuits can be scaled across processes and can work
across different biasing regimes and across different operating
temperatures. As a proof-of-concept, this paper presents the
design of several key analog computing circuits commonly
used in ML architectures. The key contributions of this work
in relation to previous approaches are as follows:

• Generalization of Margin Propagation (MP) design
framework and introducing a multi-spline approach that
allows trading off computational accuracy with speed and
power. Using this multi-spline approach, we design a
basic prototype function and show that its characteristic
is robust with respect to biasing, process nodes, and
temperature variations.

• Using the basic prototype function, we synthesize S-AC
circuits that approximate different functions commonly
used in ML architecture.

• Using the basic S-AC circuits, we present a complete
design of a 3-layer neural network that is process and
bias scalable with respect to classification accuracy on
benchmark datasets.

The rest of the sections are organized as follows. Section II
presents the mathematical framework for generalized margin
propagation (GMP) and the S-AC framework. Section III
shows the MOS circuit implementation of the basic S-AC
circuit and demonstrates its scalability at different biases and
process nodes. In Section IV we show the design of widely
used machine learning functions implemented using a basic
S-AC unit and its performance trade-off analysis. Section V
presents a case study of S-AC based 3-layer neural network.
Section VI concludes the papers with discussions and final
remarks.

II. GENERALIZATION OF MARGIN PROPAGATION AND

SHAPE-BASED ANALOG COMPUTING

In this section, we extend our previous work in the area of
bias-scalable analog computing circuits [15] using a multi-
spline approach which is then generalized to shape-based
computing. These shapes or prototype functions are then
shown to be implemented using physical operating principles
of MOSFETs and diodes.

A. Multi-Spline Approximation of Log-Sum-Exp Function

Similar to the previous Margin Propagation framework [15],
the starting point of our framework is an approximation of the

log-sum-exp function [15] hlog : R
N → R given by

hlog(x) = C · log

�
N�

i=1

e
xi
C

�
(1)

where C is a hyper-parameter and x ∈ R
N is a vector with

elements xi ∈ R. Equation (1) can be written as

N�
i=1

e
xi −hlog

C = 1 (2)

which is an equivalent non-linear constraint satisfaction prob-
lem. In our previous Margin Propagation related work [15] we
had approximated the e(.) using a single spline as

ex ∼= [x]+ (3)

where [.]+ denotes a rectifying linear unit (ReLU) function.
However, the rectification function can be substituted based
upon some key properties to formulate the GMP formulation
explained in detail in Section II-B.

The single-spline approximation (S = 1) of the exponential
function is highlighted in Fig. 2a. Using a single spline, (2) can
be expressed as a piece-wise approximation h ≈ hlog where h
is computed as a solution to the non-linear equation

N�
i=1

[xi−h]+ = C (4)

Fig. 2a also provides the insight that the exponential function
can be better approximated using multiple splines (S > 1)
defined by different parameters Q j , Tj , where j = 1, .., S. It
also shows that the single spline approximation has a wider
margin due to one intersecting solution, while the three spline
approximation shows a narrower margin. Thus introducing
multiple splines in the approximation provides control over the
precision and accuracy trade-off. In this work, we, therefore,
generalize the MP framework in (4) by approximating e(.)

using multiple splines as

ex ∼=
S�

j=1

⎛
⎝eQ j −

j−1�
k=1

eQk

⎞
⎠	

x − Tj


+ (5)

The rationale for choosing the values of Q j , Tj , where j =
1, .., S in (5) is provided in Appendix VI. Appendix VI also
shows that, for specific values of Q j , Tj , where j = 1, .., S,
(5) leads to a simplified multi-spline approximation like (4)
and given by

N�
i=1

S�
j=1

	
xi, j − h



+ = C (6)

Thus, h(.) is a function of a matrix whose elements are
xi, j , i = 1, .., N; j = 1, .., S. Equation (6) therefore serves as
a generalization of margin-propagation using multiple splines.
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Fig. 2. (a) Plot showing the approximation of a non-linear function θ(x) � ex using linear splines (S). Here, the approximations are shown for different
spline (S) counts i.e, S = 1, 3, where Q1, Q2, Q3 are the tangential points and T1, T2, T3 are the tuning points; (b) Implementation of N-type S-AC circuit
for N inputs and S splines, the inset shows the circuit implementation of a single S-AC unit using n-type FET and a diode; (c) Implementation of P-type
S-AC circuit for N inputs and S splines, the inset shows the circuit implementation of a single S-AC unit using p-type FET and a diode. The circle on the
P-type S-AC unit is used to differentiate between an N-type S-AC unit and a P-type S-AC unit.

B. Generalized Margin Propagation and S-AC

Both the log-sum-exp function hlog(.) and its multi-spline
approximation h(.) satisfy properties (7) and (8) given by

1 ≥ ∂hlog

∂xi
,

∂h

∂xi
≥ 0, ∀i (7)

lim
xi→∞

∂hlog

∂xi
,

∂h

∂xi
= 1

lim
xi→−∞

∂hlog

∂xi
,

∂h

∂xi
= 0 (8)

These properties indicate some common features of the shape
of both hlog(.) and h(.). It also indicates a mechanism to
further generalize MP shapes g(·) instead of splines (5). If a
function g : R → R satisfies the following property

• g(0) = 0 and g(·) is always positive or g(·) ≥ 0
• g
(·) ≥ 0 and g(−∞) = 0
• g(·) is monotonic function

then we propose a function h, which is computed as the
solution to the following constraint

N�
i=1

S�
j=1

g(xi, j − h) = C, ∀i = 1, .., N, ∀ j = 1, .., S (9)

Since the choice of g(.) is arbitrary, we refer to the function
h(.) as a shape-based function and any computation that
exploits the constraint (9) as shape-based analog computing
(S-AC). In the next section, we show how g(.) can be
implemented using transistor and diode characteristics in a
bias and process scalable manner.

III. S-AC CIRCUIT IMPLEMENTATION AND ANALYSIS

A. FET Device Characteristics and the Basic S-AC Circuit

In its most general form, the drain-to-source current (Ids)
flowing through an n-type MOSFET can be expressed as the
difference between the forward and reverse currents [16], [17]
as

Ids = Is [ f (Vg, Vs) − f (Vg, Vd)] (10)

where Is is the specific current and f : R × R → R is a
function that models the forward and reverse currents with
respect to the gate (Vg), drain (Vd ) and source (Vs) voltages
respectively. A similar expression as (10) also holds for a

p-type MOSFET, except that the signs of the respective vari-
ables are reversed. Without any lack of generality, our analysis
in this section will be based on the n-type MOSFET model;
however, the formulation is applicable to p-type MOSFETs
as well. It should also be noted that, as long as the source
and the drain terminals are symmetric to each other, the
expression in (10) holds irrespective of the choice of transistor
models such as EKV (Enz, Krummenacher, and Vittoz) [18],
ACM (Advanced Compact MOSFET) [19], etc. or operating
regimes, i.e. weak-inversion, moderate-inversion or strong-
inversion, or process nodes viz. MOSFET, FinFET, etc. The
function f (·, ·) always satisfies the properties similar to g(·),
and can be listed as:

• f (0, 0) = 0 and f (·, ·) is always positive or f (·, ·) ≥ 0,
by construction.

• f 
(·, ·) ≥ 0
• f (·, ·) is monotonic. For Vg1 > Vg2, f (Vg1, Vs) >

f (Vg2, Vs) and for Vs1 > Vs2, f (Vg, Vs1) < f (Vg, Vs2).
Thus, f (·, ·) and hence the FETs could be used to implement
S-AC function as follows:

Given an input matrix X ∈ R
N×S where xi ∈ R

N , ∀i =
1, .., N is the input vector and x j ∈ R

S , ∀ j = 1, .., S is the
number of splines, the basic shape of S-AC h : R

N×S → R

can be computed as a solution to the equation h(X)= f (VB , 0)
where the variable VB is the solution to:

N�
i=1

S�
j=1

f (Vi, j , VB) = C, ∀i = 1, .., N, ∀ j = 1, .., S

(11)

f (VB, 0) − f (VB, Vi, j ) + f (Vi, j , VB) = xi, j (12)

Here, C is a hyper-parameter and Vi, j is an internal variable.
Equation (12) can also be written as

f (Vi, j , VB) − f (−Vi, j , VB) = xi, j − f (VB , 0) (13)

A closer look at the derivatives of f 
(Vi, j − VB) and
f 
(−Vi, j + VB) show that these are intersecting curves with
respect to xi, j . The point of intersection defines a unique
solution. Further, the left-hand side of (14) is monotonic by
definition of f 
(·, ·), thus when

dxi, j
dVi, j

≥ 0, f (VB) is the
solution.
dxi, j

dVi, j
− f 
(VB, 0) = f 
(Vi, j − VB) + f 
(−Vi, j + VB) (14)
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Fig. 3. Basic S-AC functions implemented by the N-type S-AC circuit and P-type S-AC circuit in different process technology nodes when a single input
x is varied: (a) for spline-count S = 1;(b) for spline-count S = 3; (c) for different operating regimes in a 180nm process node; (d) for different operating
regimes in a 7nm process node. The output current h(x) shown in the plots have been normalized with respect to Imax , where Imax is the maximum current
for each biasing regime.

Fig. 4. Basic S-AC functions implemented by the S-AC circuit in a 180nm process node when a single input x is varied: (a) when the temperature is varied
from −45◦C to 125◦C in 180nm; (b) in the presence of device mismatch (upto 5% mismatch) - the plot shown here is for N-type S-AC circuit; (c) in the
presence of power supply voltage variation from 0.9V to 1.8V . The output current h(x) shown in the plots have been normalized with respect to Imax , where
Imax is the maximum current for each of the biasing regime.

Equations (11) and (12) can be implemented using CMOS
circuits as shown in Fig. 2b. Here, xi, j is the input current for
the i th input and the j th spline and h(X) is the output current.
Vi, j and VB are the voltages across the Nth

i, j transistor, C is
a constant current and Di, j denotes diode elements (Schottky,
MOS diode or any other). In addition, the S-AC circuit
implementation with the GMP algorithm satisfies additional
constraints such that the inputs must add up to a constant C .
Thus, based on Fig. 2b, the current through the diode Di, j as
a function of the voltages can be given by f (Vi, j −VB) where
all the currents sum up to C . Then using KCL at node VB , (11)
can be obtained while the current across diode Di, j gives (12).
A similar operation can be obtained in other quadrant using
the PMOS variant shown in Fig. 2c.

B. Process and Temperature Scalability of Basic S-AC Circuit

We first show that the basic S-AC shape-function imple-
mented by circuits in Fig. 2b and Fig. 2c are robust to changes
in biasing conditions and operating temperature. Fig. 3a shows
the proto-shape h(x) obtained using the circuits shown in
Fig. 2b (N-type S-AC) and Fig. 2c (P-type S-AC) for spline
count S = 1. Similar results are shown for spline count
S = 4 in Fig. 3b. It can be noted that with the increase in
the number of splines, the approximation accuracy increases
while the basic S-AC function remains scalable across process-
technology nodes. Fig. 3c shows the similar shape-function
(for N = 1 and S = 3 ) obtained for different MOSFET

biasing regimes, i.e., WI, MI, and SI biasing regimes which
correspond to different functions f (·, ·) in (11)-(12) in 180nm
node. The plots show that the basic shape of S-AC remains
robust to the biasing condition and is constrained within
a well-defined “margin”. This margin is determined by the
design parameter S and the inherent feedback from the hyper-
parameter C . The number of splines S provides control over
the precision and accuracy while C is the constraint that is
satisfied by (6) or its circuit equivalent given by (11). Fig. 3d
shows similar response plots for 7nm process node. Fig. 4a
shows the effect of temperature on the shape function. It can be
observed that the shape-function is almost immune to changes
in temperature. Fig. 4b shows the effect of Monte Carlo
analysis on the basic shape of N-type S-AC, while Fig. 4c
shows the effect of power supply variation in WI regime. It can
be observed that the shape remains preserved despite variations
in analysis.

C. Deep-Threshold Operation of Basic S-AC Circuit

To exploit the complete available current range of transistors
in planar CMOS, two approaches can be followed. First, the
VGS could be made negative; second, the threshold voltage,
VT 0, could be increased in a way that the channel inversion
occurs at higher VGS voltages [20], [21], [22]. Therefore,
to bias the transistors at smaller currents, VGS should be
biased to the reverse direction (VGS < 0V for NMOS and
VGS > 0V for PMOS), which is defined as the deep sub-
threshold region. For this approach, the source voltage shifting
technique can be used. By shifting the source voltage slightly
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Fig. 5. Results for S-AC circuit when operating in deep-threshold regime in a 180nm process: (a) MOSFET I-V characteristics showing the effect of
source shifting to lower the operating current into the diode leakage regime; (b) MOSFET implementation of the N-type S-AC circuit capable of operating
in deep-threshold regime; (c) Normalized output current response of the source-shifted S-AC circuit for S = 1, 3.

higher than the lowest potential (VSS), the gate voltage can
reach down to the lowest potential (VSS). Fig. 5a shows the ID

vs. VGS characteristic plot in log scale for source shifted MOS
transistors. The lowest value of current found with the source
shifting technique was 1.97fA for NMOS and 3.19fA for
PMOS in CMOS 180nm process node. On analyzing Fig. 5a
one can see that the source voltage shifting can exploit the
complete available current range (down to the diffusion diodes
reverse leakage currents).

For the second approach (so-called channel conduction
manipulating technique), the body terminals of transistors are
connected to the highest potential (VD D). This will prevent
the channel inversion from taking place at low VGS voltages
which, along with source shifting, further lowers the lowest
level of the operating current of the circuit. We used a
technique that combines a fixed source shifted voltage with the
channel conduction manipulation technique. Fig. 5b shows the
circuit implementation of equations (11)-(12) using the above
two approaches combined, where source voltage modulation
along with channel conduction manipulation techniques were
used to shift the operation in femto-ampere (fA). Fig. 5c shows
the response of the basic S-AC circuit operating in the deep-
threshold at current levels down to femto-amperes (fA). The
results show that if biased properly, S-AC can operate at ultra-
low current levels and yet its characteristics are maintained.

IV. SYNTHESIS OF ANALOG COMPUTING MODULES

USING BASIC PROTO-SHAPES

S-AC circuits shown in Fig. 2b and Fig. 2c can be used to
synthesize mathematical functions required to perform com-
plex machine learning tasks which can then be used as analog
standard cells. As a proof of concept, we show the S-AC-based
implementation of various machine learning computations
such as activation functions, energy-efficient multiplication,
Winner-Takes-all (WTA), N-of-M encoder, SoftArgMax, and
Max circuits. It can be noted that the proto-shape h(x) can be
mapped to exponential for ex ranging from [−∞, 1). Within
this defined range i.e.

�� ∂h
∂x

�� < 1, if (7) and (8) are satisfied,
then complex functions such as hyperbolic functions (Cosine,
Sine) and other such functions can also be constructed. The
following text has a detailed formulation and S-AC based
implementation of each of these circuits in both 180nm and
7nm process technology nodes.

A. Cosine-Hyperbolic

The cosh(·) function can be constructed using N-type S-AC
standard cells for S = 3 as shown in Fig. 6a. The cosh(·)
function is given by:

cosh(x) = ex + e−x

2
(15)

Now, if in Fig. 2a, the response of one S-AC unit is h(x) ∼= ex

2 ,
then by tuning the offsets O1, . . . , O3, we can get cosh(·).
In terms of S-AC computation, (15) can be written as

cosh(x) = h(x) + h(−x) (16)

Thus the cosh(·) function is the addition (KCL) of the response
of S-AC (y1 in Fig. 6a) and its vertically flipped response
(shown by y2 in Fig. 6a). Fig. 7a shows characteristics
response Iout obtained using Fig. 6a across different process
nodes and different temperatures for the same values of offset.

B. Sine-Hyperbolic

The sinh(·) function can be constructed using both P- and
N-type S-AC standard cells for S = 3 as shown in Fig. 6b.
The sinh(·) function is given by:

sinh(x) = ex − e−x

2
(17)

Similar to Cosine if the response of S-AC unit is h(x) ∼= ex

2 ,
then (17) can be written in terms of S-AC computation as

sinh(x) = h(x) − h(−x) (18)

Fig. 7b shows characteristics response Iout obtained using
Fig. 6b across different process nodes and temperatures.

C. ReLU

ReLU can be implemented using two S-AC units as shown
in Fig. 6c. Fig. 6c implements the function given by

Iout =
�

max (0, x) , C → 0

max (0, C − x) , else
(19)

Fig. 7c shows the characteristic response of ReLU obtained
from the circuit in Fig. 6c at different process nodes and
temperatures. Fig. 8a and Fig. 8d show the Monte Carlo plot
of S-AC ReLU in 180nm and 7nm process technology nodes.
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Fig. 6. Implementation of S-AC based analog activation standard cells for machine learning applications: (a) cosh(·); (b) sinh(·); (c) ReLU; (d) Compressive
non-linearity; φ1(·) similar to tanh(·) and φ2(·) similar to Sigmoid functions respectively; (e) Soft-Plus. Here K represents a constant current.

Fig. 7. Simulated output corresponding to the S-AC standard cells shown in Fig. 6: (a) cosh(·); (b) sinh(·); (c) ReLU; (d) Compressive non-linearity φ1(·)
equivalent to tanh(·); (e) Compressive non-linearity φ2(·) equivalent to Sigmoid; (f) Soft-Plus at FinFET (7nm) and CMOS (180nm) process nodes.

D. Compressive Non-Linearity

We formulate the compressive non-linearity function φ1(·)
given by

φ1(x) = log
1 + ex+K

ex + eK
(20)

where K is a constant. This compressive function in (20)
can then be used to emulate tanh(·) and sigmoid functions.
Equation (20) when mapped to S-AC computation can be
written as:

φ1(·) = h(0, x + K ) − h(x, K ) (21)
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Fig. 8. Monte Carlo plots along with Maximum % Deviation for S-AC based analog activation functions shown in Fig. 6 when operated in Weak Inversion
regimes: (a) ReLU in 180nm, (3.11%); (b) Soft-plus in 180nm, (2.44%); (c) Sigmoid in 180nm, (7.31%); (d) ReLU in 7nm, (4.14%); (e) Sigmoid in 7nm,
(0.91%); (f) Soft-plus in 7nm, (3.86%).

Fig. 9. Implementation of N -input winner takes all standard cells using
S-AC units. This circuit can be tuned to function as a soft-WTA and Max
circuit.

The circuit for emulating φ1(·) is shown in Fig. 6d. We show
that the characteristics response Iφ1 shown in Fig. 7d can be
used to emulate response equivalent to tanh(·) function.

E. Sigmoid

The sigmoid equivalent characteristic plot can be obtained
from a shifted version of the φ1(·) function. Thus adding a
constant current K to Iφ1 gives a sigmoid equivalent response
and is shown in Fig. 6d. We show that the characteristics
response Iφ2 shown in Fig. 7e can be used to emulate a
response equivalent to the sigmoid function. The Monte Carlo
plot of S-AC sigmoid in both 180nnm and 7nm process node
is shown in Fig. 8b and Fig. 8e respectively.

F. Soft-Plus

The soft plus activation function can be obtained using two
S = 3, S-AC units. The circuit for emulating the Sof t-Plus

response is shown in Fig. 6e. We show that the characteristics
response Iout shown in Fig. 7f are robust across different
process nodes and different temperatures. Fig. 8c and Fig. 8f
show the Monte Carlo plot of S-AC soft-plus in 180nm and
7nm process technology node.

G. S-AC Based Winner-Take-All

A winner-take-all (WTA) circuit is designed to emulate the
max(·) function. The proposed S-AC-based WTA circuit is
shown in Fig. 9. It is modular, i.e., it can be extended for N
inputs like the original circuit proposed by Lazzaro et al. [23].
Fig. 10a and Fig. 10b show the current characteristics plot
of two-input S-AC based WTA at 180nm and 7nm for an
input differential current. It can be observed that when the
differential current is 0, the output currents are equal. The
corresponding voltage outputs for both the process nodes are
shown in Fig. 10c and Fig. 10d respectively.

H. S-AC Based N-of-M Encoder

The N-of-M encoder extends the computational capabilities
of the standard WTA circuit and has found profound impor-
tance in sparsely distributed memory [24]. N-of-M encoder
allows the user to obtain the max current that takes into
account the influence due to the contribution of top M winners
out of N inputs (M/N). For the specific case of M = 1, the
N-of-M encoder behaves like a simple WTA circuit. Fig. 10e
shows the response of the five-input S-AC-based WTA circuit
shown in Fig. 9 as a function of hyper-parameter C . It can
be noted that with the increase in hyper-parameter value, the
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Fig. 10. Simulated output of a two input S-AC based WTA standard cell shown in Fig. 9 showing: (a) current output (Iout1 and Iout2) versus the differential
input current for 180nm process node and (b) for 7nm process node; (c) Voltage output (Vout1 and Vout2) versus the differential input voltage for 180nm
process node and (d) for 7nm process node. The simulated output of a five-input S-AC WTA standard cell showing (e) M selected winners as a function
of hyperparameter C for 180nm process node and (f) for 7nm process node where Iout is the contribution of M selected winners in the output. Simulated
output of five-input S-AC WTA standard cell showing outputs

	
Iout1, . . . , Iout5



as a function of hyperparameter C at (g) 180nm and (h) 7nm process node

where responses of Fig. 10 are obtained for the inputs
	
x1,x2,x3,x4,x5


 = [α, 2α, 3α, 4α, 5α] where α = 1μA for 180nm and 10n A for 7nm.

output current Iout decreases and is the result of more than
one winner. Using (11) for S = 1, Iout is given by

Iout =
M

i=1 xi − C

M
(22)

where M is the number of winners. Similar results for 7nm
are shown in Fig. 10f. It can be analyzed that depending
on the hyper-parameter C , the circuit can select the top M
winners.

I. S-AC Based SoftArgmax

In machine learning, SoftArgmax offers an improvement
over Argmax to support backpropagation and gradient oper-
ation. The S-AC-based WTA circuit can be configured to
implement SoftArgmax. Fig. 10g and Fig. 10h show the
response curve of outputs Iout1, . . . , Iout5 for the variation in
hyper-parameter C for 180nm and 7nm respectively. It can
be observed that with the increase in hyper-parameter, outputs
corresponding to the maximum input along with other inputs
are activated and can be given by

Iouti = xi − C, ∀xi > C (23)

J. S-AC Based Max Circuit

The S-AC based winner-take-all circuit can also be config-
ured to select the maximum input among the given set of N
inputs. For hyper-parameter, C → 0, the circuit starts behaving
as a max input selector.

K. S-AC Based Four Quadrant Multiplier

The four-quadrant multiplier is proposed in [25]. Owing
to the Lipchitz behavior of the S-AC function, the design is
formulated such that the multiplication satisfies the Lipchitz
condition. Fig. 11 shows the S-AC cell-based implementation
of a multiplier circuit. Consider the following equation, where
y is given by

y = h(C + w + C + x) − h(C + w + C − x)

+ · · · h(C−w + C − x) − h(C−w + C + x) (24)

The goal is to implement scalar multiplication between
two variables x and w. Here x, w, y ∈ R, h is a non-linear
monotonic function and C is a hyperparameter. If we write
the Taylor expansion of h(x) around w, we get

h(C + w + C + x) = h(0) + h
(0)

1! (C + w + C + x)

· · · + h

(0)

2! (C + w + C + x)2 + · · ·
(25)

h(C + w + C − x) = h(0) + h
(0)

1! (C + w + C − x)

· · · + h

(0)

2! (C + w + C − x)2 + · · ·
(26)

h(C − w + C − x) = h(0) + h
(0)

1! (C − w + C − x)

· · · + h

(0)

2! (C − w + C − x)2 + · · ·
(27)
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Fig. 11. Implementation of a four-quadrant multiplier using P-type and N-
type S-AC circuits.

h(C − w + C + x) = h(0) + h
(0)

1! (C − w + C + x)

· · · + h

(0)

2! (C − w + C + x)2 + · · ·
(28)

Substituting (25) - (28) in (24) and ignoring the higher order
terms, we get,

y ∼= 4 h

(0)x × w (29)

where 4h

(0) is a scaling factor. For h(·) assumed to be a
non-linear function such that h

(0) �= 0, (29) simplifies to

y ∼= x × w (30)

(24) shows that the multiplication is then reduced to addition
and subtraction operations, thus altering the use of a bulky
multiplier.

In Fig. 12a, we show that the behavior of the four-quadrant
S-AC multiplier is scalable across the process technology
nodes. Fig. 12b shows the response of the four-quadrant S-AC
multiplier at different operating regimes for the 7nm process
node. A similar response can be observed in Fig. 12c at the
180nm process node. It can be analyzed from Fig. 12b and
Fig. 12c that the shape of the multiplier characteristic curve
remains preserved when the circuit operation moves from WI
to SI.

L. Performance and Trade-Off Analysis

This section shows the analysis of the S-AC computational
blocks at different process technology nodes, viz. 180nm
and 7nm and at different operating conditions. The inter-
dependence of power, throughput, accuracy and area trade-off
for designing a performance scalable system is explained.

1) Power & Operation Performance Analysis: Fig. 13a
shows the plot of the average power consumption plot with the
increase in the number of S-AC units for different technology
nodes and at different biasing regimes. It can be observed that
with the increase in S-AC units in parallel, power consumption
increases for a fixed value of hyperparameter C .

Table I shows the operational performance parameters [26],
[27] of the S-AC analog cells at different operating regimes
and at different process nodes. We here computed the peak
capabilities of the S-AC architectures for some of the widely
used performance metrics such as Computational Efficien-
cyPower Efficiency, System Efficiency. It can be observed that
the Computational Efficiency is highest in SI for planar CMOS
and Finfet node. It also shows that the best System Efficiency

TABLE I

OPERATION PERFORMANCE PARAMETER FOR S-AC SYSTEM

and Power Efficiency and lowest pJ/MAC operation can be
obtained in weak inversion.

2) Mismatch and Process Variation Analysis: In the sub-
micron technology nodes, the threshold voltage (VT 0) and cur-
rent factor (β) differences are the dominant sources underlying
the drain-source current or gate-source voltage mismatch for a
matched pair of MOS transistors [9], [28]. These mismatches
affects the speed, accuracy, and other performance parameters
of analog circuits. Fig. 13b shows the variation of output
current due to variation in the Fin count and overdrive voltage
in the 7nm FinFET node. It can be observed that the variations
are within 5%. Similar variations can be observed in Fig. 13c
for planar CMOS for change in area and over-drive voltage.

3) SNR Analysis: In a standard analog system (generally
amplifiers) the total noise (input noise nin , and the noise
contributed by the circuit itself nckt ) gets multiplied by the
system gain and appears at the output. Thus resulting in
no improvement in the signal-to-noise ratio (SNR). S-AC
architectures exploit the inherent parallelism in the structure
to overcome this limitation. In S-AC parallel current-mode
configuration, because we are summing two uncorrelated noise
sources, the overall noise increases as

√
2, while the correlated

input signal amplitude increases by 2. Mathematically, for a
single S-AC block having input signal x1 and gain G1, the
total combined input signal is given by x1 + nin1 . The output
includes the output signal Z plus the total output noise nout1 .

nout1 = nin1 × G1 + nckt1 (31)

Z = xin1 × G1 (32)

The SNR is calculated by dividing the output RMS signal
power by the output RMS noise power. This comes out to be

SN R1 = Z

nout1
=

�
xin1 × G1

�2�
nin1 × G1

�2 + n2
ckt1

(33)

Assuming the external noise input power is minimal (for
simplicity), then (32) reduces to

SN R1 =
�
xin1 × G1

�2

n2
ckt1

(34)

Now, adding a second S-AC block in parallel increases the
RMS signal power by 2×. However, it only increases the
RMS circuit noise by

√
2 because the circuit adds uncorrelated

noise. So instead of the noise doubling, we obtain a noise of√
2 × nckt . The SNR equation for two interconnected S-AC

blocks (assuming the composite gain remains almost the same)
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Fig. 12. Simulated multiplier characteristics obtained for S = 3, (a) at different process nodes and across temperature; (b) at 7nm process node for different
operating regimes; (c) at 180nm process node for different operating regimes.

Fig. 13. Simulations showing (a) average power consumption at different process technology nodes as the function of S (number of inputs N = 1);
(b) Standard deviation of output current h(x) as a function of change in Fins count and gate-source voltage for 7nm; (c) change in aspect ratio and overdrive
voltage for 180nm.

becomes

SN R2 = (2xin × G)2

(2nin × G)2 +
�√

2
��

nckt1

�2 + �
nckt1

�2
�� (35)

For nckt1 = nckt2 = nckt and assuming the external input noise
power is minimal (35) changes to

SN R2 = (xin × G)2�
0.5(nckt )

2� (36)

On comparing (34) and (36) one can analyze that for each
increase in the number of connected S-AC blocks in parallel,
the circuit SNR increases by twice.

4) S-AC Area and Power Saving Analysis: S-AC design
offers a range of trade-offs between accuracy, area, and power
benefits by changing the design parameter (S). The choice
of S is determined based on the application requirements.
Theoretically, the number of splines selected can vary from
1 to S, therefore offering a wide range of trade-offs to choose
from. We here evaluate the performance of the S-AC multiplier
for input dimension N = 2 as a function of S. The results
summarized in Table II show the maximum error, average
absolute error, error bias, and standard deviation. It can be
analyzed that with the increase in the value of S, all error
metrics decrease. Furthermore, the errors reduce to roughly
half for each increase in the value of S. Table II shows the
design savings offered by S-AC methodology when compared

TABLE II

S-AC MULTIPLIER PARAMETERS FOR DIFFERENT S

with a similar full-precision state-of-the-art multiplier imple-
mented in [30]. As expected, the design area and average
power consumption increase as a factor of S. As analyzed,
significant savings can be achieved while introducing insignifi-
cant amounts of error. As an example, with an average absolute
error of 3.66%, S = 3 offers up to 31.3% in area savings and
up to 37.2% in power savings.

5) Task-Energy Efficiency Analysis: Table III summarizes
the energy requirement and Mean-Deviation for the S-AC
block for implementing basic computational operations at
different operating regimes and at different process nodes.
We reported the maximum mean absolute deviation obtained
from the resultant functional shapes at 180nm and 7nm when
similar architecture was used in both process nodes. Table III
also summarizes the Energy/Operation obtained at different
operating regimes and at different process nodes for different
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TABLE III

ENERGY/OPERATION AND MEAN ABSOLUTE DEVIATION

S-AC computations. The least energy consumption is seen in
the WI regime and the worst in the SI regime.

V. CASE STUDY: S-AC BASED NEURAL NETWORK

In this section we show the design flow optimization of a
S-AC based neural network synthesized using S-AC standard
cells. Note that the approach presented here can also be
generalized to implement other machine learning architectures.

A. Algorithm to S-AC Hardware Mapping

Consider a vector x ∈ R
N where the output y for a standard

MLP [31] is given as,

y = ϕ (η (x)) (37)

where ϕ (·) is any non-linear function be it tanh(·), sigmoid,
ReLU, etc and η (x) be the decision function given by

η(x) = wT x + b (38)

where w ∈ R
N is the trained weight vector, x ∈ R

N is the
input vector, b ∈ R is the bias and the function η : R

N → R

is the decision function. For {x, y} ∈ R, the decision function
η(x) can then be rewritten as

η(x) = w · x+b (39)

Using equation (24) and (30) in (39) the decision function gets
mapped to S-AC based form as

η(x) = h(2C + w + x) − h(2C + w − x)

+ · · · · · · h(2C−w − x) − h(2C−w + x) + b (40)

Equation (40) can be viewed as generic decision function η(·)
mapped into shape domain. This shape equation can then be
easily synthesized using only S-AC analog cells. It can be
noted that variable b can be assumed as a constant current
added to the dot-product w · x and implemented using KCL
without additional circuits. Furthermore, to add non-linearity
to this output, function ϕ (·) can then be mapped to the shape
domain using the formulation demonstrated in Section IV.

Fig. 14. System-level architecture of a 3-layer neural network using S-AC
standard cells.

TABLE IV

CLASSIFICATION ACCURACY AT DIFFERENT OPERATING REGIMES &
DIFFERENT PROCESS NODES

B. S-AC Based Neural Network

Fig. 14 shows the system-level implementation of a S-AC
based neural network designed using S-AC based analog
standard cells. The network was mapped using the algorithm
mapping approach described in Section V-A and designed
using S-AC based analog cells described in Section IV. We
trained the network using the margin propagation algorithm
mentioned in [32] with variation aware training [33].

Table IV summarizes the classification accuracy of synthe-
sized neural networks using S-AC blocks at different process
technology nodes and operating regimes. We tested out system
classification capabilities on standard Activity Recognition
dataset (AReM) [34] dataset where we chose two of the
activities as positive cases, i.e., bending and lying activities
and utilized One versus all approach for binary classification.
We further verified the functionality on the benchmark MNIST
dataset [35] of handwritten digits. It can be analyzed from
Table IV that the classification accuracy of implemented
hardware nearly matches that of software at both 180nm and
7nm implementation and at different operating regimes. This
clearly signifies that the design is both process technology
scalable and bias scalable. It can be noted that due to time-
complexity in running analog SPICE simulations on the EDA
tools(where each full-precision simulation run extended for
nearly 6 hours), we randomly selected 1000 test images out
of the given 10000 test set.

Fig. 15a shows the confusion plot showing the distribution
for randomly selected 1000 test images. Furthermore, the
implemented MNIST network consisted of 256 input nodes
(where each input 28 × 28 image dimension was scaled down
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Fig. 15. (a) Confusion plot showing the distribution of randomly chosen
1000 test images from MNIST dataset; (b) Distribution showing the percent-
age of transistors that have deviated from the desired operating condition for
the MNIST test-set.

TABLE V

COMPARISON WITH STATE-OF-THE-ART ANALOG ANNs

to 16 × 16), 15 hidden nodes, and 10 output nodes for which
the baseline accuracy from both vanilla network and margin
propagation network with variation aware training in PyTorch
was obtained as 93%. As the hidden node count increases,
both vanilla and margin propagation network match the state-
of-the-art accuracy.Table V shows a comparison of different
analog ANN implementations. It can be observed that the
Energy/pixel obtained from S-AC network varies as the oper-
ating regime shifts from WI to SI, signifying that as per the
application, the user can tune the performance specification.
The energy/pixel of the S-AC ANN at 180nm for WI is 3×
lesser than [36] while in the SI, it is approximately 14× more.
Fig. 15b shows the percentage deviation of transistors from
the desired biasing regime for the MNIST dataset. It can be
found that on average around 8% of the total transistors in the
designed system, shifted their operation from their expected
operating regime. For instance, when the designed system
was biased to operate in weak inversion regime, near about
8% of total transistors shifted their operation to moderate
inversion regime while for the system biased in moderate
inversion regime, a similar percentage of transistors shifted
their operation to strong inversion regime. However, despite
this change in operating condition, there is no significant drop
in accuracy as the classification network leverages the benefits
of bias scalability of the S-AC circuit.

VI. CONCLUSION

In this work, we proposed a framework for designing analog
computing circuits that are process, bias, and temperature
scalable. The key differentiator from the previous work [15] is
the multi-spline approach that allows the framework to trade-
off power/area with accuracy (Fig. 2a). The framework leads

to the design of S-AC standard cells whose responses were
found to be robust to variations in biasing and temperature
and scalable across process nodes similar to digital standard
cells. As a result, a S-AC standard cell designed in a 180nm
process could be easily used for design in a 7nm process.
Thus, the modules can be potentially used for the automated
synthesis of large-scale analog processors. While the focus of
this work was to design S-AC circuits for machine learning
processors, the approach can be generalized to other analog
processors as well. As a proof-of-concept, we demonstrated
the approach for a 3-layer neural network whose test accuracy
remains minimally affected by changes in biasing and process
nodes. Even though the results in the paper show excellent
agreement between the accuracy of the software simulation
and circuit simulation for small-scale neural networks, future
work will leverage this framework to synthesize large-scale
analog deep neural networks and reconfigurable machine
learning processors.

APPENDIX

PROOF: GENERALIZED MARGIN PROPAGATION

FORMULATION USING MULTI-SPLINE APPROACH

Let us consider a log-sum-exp function [15] hlog : R
N → R

given by

hlog(x) = C · log

��N

i=1
e

xi
C

�
(41)

where C is a hyper-parameter and x ∈ R
N is a vector with

elements xi ∈ R. Equation (1) can be written as

�N

i=1
e

xi −hlog
C = 1 (42)

which is an equivalent non-linear constraint satisfaction prob-
lem. Let us approximate this non-linear function using linear
splines. It can be noted that the same methodology can also be
extended to other non-linear functions. As a proof-of-concept,
we show for log-sum-exponential. In Fig. 2a, we have shown
the plot of the exponential function and its approximation
using one-spline (S = 1) and three-splines (S = 3). Here,
Q1, Q2, . . . , QS are the tangential points and T1, T2, . . . , TS

are the tuning points. The generic line equation for the j th

spline where j ∈ (1, . . . , S) when approximated using piece-
wise-linear lines can be written using point-slope form as

θ j (x) = eQ j · x + eQ j
�
1 − Q j

� ∀x ≥ 0 (43)

where eQ j is the slope and eQ j (1− Q j ) is its intercept on the
line on the vertical axis. Similarly, for the ( j + 1)th spline,
we can write its line equation as,

θ j+1 (x) = eQ j+1 · x + eQ j+1
�
1 − Q j+1

� ∀x ≥ 0 (44)

The tuning points Tj (intercept between j th and ( j + 1)th

spline) can be obtained by equating the line equations of j th

and ( j + 1)th spline at xi = Tj and can be written as,

eQ j · Tj + eQ j
�
1 − Q j

� = eQ j+1 · Tj + eQ j+1
�
1 − Q j+1

�
(45)
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Equation (45) can be re-written as

Tj = Q j+1 · eQ j+1 − Q j · eQ j

eQ j+1 − eQ j
− 1 (46)

Then, the approximation of the function ex using S-splines
(a case of 3-spline approximation is shown in Fig. 2a) can be
written using point-slope form and using (43) and (46) as

ex ∼= eQ1 [x − T1]+ +
�

eQ2 − eQ1
�

[x − T2]+ + · · ·
· · · · +

�
eQ S − · · · − eQ2 − eQ1

�
[x − TS]+ (47)

Equation (47) can then be generalized as

ex ∼=
�S

j=1

�
eQ j −

� j−1

k=1
eQk

�	
x − Tj



+ (48)

The above equation (48) shows the approximation of ex

using S-splines. For ease of understanding let us choose a
specific case of 3-splines, viz. S = 3. Let the tangential points
for this case be Q1 = loge (0.5), Q2 = loge(1), Q3 = loge(2).
Then by using (46) we get,

T1 = loge (0.5) − 1 = −loge2 − 1 (49)

T2 = −loge (0.5) × 0.5

0.5
− 1 = loge2 − 1 (50)

T3 = 2loge2

2 − 1
− 1 = 2loge2 − 1 (51)

Using equation (49) - (51) in (48), we have

ex ∼= 1

2

	
x + loge2 + 1



+ + 1

2

	
x − loge2 + 1



+ +

· · · 1

2

	
x − 2 · loge2 + 1



+ (52)

Substituting equation (52) in (42), for i ∈ (1, . . . , N ), we get�N

i=1
[xi + O1 − h]+[xi + O2 − h]+[xi + O3 − h]=C 


(53)

Here, O1 = C(1 + loge2), O2 = C(1 − loge2) and O3 =
C(1 − 2loge2) are the offsets and C 
 = 2C is a tunable para-
meter. Equation (53) shows the approximation of exponential
function with 3-splines. The same can then be generalized to
S-splines, N-inputs as�N

i=1

�S

j=1

	
xi + O j − h



+ = C�N

i=1

�S

j=1

	
xi, j − h



+ = C (54)

where O j is the offset due to j th spline, xi, j is the i th input
corresponding to j th spline, C is a hyperparameter and S
is a design parameter also called splines count. It can be
noted from Fig. 2a that with the increase in the number of
splines (S), the computational precision increases, while the
input dimension increases along N . Equation (54) is called
Generalized Margin Propagation function (GMP).
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