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Abstract—Analog computing is attractive compared to digital
computing due to its potential for achieving higher computational
density and higher energy efficiency. However, unlike digital
circuits, conventional analog computing circuits cannot be easily
mapped across different process nodes due to differences in
transistor biasing regimes, temperature variations and limited
dynamic range. In this work, we generalize the previously re-
ported margin-propagation-based analog computing framework
for designing novel shape-based analog computing (S-AC) circuits
that can be easily cross-mapped across different process nodes.
Similar to digital designs S-AC designs can also be scaled for
precision, speed, and power. As a proof-of-concept, we show
several examples of S-AC circuits implementing mathematical
functions that are commonly used in machine learning (ML)
architectures. Using circuit simulations we demonstrate that the
circuit input/output characteristics remain robust when mapped
from a planar CMOS 180nm process to a FinFET 7nm pro-
cess. Also, using benchmark datasets we demonstrate that the
classification accuracy of a S-AC based neural network remains
robust when mapped across the two processes and to changes in
temperature.

Index Terms—Machine Learning, Process Scalability, Ana-
log Approximate Computing, Margin Propagation, Shape-based
Computing.

I. INTRODUCTION

ANALOG computing techniques are attractive for im-
plementing machine learning (ML) architecture because

of the potential to achieve high computational density and
high energy-efficiency when compared to an equivalent digital
implementation. ML training also allows for offline and online
calibration which can compensate for analog artifacts due to
device mismatch and non-linearity [1]. Examples of previous
analog ML implementations include [2], [3], [4], [5], [6], [7],
[8]. However, one of the key advantages of digital implemen-
tation is its process scalability where a digital circuit module
designed in one process node (typically with a larger feature
size) can be mapped to a more advanced process node (with
a smaller feature size) with minimal to no circuit modifica-
tion [9], [10]. Due to process scalability, digital implementa-
tions (both ML and non-ML architectures) can benefit from
sub-10nm technology scaling in terms of improved speed,
power and compute density. On the other hand, scaling analog
computing circuits across process nodes has been difficult due
to several reasons [11], [12], [13] and can be highlighted using
Fig. 1. The figure compares transistor performance using the
product of transconductance efficiency and speed as a figure-
of-merit (FOM) [14] for a 180nm planar CMOS process and
for a 7nm FinFET process [15], [16]. The FOM is shown in
Fig. 1 for three different biasing regimes, weak-inversion (WI),

Fig. 1. Plot of transconductance efficiency (gm/Id) as a function of
Vgs − Vth at different process nodes [15]. The plot also shows the product
of transconductance efficiency and speed (fT ), denoting the efficiency peak
obtained in moderate inversion. Plots are shown for n-type planar CMOS and
FinFET at different process nodes. Here the maximum supply voltages of
each process node can be noted as 1.8V , 0.8V and 0.7V for 180nm, 22nm
and 7nm respectively.

moderate-inversion (MI), and strong-inversion (SI). Note that
in Fig. 1, biasing regimes can be differentiated from each other
by their respective transconductance efficiencies (gm/Id). For
Vgs − Vth < 0, transistors are operating in WI while the
transition slope denotes MI regime. It can also be seen from
Fig. 1 that for 7nm FinFET process, the highest dynamic
range and the best FOM is achieved in the moderate inversion
regime. As the feature size is scaled to a more advanced
process node (7nm feature size), the moderate inversion region
dominates the transistor dynamic range. Whereas, most analog
computing circuits that exploit the large-signal transistor I-V
characteristics operate either in the weak-inversion regime [17]
or in the strong-inversion regime [18]. These circuits cannot
be directly scaled to the sub-10nm process nodes without
significant performance degradation.

In this paper, we propose analog computing circuits that are
process scalable and hence similar to digital designs can be
used as synthesizable analog standard cells. At the core of the
proposed circuits is a generalization of the previously reported
bias scalable analog computing framework called margin prop-
agation [19]. In this work, we show that generalized margin
propagation leads to a novel shape-based analog computing
(S-AC) framework where circuit accuracy can be traded off
with speed and power, like digital designs. Furthermore, S-
AC circuits can be scaled across processes and can work
across different biasing regimes and across different operating
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Fig. 2. (a) Plot showing the approximation of a non-linear function θ(x) ≃ ex using linear splines (S). Here, the approximations are shown for different
spline (S) counts i.e, S = 1, 3, where Q1, Q2, Q3 are the tangential points and T1, T2, T3 are the tuning points; (b) Implementation of N-type S-AC circuit
for N inputs and S splines, the inset shows the circuit implementation of a single S-AC unit using n-type FET and a diode; (c) Implementation of P-type
S-AC circuit for N inputs and S splines, the inset shows the circuit implementation of a single S-AC unit using p-type FET and a diode. The circle on the
P-type S-AC unit is used to differentiate between an N-type S-AC unit and a P-type S-AC unit.

temperatures. As a proof-of-concept, this paper presents the
design of several key analog computing circuits commonly
used in ML architectures.

The key contributions of this work in relation to previous
approaches are as follows:

• Generalization of margin-propagation design framework
using a multi-spline approach that allows trading off
computational accuracy with speed and power. Using the
multi-spline approach, we design a basic prototype func-
tion and show that its characteristic is robust with respect
to biasing, process nodes, and temperature variations.

• Using the basic prototype function we synthesize S-AC
circuits that approximate different functions commonly
used in ML architecture.

• Using the basic S-AC circuits we present a complete
design of a 3-layer neural network that is process and
bias scalable with respect to classification accuracy on
benchmark datasets.

The rest of the sections are organized as follows. Section II
presents the mathematical framework for generalizing margin
propagation (MP) and S-AC framework. Section III shows the
MOS circuit implementation of the basic S-AC circuit and
demonstrate its scalability at different biases and process tech-
nology nodes. In Section IV we shows the design of widely
used machine learning functions implemented using basic S-
AC unit and its performance trade-off analysis. Section V
presents a case study of S-AC based 3-layer neural network.
Section VI concludes the papers with discussions and final
remarks.

II. GENERALIZATION OF MARGIN PROPAGATION AND
SHAPE-BASED ANALOG COMPUTING

In this section, we extend our previous work in the area of
bias-scalable analog computing circuits [19] using a multi-
spline approach which is then generalized to shape-based
computing. These shapes or prototype functions are then
shown to be implemented using physical operating principles
of MOSFETs and diodes.

A. Multi-Spline Approximation of log-sum-exp function

Similar to the previous Margin Propagation (MP) frame-
work [19], the starting point of our framework is an approxi-
mation of the log-sum-exp function [19] hlog : RN → R given
by

hlog(x) = C · log

(
N∑
i=1

e
xi
C

)
(1)

where C is a hyper-parameter and x ∈ RN is a vector with
elements xi ∈ R. Equation (1) can be written as

N∑
i=1

e
xi−hlog

C = 1 (2)

which is an equivalent non-linear constraint satisfaction prob-
lem. In our previous MP related work [19] we had approxi-
mated the e(.) using a single spline as

ex ∼= [x]+ (3)

where [.]+ denotes a rectifying linear unit (ReLU) function.
The single-spline approximation (S = 1) of the exponential
function is highlighted in Fig. 2a. Using the single splines
(2) can be expressed as a piece-wise approximation h ≈ hlog

where h is computed as a solution to the non-linear equation

N∑
i=1

[xi − h]+ = C. (4)

Fig. 2a also provides the insight that the exponential function
can be better approximated using multiple splines (S > 1)
defined by different parameters Qj , Tj , where j = 1, .., S. In
this work, we therefore generalize the MP framework in (4)
by approximating e(.) using multiple splines as

ex ∼=
S∑

j=1

(
eQj −

j−1∑
k=1

eQk

)
[x− Tj ]+ (5)

The rationale for choosing the values of Qj , Tj , where j =
1, .., S in (5) is provided in Appendix A. Appendix A also
shows that, for specific values of Qj , Tj , where j = 1, .., S,
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Fig. 3. Basic S-AC functions implemented by the N-type S-AC circuit and P-type S-AC circuit in different process technology nodes when a single input
x is varied: (a) for spline-count S = 1;(b) for spline-count S = 3; (c) for different operating regimes in a 180nm process node; (d) for different operating
regimes in a 7nm process node. The output current h(x) shown in the plots have been normalized with respect to Imax, where Imax is the maximum current
for each biasing regime.

(5) leads to a simplified multi-spline approximation like (4)
and given by

N∑
i=1

S∑
j=1

[xi,j − h]+ = C (6)

Thus, h(.) is a function of a matrix whose elements are
xij , i = 1, .., N ; j = 1, .., S. Equation (6) therefore serves as
a generalization of margin-propagation using multiple splines.

B. Generalized Margin Propagation and S-AC

Both the log-sum-exp function hlog(.) and its multi-spline
approximation h(.) satisfy the following properties

1 ≥ ∂hlog

∂xi
,
∂h

∂xi
≥ 0,∀i (7)

and

lim
xi→∞

∂hlog

∂xi
,
∂h

∂xi
= 1

lim
xi→−∞

∂hlog

∂xi
,
∂h

∂xi
= 0

(8)

These properties indicate some common features of the shape
of both hlog(.) and h(.) and this feature also indicates a
mechanism to further generalize MP shapes g(·) instead of
splines (5). If a function g : R → R satisfies the following
property

• g(0) = 0 and g(·) is always positive or g(·) ≥ 0.
• g(·) is monotonic function.

then we propose a function h, which is computed as the
solution to the following constraint

N∑
i=1

S∑
j=1

g(xi,j − h) = C,∀i = 1, .., N,∀j = 1, .., S (9)

Since the choice of g(.) is arbitrary, we refer to the function
h(.) as a shape-based function and any computation that
exploits the constraint (9) as shape-based computing (S-AC).
In the next section, we show how g(.) can be implemented
using transistor and diode characteristics in a bias and a
process scalable manner.

III. S-AC CIRCUIT IMPLEMENTATION AND ANALYSIS

A. FET device characteristics and the basic S-AC Circuit

In its most general form, the drain-to-source current (Ids)
flowing through an n-type MOSFET can be expressed as the
difference between the forward and reverse currents [20], [21]
as

Ids = Is[f(Vg, Vs)− f(Vg, Vd)] (10)

where Is is the specific current and f : R × R → R is a
function that models the forward and reverse currents with
respect to the gate (Vg), drain (Vd) and source (Vs) voltages
respectively. A similar expression as (10) also holds for a p-
type MOSFET, except that the signs of the respective variables
are reversed. Without any lack of generality, our analysis in
this section will be based on the n-type MOSFET model;
however, the formulation is applicable to p-type MOSFETs
as well. It should also be noted that, as long as the source
and the drain terminals are symmetric to each other, the
expression in (10) holds irrespective of the choice of transistor
models such as EKV (Enz, Krummenacher, and Vittoz) [22],
ACM (Advanced Compact MOSFET) [23], etc. or operating
regimes, i.e. weak-inversion, moderate-inversion or strong-
inversion, or process nodes viz. MOSFET, FinFET, etc. The
function f(·, ·) always satisfies the properties similar to g(·),
and can be listed as:

• f(0, 0) = 0 and f(·, ·) is always positive or f(·, ·) ≥ 0,
by construction.

• f(·, ·) is monotonic. For Vg1 > Vg2, f(Vg1, Vs) >
f(Vg2, Vs) and for Vs1 > Vs2, f(Vg, Vs1) < f(Vg, Vs2).

Thus, f and hence the FETs could be used to implement S-
AC function as follows: Given an input matrix X ∈ RN×S

where xi ∈ RN , ∀i = 1, .., N is the input vector and xj ∈ RS ,
∀j = 1, .., S is the number of splines, the basic shape of S-AC
h : RN×S → R can be computed as a solution to the equation
h(X)= f(VB , 0) where the variable VB is the solution to:

N∑
i=1

S∑
j=1

f(Vi,j , VB) = C,∀i = 1, .., N,∀j = 1, .., S (11)

f(VB , 0)− f(VB , Vi,j) + f(Vi,j , VB) = xi,j (12)

Here, C is a hyper-parameter and Vi,j is an internal variable.
Equations (11) - (12) can be implemented using CMOS
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(a) (b) (c)
Fig. 4. Basic S-AC functions implemented by the S-AC circuit in a 180nm process node when a single input x is varied: (a) when the temperature is varied
from −45◦C to 125◦C in 180nm; (b) in the presence of device mismatch (upto 5% mismatch) - the plot shown here is for N-type S-AC circuit; (c) in the
presence of power supply voltage variation from 0.9V to 1.8V . The output current h(x) shown in the plots have been normalized with respect to Imax,
where Imax is the maximum current for each of the biasing regime.

(a) (b) (c)
Fig. 5. Results for S-AC circuit when operating in deep-threshold regime in a 180nm process: (a) MOSFET I-V characteristics showing the effect of source
shifting to lower the operating current into the diode leakage regime; (b) MOSFET implementation of the N-type S-AC circuit capable of operating in
deep-threshold regime; (c) Normalized output current response of the source-shifted S-AC circuit for S = 1, 3.

circuits as shown in Fig. 2b. Here, xi,j is the input current for
the ith input and the jth spline and h(X) is the output current.
Vi,j and VB are the voltages across the N th

i,j transistor, C is
a constant current and Di,j denotes diode elements (Schottky,
MOS diode or any other). Applying KCL at node VB , (11) can
be obtained while the current across diode Di,j gives (12).
Similar operation can be obtained in other quadrant using
PMOS variant shown in Fig. 2c.

B. Process and Temperature Scalability of Basic S-AC Circuit
We first show that the basic S-AC function implemented

by (11) and (12) and the circuit in Fig. 2b and Fig. 2c
are robust to changes in biasing conditions and operating
temperature. Fig. 3a shows the proto-shape h(x) obtained
using the circuits shown in Fig. 2b (N-type S-AC) and Fig. 2c
(P-type S-AC) for spline count S = 1. Similar results are
shown for spline count S = 4 in Fig. 3b. It can be noted that
with the increase in the number of splines, the approximation
accuracy increases while the basic S-AC function remains
scalable across process-technology nodes. Fig. 3c shows the
example of the shape-function obtained using the circuit in
Fig. 2b and Fig. 2c for input dimension N = 1 and the design
parameter S = 3 for 180nm process node. The results are also
shown for different MOSFET biasing regimes, i.e., WI, MI,
and SI biasing regimes which correspond to different functions

f(·) in (11)-(12). The plots show that the basic shape of S-
AC remains robust to the biasing condition and is constrained
within a well-defined ”margin”. This margin is determined by
the design parameter S and the inherent feedback from the
hyper-parameter C. Fig. 3d shows similar response plots for
7nm process node. Fig. 4a shows the effect of temperature on
the shape function. It can be observed that the shape-function
is almost immune to changes in temperature. Fig. 4b shows the
effect of monte-carlo analysis on the basic shape of N-type S-
AC, while Fig. 4c shows the effect of power supply variation in
WI regime. It can be observed that the shape remains preserved
despite variations in analysis.

C. Deep-threshold Operation of Basic S-AC Circuit
To exploit the complete available current range (lower limit

set by the diode reverse leakage currents) of transistors in
planar CMOS, two approaches can be followed. First, the VGS

could be made negative; second, the threshold voltage, VT0,
could be increased in a way that the channel inversion occurs
at higher VGS voltages [24], [25], [26], [27]. Therefore, to
bias the transistors at smaller currents, VGS should be biased
to the reverse direction (VGS < 0V for NMOS and VGS >
0V for PMOS), which is defined as the deep sub-threshold
region, and MOSFET working in this region is thus nominated
as DSMOS (Deep Sub-threshold MOS). For this approach,
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(a) (b) (c)

(d) (e)

Fig. 6. Implementation of S-AC based analog activation standard cells for machine learning applications: (a) cosh(·); (b) sinh(·); (c) ReLU; (d) Compressive
non-linearity; ϕ1(·) similar to tanh(·) and ϕ2(·) similar to Sigmoid functions respectively; (e) Soft-Plus. Here K represents a constant current.

the source voltage shifting technique can be used. By shifting
the source voltage slightly higher than the lowest potential
(VSS), the gate voltage can reach down to the lowest potential
(VSS). Fig. 5a shows the ID vs. VGS characteristic plot in log
scale for source shifted MOS transistors. The lowest value of
current found with the source shifting technique was 1.97fA
for NMOS and 3.19fA for PMOS in CMOS 180nm process
node. On analyzing Fig. 5a one can see that the source voltage
shifting can be used to utilize the complete device physics of
the transistor, i.e., exploiting the complete available current
range (down to the diffusion diodes reverse leakage currents).

For the second approach (so-called channel conduction
manipulating technique), the body terminals of transistors are
connected to the highest potential (VDD). This will prevent
the channel inversion from taking place at low VGS voltages
which, along with source shifting, further lowers the lowest
level of the operating current of the circuit. We used a
technique that combines a fixed source shifted voltage with the
channel conduction manipulation technique. Fig. 5b shows the
circuit implementation of equations (11)-(12) using the above
two approaches combined, where source voltage modulation
along with channel conduction manipulation techniques were
used to shift the operation in femto-ampere (fA). Fig. 5c shows
the response of the basic S-AC circuit operating in the deep-
threshold at current levels down to femto-amperes (fA). The
results show that if biased properly, S-AC can operate at ultra-
low current levels and yet its characteristics are maintained.

IV. SYNTHESIS OF ANALOG COMPUTING MODULES
USING BASIC PROTO-SHAPES

S-AC circuits shown in Fig. 2b and Fig. 2c can be used to
synthesize basic mathematical functions. These P-type and N-
type S-AC cells be utilized as analog standard cells to perform
complex machine learning tasks. As a proof of concept, we
show the S-AC-based implementation of various activation
functions, and energy-efficient multiplication, alongside other
mathematical functions such as Winner-Takes-all (WTA), N-
of-M encoder, SoftArgMax and Max circuits. It can be noted
that the proto-shape h(x) can be mapped to exponential for ex

ranging from [−∞, 1). Within this defined range i.e.
∣∣∂h
∂x

∣∣ < 1,
if (7) and (8) are satisfied, then complex functions such as
hyperbolic functions (Cosine, Sine) and other such functions
can also be constructed. The following text has a detailed
formulation and S-AC based implementation of each of these
circuits in both 180nm and 7nm process technology nodes.

A. Cosine-Hyperbolic

The cosh(·) function can be constructed using N-type S-
AC standard cells for S = 3 as shown in Fig. 6a. The cosh(·)
function is given by:

cosh(x) =
ex + e−x

2
(13)

Now, if in Fig. 2a, the response of one S-AC unit is h(x) ∼= ex

2 ,
then by tuning the offsets O1, · · · , O3, we can get cosh(·). In
terms of S-AC computation, (13) can be written as

cosh(x) = h(x) + h(−x) (14)
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Simulated output corresponding to the S-AC standard cells shown in Fig. 6: (a) cosh(·); (b) sinh(·); (c) ReLU; (d) Compressive non-linearity ϕ1(·)
equivalent to tanh(·); (e) Compressive non-linearity ϕ2(·) equivalent to Sigmoid; (f) Soft-Plus at FinFET (7nm) and CMOS (180nm) process nodes.

Fig. 8. Implementation of N -input winner takes all (WTA) standard cells
using S-AC units. The same circuit can be tuned to function as a soft-WTA
and Max circuit.

Thus the cosh(·) function is the addition (KCL) of the response
of S-AC (y1 in Fig. 6a) and its vertically flipped response
(shown by y2 in Fig. 6a). Fig. 7a shows characteristics
response Iout obtained using Fig. 6a across different process
nodes and different temperatures for the same values of offset.

B. Sine-Hyperbolic

The sinh(·) function can be constructed using both P- and
N-type S-AC standard cells for S = 3 as shown in Fig. 6b.
The sinh(·) function is given by:

sinh(x) =
ex − e−x

2
(15)

Similar to Cosine if the response of S-AC unit is h(x) ∼= ex

2 ,
then (15) can be written in terms of S-AC computation as

sinh(x) = h(x)− h(−x) (16)

Fig. 7b shows characteristics response Iout obtained using
Fig. 6b across different process nodes and temperatures.

C. ReLU

ReLU can be implemented using two S-AC units as shown
in Fig. 6c. Fig. 6c implements the function given by

Iout =

{
max (0, x) , C → 0
max (0, C − x) , else

(17)

Fig. 7c shows the characteristic response of ReLU imple-
mented using the circuit in Fig. 6c across different process
nodes and temperatures.

D. Compressive non-linearity

We formulate the compressive non-linearity function ϕ1(·)
given by

ϕ1(x) = log
1 + ex+K

ex + eK
(18)

where K is a constant. This compressive function in (18)
can then be used to emulate tanh(·) and sigmoid functions.
Equation (18) when mapped to S-AC computation can be
written as:

ϕ1(·) = h(0, x+K)− h(x,K) (19)
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 9. Simulated output of a two-input S-AC based WTA standard cell shown in Fig. 8 showing: (a) current output (Iout1 and Iout2) versus the differential
input current for 180nm process node and (b) for 7nm process node; (c) Voltage output (Vout1 and Vout2) versus the differential input voltage for 180nm
process node and (d) for 7nm process node. Simulated output of a five-input S-AC WTA standard cell showing (e) M selected winners as a function of
hyperparameter C for 180nm process node and (f) for 7nm process node where Iout shows the contribution of M selected winners in the output. Simulated
output of five-input S-AC WTA standard cell showing individual outputs [Iout1, · · · , Iout5] as a function of hyperparameter C at (g) 180nm and (h) 7nm
process node where responses of Fig. 9 are obtained for the inputs [x1,x2,x3,x4,x5] = [α, 2α, 3α, 4α, 5α] where α = 1µA for 180nm and 10nA for 7nm.

The circuit for emulating ϕ1(·) is shown in Fig. 6d. We show
that the characteristics response Iϕ1 shown in Fig. 7d can be
used to emulate response equivalent to tanh(·) function.

E. Sigmoid

The sigmoid equivalent characteristic plot can be obtained
from a shifted version of the ϕ1(·) function. Thus adding a
constant current K to Iϕ1 gives a Sigmoid equivalent response
and is shown in Fig. 6d. We show that the characteristics
response Iϕ2 shown in Fig. 7e can be used to emulate a
response equivalent to the Sigmoid function.

F. Soft-Plus

The soft plus activation function can be obtained using two
S = 3, S-AC units. The circuit for emulating the Soft-Plus
response is shown in Fig. 6e. We show that the characteristics
response Iout shown in Fig. 7f are robust across different
process nodes and different temperatures.

G. S-AC based Winner-Take-All

A winner-take-all (WTA) circuit is designed to emulate
the max(·) function. The proposed S-AC-based WTA circuit
is shown in Fig. 8. It is modular, i.e., it can be extended
for N inputs like the original circuit proposed by Lazzaro
et al. (1989) [28]. Fig. 9a and Fig. 9b show the current
characteristics plot of two-input S-AC based WTA at 180nm
and 7nm for an input differential current. It can be observed

that when the differential current is 0, the output currents are
equal. The corresponding voltage outputs for both the process
nodes are shown in Fig. 9c and Fig. 9d respectively.

H. S-AC based N-of-M Encoder

The N-of-M encoder extends the computational capabilities
of the standard WTA circuit and has found profound impor-
tance in sparsely distributed memory [29] and machine learn-
ing. N-of-M encoder allows the user to obtain the max current
that takes into account the influence due to the contribution of
top M winners [30] out of N inputs (M/N ). For the specific
case of M = 1, the N-of-M encoder behaves like a simple
WTA circuit. Fig. 9e shows the response of the five-input
S-AC-based WTA circuit shown in Fig. 8 as a function of
hyper-parameter C. It can be noted that with the increase in
hyper-parameter value, the output current Iout decreases and
is the result of more than one winner. Using (11) for S = 1,
Iout is given by

Iout =

M∑
i=1

xi − C

M
(20)

where M is the number of winners. We implemented a similar
encoder circuit in 7nm, and the results are shown in Fig. 9f. It
can easily be analyzed that depending on the hyper-parameter
C, the circuit can select the top M winners.
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Fig. 10. Implementation of a four-quadrant multiplier using P-type and N-
type S-AC circuits.

I. S-AC based SoftArgmax

In machine learning, SoftArgmax offers an improvement
over Argmax to support backpropagation and gradient op-
eration. The S-AC-based WTA circuit can be configured to
implement SoftArgmax. Fig. 9g and Fig. 9h show the response
curve of outputs Iout1, · · · , Iout5 for the variation in hyper-
parameter C for 180nm and 7nm respectively. It can be
observed that with the increase in hyper-parameter, outputs
corresponding to the maximum input along with other inputs
are activated and can be given by

Iouti = xi − C, ∀xi > C (21)

J. S-AC based Max Circuit

The S-AC based winner-take-all circuit can also be config-
ured to select the maximum input among the given set of N
inputs. For hyper-parameter, C → 0, the circuit starts behaving
as a max input selector.

K. S-AC based Four Quadrant Multiplier

The four-quadrant multiplier is proposed in [31]. Owing
to the Lipchitz behavior of the S-AC function, the design is
formulated such that the multiplication satisfies the Lipchitz
condition. Fig. 10 shows the S-AC cell-based implementation
of a multiplier circuit. Consider the following equation, where
y is given by

y = h(C + w + C + x)− h(C + w + C − x) + . . .

h(C − w + C − x)− h(C − w + C + x) (22)

The goal is to implement scalar multiplication between
two variables x and w. Here x,w, y ∈ R, h is a non-linear
monotonic function and C is a hyperparameter. If we write
the Taylor expansion of h(x) around w, we get

h(C + w + C + x) = h(0) +
h′(0)

1!
(C + w + C + x) . . .

+
h′′(0)

2!
(C + w + C + x)2 + . . . (23)

h(C + w + C − x) = h(0) +
h′(0)

1!
(C + w + C − x) . . .

+
h′′(0)

2!
(C + w + C − x)2 + . . . (24)

TABLE I
OPERATION PERFORMANCE PARAMETER FOR S-AC SYSTEM

Parameter
(@ S = 1)

Technology and Operating Regimes
CMOS 180nm FinFET 7nm

SI MI WI SI MI WI
Computational Efficiency

(TOPS/mm2) 5 0.082 1.83e-4 5100 3460 50.28

Power Efficiency
(TOPS/W) 13.49 27.74 73.36 69.4 2.9e4 3.6e5

System Efficiency
(pJ/MAC) 0.19 0.24 0.67 0.03 0.14e-3 6.12e-3

h(C − w + C − x) = h(0) +
h′(0)

1!
(C − w + C − x) . . .

+
h′′(0)

2!
(C − w + C − x)2 + . . . (25)

h(C − w + C + x) = h(0) +
h′(0)

1!
(C − w + C + x) . . .

+
h′′(0)

2!
(C − w + C + x)2 + . . . (26)

Substituting (23) - (26) in (22) and ignoring the higher order
terms, we get,

y ∼= 4h′′(0)x× w (27)

For h(·) assumed to be a non-linear function response such
that h′′(0) ̸= 0, (27) simplifies to

y ∼= x× w (28)

where 4h′′(0) is a scaling factor of multiplication. (22) shows
that the product calculation is then reduced to addition and
subtraction operations, thus altering the use of a bulky multi-
plier.

In Fig. 11a, we show that the behavior of the four-quadrant
S-AC multiplier is scalable across the process technology
nodes. Fig. 11b shows the response of the four-quadrant S-AC
multiplier at different operating regimes for the 7nm process
node. A similar response can be observed in Fig. 11c at the
180nm process node. It can be analyzed from Fig. 11b and
Fig. 11c that the shape of the multiplier characteristic curve
remains preserved when the circuit operation moves from WI
to SI.

L. Performance and Trade-off Analysis

This section shows the performance analysis of the S-AC
computational blocks at different process technology nodes,
viz. 180nm and 7nm and at different operating conditions.
The inter-dependence of power, throughput, accuracy and area
trade-off for designing a high-performance and scalable system
has been explained in detail.

1) Power & Operation Performance Analysis: Fig. 12a
shows the plot of the average power consumption plot with the
increase in the number of S-AC units for different technology
nodes and at different biasing regimes. It can be observed that
with the increase in S-AC units in parallel, power consumption
increases for a fixed value of hyperparameter C.

Table I shows the operational performance parameters [32],
[33] of the S-AC analog cells at different operating regimes
and at different process nodes. We here computed the peak
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(a) (b) (c)
Fig. 11. Simulated multiplier characteristics obtained for S = 3, (a) at different process nodes and across temperature; (b) at 7nm process node for different
operating regimes; (c) at 180nm process node for different operating regimes.

(a) (b) (c)
Fig. 12. Simulations showing (a) average power consumption at different process technology nodes as the function of S (number of inputs N = 1); (b) Standard
deviation of output current (h(x)) as a function of change in Fins count and gate-source voltage for 7nm; (c) change in aspect ratio and gate-source voltage
for 180nm.

capabilities of the S-AC architectures for some of the widely
used performance metrics such as Computational Efficiency-
Power Efficiency, and System Efficiency. It can be observed
that the Computational Efficiency is highest in SI for planar
CMOS and Finfet node. It also shows that the best System
Efficiency and Power Efficiency and lowest pJ/MAC operation
can be obtained in weak inversion.

2) Mismatch and Process Variation Analysis: In the sub-
micron technology nodes, the threshold voltage (VT0) and cur-
rent factor (β) differences are the dominant sources underlying
the drain-source current or gate-source voltage mismatch for
a matched pair of MOS transistors [12], [34], [35], [36], [37].
These mismatches not only limit the minimal signal required
to execute the meaningful functions but also affect the speed,
accuracy, and other performance parameters of analog circuits.
Fig. 12b shows the variation of output current due to variation
in the Fin count and overdrive voltage in the 7nm FinFET
node. It can be observed that the variations are well within
5%. Similar variations can be observed for planar CMOS for
variation in the area and over-drive voltage in Fig. 12c.

3) SNR Analysis: In a standard analog system (generally
amplifiers) the total noise (input noise nin, and the noise

contributed by the circuit itself nckt) gets multiplied by the
system gain and appears at the output. Thus resulting in no
improvement in the signal-to-noise ratio (SNR). This is not
the case for S-AC architectures which are inherently parallel.
Such circuits exploit the inherent parallelism in the structure
to overcome this limitation and simultaneously improve SNR.
In this parallel current-mode configuration, because we are
summing two uncorrelated noise sources, the overall noise
increases as

√
2, while the correlated input signal amplitude

increases by 2. Mathematically, for a single S-AC block having
input signal x1 and gain G1, the total combined input signal
is given by x1 + nin1

. The output includes the output signal
Z plus the total output noise nout1 .

nout1 = nin1
×G1 + nckt1 (29)

Z = xin1
×G1 (30)

The SNR is calculated by dividing the output RMS signal
power by the output RMS noise power. This comes out to be

SNR1 =
Z

nout1

=
(xin1 ×G1)

2

(nin1 ×G1)
2
+ n2

ckt1

(31)
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Fig. 13. Estimated power and area savings as a function of S for the S-AC
based multiplier

TABLE II
ACCURACY CORRESPONDING TO THE S-AC MULTIPLIER FOR DIFFERENT

S

Error (%) S=1 S=2 S=3
Max Error 50 33.333 11.111

Average abs error 22.29 9.31 3.66
Error bias 22.29 -9.31 -2.57

Standard Deviation 11.78% 5.89% 1.68%

Assuming the external noise input power is minimal (for
simplicity), then (30) reduces to

SNR1 =
(xin1 ×G1)

2

n2
ckt1

(32)

Now, adding a second S-AC block in parallel increases the
RMS signal power by 2×. However, it only increases the
RMS circuit noise by

√
2 because the circuit adds uncorrelated

noise. So instead of the noise doubling, we obtain a noise of√
2 × nckt. The SNR equation for two interconnected S-AC

blocks (assuming the composite gain remains almost the same)
becomes

SNR2 =
(2xin ×G)

2

(2nin ×G)
2
+
[√

2
(
(nckt1)

2
+ (nckt1)

2
)] (33)

For nckt1 = nckt2 = nckt and assuming the external input
noise power is minimal (33) changes to

SNR2 =
(xin ×G)

2(
0.5(nckt)

2
) (34)

On comparing (32) and (34) one can analyze that for each
increase in the number of connected S-AC blocks in parallel,
the circuit SNR increases by twice.

4) S-AC Area and Power Saving Analysis: S-AC design
offers a range of trade-offs between accuracy, area, and power
benefits by changing the design parameter (S). The value of
this design parameter S is determined based on the application
requirements. Theoretically, the number of splines selected can
vary from 1 to S, therefore offering a wide range of trade-offs
to choose from. We here evaluate the performance of the S-
AC multiplier for a fixed value of input dimension (N = 2) as
a function of S. The results are summarized in Table II shows

TABLE III
ENERGY/OPERATION AND MEAN ABSOLUTE DEVIATION

Operation Err* Process
Node

Energy per Operation (fJ)

WI MI SI

Cosh 0.0599 180nm 40.86 108.12 222
7nm 0.0196 0.612 23.1

Sinh 0.0098 180nm 81.72 216.24 444
7nm 0.0392 1.224 46.2

ReLU 0.0337 180nm 11 24.42 75.94
7nm 0.0035 0.101 2.97

Compressive
Non-Linearity 0.0054 180nm 81.72 216.24 444

7nm 0.0392 1.224 46.2

Soft-plus 0.0321 180nm 40.86 108.12 222
7nm 0.0196 0.612 23.1

WTA
(N-Input) 0.1760 180nm N × 6.81 N × 18.02 N × 37

7nm N × 0.0033 N ×0.102 N × 3.85
Multiply/
(Divide) 0.0139 180nm 190 240 670

7nm 0.018 0.42 90
∗Err = MAX∀x |MeanAbsoluteDeviation| between 180nm and
7nm process node at room temperature.

the maximum error, average absolute error, error bias, and
standard deviation. It can be analyzed that with the increase
in the value of S all error metrics decrease. Furthermore,
the errors reduce to roughly half for each increase in the
value of S. Fig. 13 shows the design savings offered by S-
AC methodology when compared with a similar full-precision
state-of-the-art multiplier implemented in [38]. As expected,
the design area and average power consumption increase
as a factor of S. As analyzed, significant savings can be
achieved while introducing insignificant amounts of error. As
an example, with an average absolute error of 3.66%, S = 3
offers up to 31.3% in area savings and up to 37.2% in power
savings.

5) Task-Energy Efficiency Analysis: Table III summarizes
the energy requirement and Mean-Deviation for the S-AC
block for carrying out basic computational operations at dif-
ferent operating regimes and at different process nodes. We
reported the maximum mean absolute deviation obtained from
the resultant functional shapes at 180nm and 7nm when similar
architecture was used to obtain the same operation in both
process nodes. Table III also summarizes the Energy/Operation
obtained at different operating regimes and at different process
nodes for different S-AC computations. The least energy
consumption is seen in the WI regime and the worst in the SI
regime.

V. CASE STUDY: S-AC BASED NEURAL NETWORK

In this section we show the design flow optimization of a
S-AC based neural network synthesized using S-AC standard
cells. Note that the approach presented here can be generalized
to implement other machine learning architectures as well. The
resulting software-hardware co-design can be used to imple-
ment standard decision functions using a process-independent
design flow.

A. Algorithm to S-AC Hardware Mapping

Consider a vector x ∈ RN where the output y for a standard
MLP [39] is given as,

y = φ (η (x)) (35)
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Fig. 14. System-level architecture of a 3-layer neural network using S-AC standard cells.

Fig. 15. Distribution showing the percentage of transistors that have deviated
from the desired operating condition for the MNIST test-set.

where φ (·) is any non-linear function be it tanh, sigmoid,
ReLU, etc and η (x) be the decision function given by

η(x) = wTx+ b (36)

where w ∈ RN is the trained weight vector, x ∈ RN is the
input vector, b ∈ R is the bias and the function η : RN → R
is the decision function. For {x, y} ∈ R, the decision function
η(x) can then be rewritten as

η(x) = w · x+b (37)

Using equation (22) and (28) in (37) the decision function gets
mapped to S-AC based form as

η(x) = h(2C + w + x)− h(2C + w − x) + · · ·
· · ·h(2C − w − x)− h(2C − w + x) + b (38)

Equation (38) can be viewed as generic decision function η(·)
mapped into shape domain. This shape equation can then be
easily synthesized using only S-AC analog cells. It can be
noted that variable b can be assumed as a constant current

added to the dot-product w · x and implemented using KCL
without additional circuits. Furthermore, to add non-linearity
to this output, function φ (·) can then be mapped to the shape
domain using the formulation demonstrated in Section IV.

B. S-AC based Neural Network

Fig. 14 shows the system-level implementation of a S-
AC based neural network using S-AC based analog standard
cells. The network was mapped using the algorithm mapping
approach mentioned above and designed using S-AC based
analog cells described in Section IV. We trained the network
using the algorithm mention in [40].

Table IV summarizes the classification accuracy of syn-
thesized neural networks using shaped-based analog standard
cells at different process technology nodes. Results are also
presented for circuits operating at different operating regimes
in that process node. We verified our system on the standard
Activity Recognition dataset (AReM) [41] dataset. We chose
two of the activities as positive cases, i.e., bending and lying
activities, to verify the classification capability of our system.
One versus all approach was used on the AReM dataset for
binary classification.

We further verified the functionality on the benchmark
MNIST dataset [42] of handwritten digits. Due to time-
complexity in running analog mixed-signal hardware simu-
lations on the SPICE simulator (where each simulation run
extended for more than 6 hours), we randomly selected
1000 test images out of the given 10000 test set such that
this randomly selected set contains both images which were
classified correctly and wrongly classified in software. The
implemented MNIST network consisted of 256 input nodes
(where each input 28× 28 image dimension was scaled down
to 16× 16), 15 hidden nodes, and 10 output nodes for which
the baseline accuracy was obtained from PyTorch was 93%.

It can be analyzed from Table IV that the classification
accuracy of implemented hardware nearly matches that of
software at both the process nodes, be it 180nm or 7nm
implementation. The functionality also remains unaffected in
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TABLE IV
CLASSIFICATION ACCURACY AT DIFFERENT OPERATING REGIMES &

DIFFERENT PROCESS NODES

Dataset Operating
Regime

Classification
Accuracy

(S/W)

Classification
Accuracy

(H/W)
180nm 7nm

XOR
SI

95
95 95

MI 94 93
WI 93 93

AReM
SI

94
93.5 93

MI 93 94
WI 93 93

MNIST
SI

93
92.5 92.1

MI 92 92
WI 92.2 92.1

different operating regimes. This clearly signifies that the
design is both process technology scalable and bias scalable.

Fig. 15 shows the percentage deviation of transistors from
the desired biasing regime for the MNIST dataset. It can be
found that on an average around 8% of the total transistors
in the designed system, shifted their operation from their
expected operating regime. For instance, when the designed
system was biased to operate in weak inversion regime, it
was found that almost 8% of total transistors shifted their
operation to moderate inversion regime while for the system
biased in moderate inversion regime, a similar percentage of
transistors shifted their operation to strong inversion regime.
However, despite this change in operating condition, there is
no significant drop in accuracy as the classification network
leverages the benefits of bias scalability of the S-AC circuit.

VI. CONCLUSIONS

In this work, we proposed a framework for designing analog
computing circuits that are process, bias and temperature
scalable. The framework leads to the design of S-AC standard
cells whose responses were found to be robust to variations
in biasing and temperature, similar to digital standard cells.
Like digital circuits, we showed that the precision of the S-
AC circuits could be traded-off with respect to power and
area. Furthermore, the response of the S-AC standard cells
was found to remain scalable across process nodes, as a result,
a S-AC standard cell designed in a 180nm process could be
easily used for design in a 7nm process. Thus, the modules can
be potentially used for the automated synthesis of large-scale
analog processors. While the focus of this work was to design
S-AC circuits for machine learning processors, the approach
can be generalized to other analog processors as well. As
a proof-of-concept, we demonstrated the approach for a 3-
layer neural network whose test accuracy remains minimally
affected by changes in biasing and changes in process nodes.
Future work in this area would leverage the process, bias
and temperature scalability for synthesizing large-scale analog
deep neural networks and reconfigurable machine learning
processors.

APPENDIX A
PROOF: MULTI-SPINE MARGIN PROPAGATION

FORMULATION AS PWL APPROXIMATION TO THE
LOG-SUM-EXP FUNCTION

Let us consider a log-sum-exp function [19] hlog : RN → R
given by

hlog(x) = C · log

(
N∑
i=1

e
xi
C

)
(39)

where C is a hyper-parameter and x ∈ RN is a vector with
elements xi ∈ R. Equation (1) can be written as

N∑
i=1

e
xi−hlog

C = 1 (40)

which is an equivalent non-linear constraint satisfaction prob-
lem. Let us approximate this non-linear function using linear
splines. It can also be noted that the same methodology can
also be extended to other non-linear functions. As a proof-
of-concept, we show for log-sum-exponential. In Fig. 2a,
we have shown the plot of the exponential function and its
approximation using one-spline (S = 1) and three-splines
(S = 3). Here, Q1, Q2, · · · , QS are the tangential points and
T1, T2, · · · , TS are the tuning points. The generic line equation
for the jth spline where j ∈ (1, · · · , S) when approximated
using piece-wise-linear lines can can be written using point-
slope form as

θj (x) = eQj · x+ eQj (1−Qj) ∀x ≥ 0 (41)

where eQj is the slope and eQj (1−Qj) is its intercept on the
line on the vertical axis. Similarly, for the (j+1)th spline, we
can write its line equation as,

θj+1 (x) = eQj+1 · x+ eQj+1 (1−Qj+1)∀x ≥ 0 (42)

The tuning points Tj (intercept between jth and (j + 1)th

spline) can be obtained by equating the line equations of jth

and (j + 1)th spline at xi = Tj and can be written as,

eQj · Tj + eQj (1−Qj) =eQj+1 · Tj + eQj+1 (1−Qj+1)
(43)

Equation (43) can be re-written as

Tj =
Qj+1 · eQj+1 −Qj · eQj

eQj+1 − eQj
− 1 (44)

Then, the approximation of the function ex using S-splines
(where a special case of 3-spline approximation is shown in
Fig. 2a) can be written using point-slope form and using (41)
and (44) as

ex ∼=eQ1 [x− T1]+ +
(
eQ2 − eQ1

)
[x− T2]+ + · · ·

· · · ·+
(
eQS − · · · − eQ2 − eQ1

)
[x− TS ]+ (45)

Equation (45) can then be generalized as

ex ∼=
S∑

j=1

(
eQj −

j−1∑
k=1

eQk

)
[x− Tj ]+ (46)

The above equation (46) shows the approximation of ex using
S-splines. For ease of understanding let us choose a specific
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case of 3-splines, viz. S = 3. Let the tangential points for this
case be Q1 = loge

(
1/2

)
, Q2 = loge(1), Q3 = loge(2). Then

by using (44) we get,

T1 = loge

(
1/2

)
− 1 = −loge2− 1 (47)

T2 =
−loge

(
1/2

)
· 1
2

1/2
− 1 = loge2− 1 (48)

T3 =
2loge2

2− 1
− 1 = 2loge2− 1 (49)

Using equation (47) - (49) in (5), we have

ex ∼=
1

2
[x+ loge2 + 1]+ +

1

2
[x− loge2 + 1]+ +

· · · 1
2
[x− 2 · loge2 + 1]+ (50)

Substituting equation (50) in (2), for i ∈ (1, · · · , N), we get
N∑
i=1

[xi +O1 − h] + [xi +O2 − h] + [xi +O3 − h] = C ′

(51)

Here, O1 = C(1 + loge2), O2 = C(1 − loge2) and O3 =
C(1 − 2loge2) are the offsets and C ′ = 2C is a tunable pa-
rameter. Equation (51) shows the approximation of exponential
function with 3-splines. The same can then be generalized to
S-splines, N -inputs as

N∑
i=1

S∑
j=1

[xi +Oj − h]+ = C

N∑
i=1

S∑
j=1

[xi,j − h]+ = C (52)

where Oj is the offset due to jth spline, xi,j is the ith

input corresponding to jth spline, C is a hyperparameter and
S is a design parameter also called splines count. It can be
noted from Fig. 2a that with the increase in the number of
splines (S), the computational precision increases, while the
input dimension increases along N . Equation (52) can be
referred as Generalized Margin Propagation function (GMP)
using multiple splines.
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