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Abstract

Neurobiological systems have evolved over a billion years and serve as a good
template for some text engineers to mimic when designing intelligent sensors and
systems. For instance, neurobiological systems exploit noise and system non-
linearity as a computational aid to push the limits of performance and energy
efficiency. In contrast, in man-made technologies, these artifacts are generally
considered to be a nuisance. This chapter’s focus is on the neuromorphic
concept of “sensing-to-learn” and “learning-to-sense,” which are grounded in key
neuromorphic adaptation principles based on noise exploitation and non-linear
sensory processing techniques. “Noise shaping” and “jump-resonance” are two
techniques that can extract salient sensing cues by exploring the synergy between
noise and system non-linearity. We illustrate these concepts in the context of
auditory and olfaction pathways, and we argue how these principles can be used
to design the next generation of neuromorphic sensory interfaces.
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1 Introduction

For ages, biology has served as an inspiration to scientists and engineers. However,
it is only in the last decade that advancements in micro- and nanofabrication
technology have reached the point where “truly” neuromorphic sensors and systems
can be designed that match the “raw” sensing and computational capabilities
observed in biology. For instance, more than 100 silicon transistors can be packed
inside a mammalian cell, which is 10 μm in diameter. It is now possible to
fabricate piezoelectric nano-fibers whose dimensions are comparable and smaller
than a cricket’s or a spider’s mechanoreceptors. Furthermore, the raw computational
power of today’s processor is comparable to that of the human brain. Despite
these remarkable technological advances, the performance achieved by specialized
biological sensing systems makes even the most advanced man-made systems
of today look crude and primitive. To understand how biological systems can
achieve such a performance, it is essential to acknowledge that these systems have
evolved in an evolutionary environment, where energy resources were scarce. The
threat of predators was omnipresent. These constraints have led to remarkable
designs of nature seeking to operate at fundamental limits of energy dissipation
and performance. For example, the filiform hairs in crickets operate at fundamental
limits of noise, the power dissipation of a mammalian cell is less than pico-watt,
and the texture of shark’s skin is optimized to reduce bacterial adhesion and growth
[1, 2, 3, 4]. To mimic these remarkable abilities using man-made technologies, it is
important to understand what new sensing principles are implemented by biology.
Specifically, neuromorphic sensing principles aim to understand the interplay
between the biological sensors and transducers and the sensory signal processing
implemented by the neurobiological interfaces.

It is hypothesized that neurobiological interfaces achieve this performance by
their inherent ability to adapt and learn not only at a cognitive level but also at the
level of the sensor. Learning involves adaptation and altering the parameters over
a slow time-scale during the lifetime of an organism or even altering the topology
of the sensor at a much slower rate during the evolution process. This adaptation
makes the system efficient in sensing the signals of interest without dissipating too
much energy and without requiring precision computing or sensing devices. In this
regard, most of the sensory processing in biology is inherent “analog,” and efficiency
arises out of the exploitation of computing and sensing primitives inherent in the
substrate’s physics, like biochemical diffusion or feedback regulation. Also, unlike
man-made sensors, which consider device and sensor noise as nuisances, biology
has evolved to use non-linear sensing techniques to exploit noise to its advantage
and operate at or below fundamental limits [5]. Thus, the neuromorphic concept
of “sensing-to-learn” and “learning-to-sense” represents the need for a symbiotic
understanding between biology and technology for designing the next generation
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Fig. 1 Visualization of organization principle of neurobiological sensory systems

of instrumentation. The neuromorphic principles described in this chapter can be
used for designing sensing interfaces for applications ranging from olfactory and
acoustic sensors to radio-frequency systems (antenna arrays). The principles are
generic enough because the neurosensory interfaces follow a common architecture
as shown in Fig. 1. An array of transduction elements, e.g., olfactory receptors or
cochlear hair cells, interfaces with a layer of receptor neurons, referred to as the
afferent neurons. Each of the afferent neurons could receive electrical stimuli from
multiple sensors (as shown in Fig. 1), an organization commonly referred to as the
sensory receptive field. The neurons are connected through specialized junctions
known as synapses.

One another most popular sensing modality is neuromorphic vision sensor
[6, 7, 8] which has been designed to emulate human retina, commonly known as
event camera. This sensor has displayed incredible solutions to the setbacks of
the conventional camera in terms of sparsity, dynamic range, temporal resolution,
etc. These sensors have led to a revolutionary way of registering only changes
in the scene with microsecond temporal resolution. With present-day technology,
these sensors have started to show up in the commercial field. An increase in the
application of event cameras has driven many companies to get involved in the
research and development of event cameras such as Dynamic Vision Sensor (DVS)
and Asynchronous Temporal Imaging Sensor (ATIS).
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This chapter will focus on neuromorphic signal acquisition techniques that
“learn” to extract salient sensing cues by exploring the synergy between noise and
specific types of non-linear processing. One principle described in the chapter is
the principle of “jump-resonance,” which could be used to improve the performance
of acoustic recognition systems. Another principle described in the chapter is noise
shaping, which is a signal processing technique whereby the energy contained in
noise and interference is shifted out of the spectral or spatial regions in which the
desired signal resides [9].

In this chapter, we have taken two sensory pathways, audition and olfaction
(Fig. 1), as case studies described in Sects. 2 and 3, respectively, and Sect. 4
discusses several neurobiological signal processing principles such as contrast
enhancement, signal de-correlation, dimensionality reduction, etc., which could be
used to build man-made technologies. This chapter also describes some robust
feature extraction algorithms that combine neurobiological principles with machine
learning techniques.

2 Case Study I: Neuromorphic Audition

The human cochlea is a very sophisticated and complex sensory system nature
has designed. In this section, we will discuss a neuromorphic cochlea model,
which is derived from the underlying physics of the human cochlea by employing
various techniques such as feedback, amplification, and dynamic gain control. The
human auditory system comprises several stages starting from the outer ear to the
auditory cortex. In an early stage of the pathway, sound waves undergo a series
of transformations, first travelling through an air-filled space outer ear canal and
hitting the eardrum. This causes the eardrum to vibrate, transducing sound energy
to mechanical energy. The eardrum is connected to the ossicles (middle ear bones
malleus, incus, stapes), which start to vibrate when the eardrum is set in motion.
The vibrations travel via the middle ear to the liquid-filled cochlea. Sound waves
travel from a less dense medium (air in the outer ear) to a denser medium (liquid in
the cochlea), which causes an impedance mismatch. The middle ear helps to match
the outer ear’s impedance to the much higher impedance of the fluid in the cochlea.
Otherwise, it would cause much of the sound entering the ear to be reflected and
resulting in the auditory system’s loss of sensitivity. These smaller bones send the
mechanical vibrations to the cochlea, which has three main components Basilar
membrane (BM), Inner hair cells (IHC), and Outer hair cells (OHC). These inner
hair cells are attached to nerves, and when they bend, it produces an electrical signal,
which is carried to the auditory cortex for further perceptual tasks. The OHC control
the gain of BM filters dynamically by using local instantaneous non-linearity as
well as multi-time-scale non-linearity. The early auditory pathway transduces sound
energy to mechanical energy via ossicles and mechanical energy to electrical energy
via the inner hair cell of the cochlea. The mathematical function of the cochlea is
to transform the acoustic signal into an auditory time-frequency representation, also
called a spectrogram.
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After the cochlea, the second major transformation occurs at the primary
auditory cortex, where more complex processing takes place. A1 neuronal cells have
tuned for various spectro-temporal modulations of the signal. From a functional
perspective, each Spectro-temporal receptive field (STRF) [10] acts as a selective
filter specific to a particular range of spectral resolutions (or scales) and tuned to
a limited range of temporal modulations rates. The collection of all STRF would
constitute a filter bank spanning the broad range of psychoacoustically observed
scale and rate sensitivity in humans and animals.

In the next subsections, we will describe a biologically plausible model of
the cochlea, which is hardware friendly and can be used for machine hearing
applications. We will also discuss the jump-resonance principle [11] that occurs
in auditory filters, which could improve the performance of acoustic recognition
systems. Then, we will discuss different audition feature extraction techniques, such
as using biological plausible STRF and statistical learning-based feature extraction
(SPARK-based auditory feature extraction).

2.1 Biological Cochlea Model: Cascade of Asymmetric
Resonators with Fast-Acting Compression (CAR-FAC)

There are various cochlea models that have been presented in the literature [12, 13,
14, 15, 16], but the CAR-FAC model has several properties which makes it unique
and the reason to present it here. The CAR-FAC is a biologically inspired model
and close enough with known auditory physiology and psychophysics experimental
data [17]. It possesses the travelling-wave property of the cochlea by modelling it
as a cascade of simple second-order filters. Furthermore, the incorporation of non-
linearity for automatic dynamic gain control using the OHC and the AGC blocks,
with the ease of digital implementation, makes it very attractive for machine hearing
tasks.

The CAR-FAC cochlea model (Fig. 2) is comprised of basilar membranes
(BM), which act as resonators and inner and outer hair cell (IHC and OHC)
models, and a coupled automatic gain control (AGC). Figure 2a shows a functional
physiological element of one location in the cochlea, including the hydrodynamic
system involving the basilar membrane afferent and efferent loop through the brain
stem of the auditory central nervous system that controls the activity of the outer hair
cells, which provides dynamic gain. The Cascaded asymmetric resonator (CAR)
part, in the Cascade of Asymmetric Resonators with Fast-Acting Compression
(CAR-FAC) model, simulates the basilar membrane’s (BM) response to sound.
The FAC part models the outer hair cell (OHC), the inner hair cell (IHC), and the
medial olivocochlear efferent system functions. The CAR (BM model) part is a
linear system when its parameters are held constant, but in the context of fast-acting
feedback, the FAC part, which controls the damping in the stages, becomes a non-
linear system. This close integration of the linear and non-linear sections of the
CAR-FAC makes it a more biologically plausible model of the cochlea.
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Fig. 2 (a) Visualization of elements of one spatial location of a model of the cochlea involving
basilar membrane, IHC, and OHC. (b) Structure of CAR-FAC model

Figure 2b shows the CAR-FAC cochlea model with various blocks, which is
discussed in details in the next sections.

2.1.1 Basilar Membrane (BM)
The basilar membrane is similar to the strings on an instrument. It acts as a pseudo-
resonant structure [18] which changes in width and stiffness. However, it differs
from the parallel strings of a guitar because the basilar membrane is a single
structure that has different width, stiffness, mass, damping, and duct dimensions
at different points along its length.

Traveling wave characterizes the motion of the basilar membrane [19]. The
Characteristic frequency (CF), which is the frequency at which the membrane
displays maximum sensitivity to sound vibrations, is determined by the membrane’s
properties at a given point along its length. The basilar membrane’s width is high
(0.42–0.65 mm), and stiffness is very low at the apex of the cochlea. The width of
the basilar membrane is low (0.08–0.16 mm), and stiffness is very high at the base
(near the round and oval windows) [19]. High- and low-frequency sounds localize
near the base and apex of the cochlea, respectively.
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Fig. 3 Basilar membrane
magnitude responses. (a)
CAR gain response without
OHC (b) CAR-FAC gain
response with OHC, which
controls the gain dynamically.
The pole and zero radius r is
dynamically controlled as
r = 1 − d ∗ 2 ∗ π ∗ f

fs
, where

d = 0.2 and f are the
damping factor and center
frequency of the filter
respectively

In the CAR-FAC (Fig. 3) model, the BM part is modeled using CAR, which is
a coupled form of two-pole-two-zero IIR filter. The linearized model of the human
cochlea is matched by optimizing the number of filters and their coefficients [20,
21]. The choice of pole frequencies corresponds to equal spacing along the place
dimension of the cochlea. This is achieved by utilizing Greenwood function for
human cochlea [18]:

f = 165.4(102.1x − 1) (1)

The transfer functions of the filter in Z domain is:

= g

[
z2 + (−2a0 + hc0)rz + r2

z2 − 2a0rz + r2

]
(2)

The a0 = cos(θR) = a
r

and c0 = sin(θR) = c
r

parameters represent the analog

pole position in the zero-damping case (r = 1). θR = f
fs

is the normalized pole
ringing frequency in radians per sample, or pole angle in the z plane and fs is the
sampling frequency. An explicit parameter r can be used to dynamically vary the
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pole and zero radius in the z plane (to vary the damping factor). r is controlled by
OHC to control the gain.

2.1.2 Outer Hair Cells (OHC)
Outer hair cells (OHC) are acoustical preamplifiers found in mammals to non-
linearly amplify less intense sounds as compared to large intense sounds. This
helps in converting a wide range of sound intensities to a smaller range of hair
displacements.

In CAR-FAC, compressive amplifying wave propagation has been modeled
through a Digital outer hair cell (DOHC). The gain control mechanism of DOHC
integrates a local instantaneous non-linearity as well as multi-time-scale non-
linearity. This filter varies the position of the poles and zeros by changing their
radius r in the Z plane. r attains its maximum value in silence and down to a
minimum, or passive value is a response to sound. The change in r is controlled
by instantaneous non-linearity and multi-scale non-linearity. The instantaneous
non-linearity comes from the BM velocity (v), whereas multi-scale non-linearity
originates from the DIHC feedback through the AGC loop filter. The change in pole
radius is characterized by the following equation: [19]

r = r1 + drz×(1 − b)×NLF(v) (3)

where r1 is the minimum radius corresponding to the maximum damping of the
resonator. The coefficient damping controls the damping factor. NLF is the non-
linear function of the CAR velocity. The coefficient drz controls the rate at which
the product of CAR velocity and AGC loop variable b affects the damping. With an
increase in velocity, the velocity-squared function increases very rapidly and results
in the saturation of NLF towards 0.

At low and high levels, OHC results in maximum and negligible undamping, thus
yielding linear filter banks in both regions.

2.1.3 Inner Hair Cells (IHC)
Inner hair cells (IHC) are the transducers that help convert the sound-generated
motion of the cochlea to neurotransmitter release at synapses, which excite the
primary auditory neurons. Oscillatory waves in the fluids of the cochlea generate
receptor currents to which IHC responds, similar to the way retinal cone cells
respond to light.

Digital inner hair cell (DIHC) models the IHC function. It is modeled as a high-
pass filter, a transduction non-linearity unit, a transducer unit, and two low-pass
filters [22]. The high-pass filter attenuates the signal below 20 Hz. It is followed
by a transduction non-linearity function comprised of a half-wave rectifier and a
rational sigmoid function. The half-wave rectified output is given as follows:

u = HWR
(
BMhpf + 0.175

)
(4)
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where BMhpf is the high-pass filtered output of the previous stage. The rational
sigmoid function is given as follows:

n = u3

u3 + u2 + 0.1
(5)

where n is the transduction non-linearity output. This rational sigmoid function
provides a linear response at low amplitudes. Its response saturates at higher
amplitudes. The transducer stage is implemented with the following equations:

m = 1 − qy = nmqnew = (1 − a)q + a(cy) (6)

where m is the adaptive gain of its input, which is quickly reduced after signal
onset. n and c are constants, and q is the state of the low-pass filter. The output of
the transducer is low-pass filtered with two FIR first-order filters (cutoff frequency
of about 2 kHz).

2.1.4 Automatic Gain Control (AGC)
The biological cochlea has strong compressive non-linearity over a wide range of
frequencies. To properly interpret the cochlea function, this strong non-linearity has
been realized as automatic gain control in a digital model. This helps to convert a
large dynamic range of input stimuli to a smaller dynamic range of nerve firings.
It models the Automatic gain control (AGC) effect on BM vibration through the
OHCs.

AGC model in CAR-FAC consists of four-stage one-pole FIR low-pass filter
arranged in a parallel-cascaded configuration as shown in Fig. 2b. Their outputs
are combined to cover a range of corner frequencies instead of possessing a single
corner frequency. The transfer function of these four one-pole filters in parallel is
nothing but the addition of the complex transfer function of the individual one-pole
filters. Each filter is coupled with left and right neighboring filters and forms a three-
stage spatial LPF. Thus, each stage includes a temporal linear LPF with a defined
coefficient ct and a three-tap spatial filter with coefficients [s1, 1 − s1 − s2, s2]. To
save computation cost, these filter states are updated at a much lower rate than CAR
filters. Their low-frequency gain is varied based on the range of damping factors
required in the filters. The output of AGC feeds back to DOHC.

The cochlear models, including the CAR-FAC, are based on primitives that
can efficiently be emulated on digital hardware or processor. In [23] and [24],
CAR model describing the sound-induced traveling waves phenomena of the basilar
membrane on an FPGA has been implemented. It has been extended in [25], which
provides details on implementing the FAC functions of the CAR-FAC model on an
FPGA. It consists of IHC and OHC algorithm blocks as well as an automatic gain
control (AGC) block. There are certain phenomena that are unique to an analog
substrate that biology can efficiently exploit for sensing. One such phenomenon is
jump-resonance, which could boost the system’s performance for machine hearing
tasks and will be discussed in the next section.
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2.2 Jump-Resonance-Based Auditory Filter Banks

Jump-resonance is a non-linear phenomenon where the output of a system exhibits
abrupt jumps and hysteresis when the input frequency is varied [26]. Recent research
in understanding active mechanisms in animal and human cochlea has revealed
non-linear and hysteretic behavior similar to that of jump-resonance. Moreover, it
has been hypothesized in [27] that this non-linear response might be responsible
for acute sensitivity and robustness of biological auditory systems. In [28], we
demonstrated that jump-resonance that naturally occurs in analog VLSI filters could
be exploited to design speaker recognition systems whose performance either match
or exceed that of a conventional DSP-based speaker recognition system.

The jump-resonance phenomenon has been observed and studied extensively
in non-linear control and in analog filters [30] where jump-resonance leads to
a hysteresis behavior when the frequency of the input signal is varied. This is
illustrated in Fig. 4a where the output signal magnitude is not only a function of the
input signal frequency but also a function of the direction of the frequency sweep.
Thus, for frequencies within the hysteresis band defined by ω1 < ω < ω2, the

Fig. 4 (a) Jump-resonance hysteresis in auditory filters and its comparison with the response
of a conventional auditory filter. (b) Vowel formant trajectories for a female speaker, recreated
using data from [29]. (c) Spectrogram of a sample speech utterance showing frequency or format
trajectories. (d) Sample format trajectories during a phonetic utterance in the English language. For
the sample trajectory: (e) response expected from a conventional band-pass filter and (f) response
expected from the filter exhibiting jump-resonance for the sample trajectories
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magnitude of the output signal could have two possible magnitudes depending on
the frequency trajectory. However, the hysteretic and high-Q response concerning
the direction of the frequency sweep could be used as a computational tool for
encoding and detecting formant trajectories in speech signals. Formants in speech
signals correspond to the resonant frequencies of the vocal tract, in particular, when
vowels are pronounced. Figure 4c shows the location of three formant frequencies
(F1, F2 and F3) on a spectrogram. The trajectories of formants over time (as shown
in Fig. 4c) are particularly relevant for speaker and speech recognition because
they are an indicator of the mechanical dynamics of the vocal tract and that these
signatures are robust to corruption by ambient noise. For example, Fig. 4b shows
example trajectories of the formants F1 and F2 corresponding to different English
vowels and corresponding to a female speaker. Figure 4c illustrates the application
of jump-resonance using an example of formant trajectories in a spectrogram
of a typical speech utterance; and Fig. 4d shows a stylization of some of these
trajectories. Also shown in Fig. 4e–f are the comparisons of expected outputs that
will be produced by a conventional auditory filter that does not exhibit jump-
resonance versus the output produced by a similar filter exhibiting jump-resonance.
For instance, the output produced by the conventional filter in regions ii and iv
(see Fig. 4e) are identical even though the frequency trajectories in these regions
(see Fig. 4d) are different. However, this is not the case for the output produced
by the jump-resonance filters (see Fig. 4f). Thus, the illustration shows that jump-
resonance could lead to output signatures that are unique to the frequency trajectory
and could be useful in providing more discriminatory information to a back-end
speech or speaker recognition system. Also, the hysteresis in the filter response
caused by the jump-resonance may improve speaker recognition performance,
as small variations of spectral content caused by a hoarse voice or other voice
modulations don’t have to result in large changes in the output. However, from
a practical point of view, implementing jump-resonance behavior on a DSP is
computationally prohibitive because it requires emulation of chaos and bistability,
both of which require high-sampling rates. Fortunately, jump-resonance naturally
occurs in continuous-time analog filters and could be easily emulated on dedicated
analog VLSI integrated circuits.

Figure 5a shows the prototype analog VLSI chipset that has been designed to
implement a large array of jump-resonance filters [31]. The parameters of each of
the filters (center frequency, quality factor, filter hysteresis) are individually pro-
grammable using an external digital interface. Figure 5b and c shows the measured
filter responses, which illustrates that the hysteresis levels can be programmed.
Figure 5d–g shows the measured response of the filters when the frequency of
the input signal is swept according to the trajectory as shown in Fig. 5d and e. As
predicted in Fig. 5f, the filter responses can discriminate between the two frequency
trajectories validating the frequency encoding properties of the jump-resonance
filters.

Table 1 shows the results from a preliminary experiment where the outputs of 11
jump-resonance filters were used as features to train a speaker recognition system.
A Support vector machine (SVM) was used as a back-end recognizer [32, 33], and
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Fig. 5 (a) Micrograph of analog VLSI chipset with 100 programmable jump-resonance filter
banks; (b)–(c) measured response of a single jump-resonance filter illustrating that the hysteresis
level can be tuned; (d)–(e) time-frequency map of the input to the jump-resonance and (f)–(g)
corresponding measured response of the filter

Table 1 Comparison of EER and PD for YOHO

Neuromorphic VLSI (analog) Jump-resonance (analog) MFCC (software)

EER PD EER PD EER PD

0.0201 0.9563 0.0014 1.000 0.0017 1.000

the training/test samples were obtained from the YOHO speech corpus. The result
shows that the performance of analog VLSI jump-resonance features is similar or
better than DSP-based MFCC features. For comparison purposes, the Equal error
rate (EER) corresponding to the state-of-the-art conventional neuromorphic VLSI
features is reported, which shows the result to be an order of magnitude lower. The
power dissipation of the analog VLSI chipset is less than 100 nW [34] which is three
orders of magnitude more energy-efficient than a DSP implementation of MFCC
feature extraction algorithm.

As shown in Fig. 1, the first few neurosensory layers comprise neural circuitry
that can extract discriminating features from the cochlear interface. In literature,
there are two approaches to design neuromorphic feature extractors: (a) features
that mimic the observation from neurobiological experiments and (b) features that
are learned based on machine learning primitives. In the next section, we describe
two examples of such feature extractors.
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2.3 Biological Feature Extraction (Spectro-temporal Receptive
Field (STRF)-Based Approach)

Analysis of sound signals inside the cochlea and its spectral decomposition is
only the first stage of a series of complex transformations to the sound as it
travels through the complete auditory pathway. After the cochlear analysis, the
neural signals from the cochlea reach the primary auditory cortex via the thalamus
and midbrain, where they undergo a multi-resolution spectro-temporal analysis
[35]. Based on the physiological experiments on the mammalian auditory cortex,
scientists have characterized the spatial organization and response properties of the
cortical cells. Since the organization of the auditory cortex is similar in mammals,
these physiological findings provide insight into the representation of sound features
in the human auditory cortex.

The primary auditory cortex (also known as A1) extracts the temporal and
spectral modulation content from the cochlear output. It has been found that the
cells in the primary auditory cortex respond selectively to different rates of temporal
modulation and different scales of spectral modulation [35]. The way a neuron
in the A1 region responds to these rates and scales of modulation is specified by
its spectro-temporal receptive fields (STRFs). Figure 6 shows the STRFs of six
neurons measured from the auditory cortex of a ferret [36]. Along the ordinate,
STRF depicts the range of frequencies to which the neuron responds. It is evident
that some neurons are responsive to a wide range of frequencies, while some others
are responsive to a narrow range. Similarly, along its abscissa, STRF depicts the
response dynamics to an impulse delivered at each frequency. Some responses
fade rapidly, while some others stay twice as long as others. For certain neurons,
sensitivities towards a particular rate and scale are combined, and their STRF takes
more complex forms with different orientations.

Along with the cortical model, STRFs can be used to mimic the human auditory
pathway up to the A1 and to perform any audio-related tasks such as speaker

Fig. 6 STRFs recorded from
the primary auditory cortex of
ferret
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Fig. 7 Application of STRFs in a sound classification task. The audio samples are used to generate
the spectrogram using the cochlea model. The output of the cochlea model is convolved by the
STRF filters to generate the cortical feature maps. The features are used by a simple classifier
network to differentiate between various sound signals

recognition, sound segregation, denoising, voice activity detection, etc. Figure 7
shows how STRFs can be used for an auditory classification task.

2.4 Statistical Learning-Based Feature Extraction

In this section, we will discuss the data-driven statistical learning-based feature
extraction technique. Even though incorporation of “smart” signal acquisition could
potentially enhance the fidelity of the separated auditory signal, in real-world
environments, the quality of separation could significantly vary, as is observed
in many ICA-based applications [37]. Therefore, the feature extraction module
becomes critical in achieving robust recognition performance. For the proposed end-
to-end learning approach, we expect the feature extraction module to demonstrate
three key properties: (a) the ability to extract salient auditory features that are robust
to ambient noise and interference; (b) computational efficiency and the ability to
extract features in real time; and (c) the ability to guide the signal acquisition process
to facilitate more robust separation of auditory sources. We will first describe our
previous work related to the property (a) and defer (b) and (c) as a part of the
proposed research.

Over four decades, the auditory features used in most state-of-the-art recogni-
tion systems have relied on spectral-based techniques, which inherently assume
the linearity of the speech production mechanism. Some examples of spectral-
based features include Mel-frequency cepstral coefficients (MFCC), perceptual
linear prediction (PLP), cochlear features, and linear prediction (LP) coefficients.
MFCC features, for example, are calculated using a discrete cosine transform
on the smoothed power spectrum, and PLP, similar to MFCCs, are based on
human auditory models. Even though these features are computationally effi-
cient and deliver acceptable accuracy under controlled recording conditions, their
performance degrades significantly when subjected to noise present in practical
environments. This performance degradation is primarily attributed to an unavoid-
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able mismatch between training and recognition conditions, especially when the
characteristics of all noise sources are not known in advance. Even though the effect
of mismatch can be alleviated by adaptation of the statistical model used in the target
recognition, the overall system performance is still limited by the quality of speech
features. Also, for the proposed end-to-end learning, it is beneficial to extract and
adapt parameters of the feature extraction so that the process can be coupled with
the signal acquisition.

A promising alternative approach to extracting noise-robust speech features
involves the use of data-driven statistical learning techniques that do not make strict
assumptions about the spectral properties of the speech signal. Examples include
kernel-based techniques [38] that operate under the premise that robustness in the
speech signal is encoded in high-dimensional temporal and spectral manifolds that
remain invariant in the presence of ambient noise. The objective of such a feature
extraction procedure is to identify the parameters of the noise-invariant manifold.
The procedure used in [38] requires solving a quadratic optimization problem for
each frame of speech, making the data-driven approach computationally intensive.
Also, due to its semi-parametric nature, the methods proposed in [38] do not
incorporate demonstrably useful a priori information revealed by neurobiological
and psychoacoustical studies [39, 40]. More recently, it has been demonstrated that
cortical neurons use the highly efficient and sparse encoding of auditory signals
[41] over spectral and temporal receptive fields. The study [41] shows that auditory
signals can be sparsely represented by a group of basis functions that are function-
ally similar to gammatone functions, which, in turn, are equivalent to time-domain
representations of human cochlea filters that are also used in psychoacoustical
studies. Other neurobiological studies [35] have proposed a hierarchical auditory
processing model consisting of spectro-temporal receptive fields (STRFs) [35]
that capture information embedded in different frequency, spectral, and temporal
scales. The results from many of these recent neurobiological and psychoacoustical
studies are being incorporated in small-scale speech recognition systems. The result
has opened the possibility that a hierarchical auditory recognition model could be
constructed similar to the popular HMAX model used in real-time vision-based
recognition systems [43,44,45]. The central challenge in developing such a model is
determining a computationally efficient architecture that can combine the auditory
receptive fields at different spectral and temporal scales.

SPARK-based auditory feature extraction In [46] we proposed to use the previ-
ously reported hierarchical auditory feature extraction model using an RKHS-based
statistical learning approach. The model called SPparse Auditory Reproducing
Kernel (SPARK), summarized in Fig. 8, consists of two signal-processing layers.
The first layer computes the similarities between the sample speech signal and
different sets A1 to AM of pre-computed gammatone basis functions. Each set is
comprised of time-delayed versions of a gammatone function emulating an auditory
phase-sensitive receptive field. An example of the gammatone receptive field is
shown in Fig. 8 (bottom). In the frequency domain, this field is similar to the cochlea
filter banks. The second layer of the SPARK model implements a winner-take-all
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Fig. 8 (Top) Hierarchical architecture for SPARK auditory feature extraction. (Bottom) Time-
domain representation of gammatone basis which will be used for CLU feature extraction. The
gammatone filters take the form ϕm(t) = amtk−1 exp−2πβmt cos(2πfmt + ϕm) where m denotes
the index of different gammatone basis

(WTA) function, which selects the largest similarity metric from each set A1 to AM
(Fig. 8). The WTA-based selection is similar to the popular HMAX algorithm [47]
used in vision systems, where edge-sensitive receptor functions are used to compute
similarity measures.
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As shown in Fig. 8 (top), the similarity function s(., .) is computed between a
frame of speech signal x and a set of physiologically inspired gammatone functions
ϕm(t). The similarity functions are first determined by minimizing the following
objective function with respect to the similarity functions:

min
s

[
λ‖s‖2

2 + ‖ψ(x) − f ‖2
2

]
(7)

where ‖.‖ denotes a functional norm and f = ∑M
m=1

∑L
l=1 s(ϕl,m, x)	(ϕl,m)

where 	(.) is a non-linear mapping that transforms the speech signal into a higher-
dimensional space. The first part of the objective function acts as a regularizer,
which penalizes large norms of similarity functions, thus favoring similarity mea-
sures that are smooth (or penalizes high-frequency components of the similarity
function). The second part of the cost function is the least-square error function
computed between the speech vector and the reconstructed waveform f. The hyper-
parameter? controls the trade-off between achieving a lower reconstruction error and
obtaining a smoother similarity function. This trade-off is similar to the conventional
bias-variance trade-off encountered in any functional regression procedure [48,49].
In [50], we showed that the solution to (7) yields the following form of the similarity
function:

s(ϕl,m, x) = (K + λI)−1K(ϕl,m, x) (8)

where k = 	(.)T 	(.) is a reproducing kernel satisfying Mercer’s criteria. The
use of reproducing kernels avoids this “curse of dimensionality” by avoiding direct
inner-product computation. Note that the matrix inverse in equation 8 is independent
of the input speech vector x and hence can be pre-computed and stored. Thus, the
computation of the SPARK similarity functions involves computing kernels and
a matrix-vector multiplication, which can be made computationally efficient. An
important consequence of projecting the speech signal onto a gammatone function
space (emulating the auditory STRFs) is that the highest scores ( in L2 norm) in the
similarity metric vector s will capture the salient, higher-order, and spectro-temporal
aspects of the speech signal. On the other hand, the low-energy components of
s(.,.) will also capture similarities to noise and channel artifacts. Feature pooling of
the similarity scores in the SPARK model serves two purposes. First, it introduces
competitive masking, where only the largest similarity score is chosen. This function
emulates the local competitive behavior, which has been observed in auditory
receptive fields. The second purpose of feature pooling is to introduce a compressive
weighting function (similar to psychoacoustical responses), which enhances the
resolution at low similarity scores and reduces the resolution at the high similarity.

Figure 9 (left) shows the spectrograms of utterance “one” under clean and noisy
(subway recording) conditions. Figure 9 (middle) shows the similarity metric vector
computed using 25 ms of speech segments shifted by 10 ms over clean and noisy
speech utterances. Similarly Fig. 9 (right) shows the pooled vectors b for the same
utterances.
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Fig. 10 (Left and middle) Comparison of speech recognition accuracy obtained using SPARK
features and the ETSI STQ WI007 DSR front-end (MFCC) evaluated for the AURORA2 corpus
under different recording conditions and noise levels. (Right) Comparison of speaker recognition
accuracy evaluated using the NIST 2003 SRE dataset

In [46], the accuracy of the SPARK-based recognition system has been compared
against the baseline speech features extracted using the ETSI STQ WI007 DSR
front-end [51]. The basic ETSI front-end generates the 39-dimensional MFCC
features. Figure 10 (left and middle) compares the word recognition rate obtained
by the SPARK and basic ETSI based recognizers. The results show that the SPARK-
based recognition system consistently outperforms the benchmark at all Signal-to-
noise ratio (SNR) levels. The average relative word-accuracy improvement was
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found to be 33%, 36%, and 27% for set A, set B, and set C of the AURORA2
dataset. The SPARK features were also evaluated for the task of speaker recognition
using the NIST 2003 SRE dataset. Figure 10 (right) compares the average receiver
operating curve (ROC) with an equivalent recognizer using the MFCC (with
cepstral mean subtraction) features. The results again show an improved recognition
performance compared to the state of the art.

3 Case Study II: Neuromorphic Olfaction

In this section, we will discuss the fundamental sensing principles employed by
the biological olfactory system and how they have inspired parallel engineering
approaches [54, 55, 56]. It might be worth pointing out that engineered electronic
noses that combine arrays of chemical transducers and signal processing algorithms
[57, 58, 59] still lack capabilities exhibited by even simpler organisms such as
insects. While application in several domains, including homeland security, medical
diagnostics, and environmental monitoring, exists, this potential is yet to be realized
and presents a challenge as well as a future opportunity for creating a neuromorphic
sensory system. We will focus on reviewing those biological principles that have
been mimicked for processing chemosensor arrays. A number of sensing technolo-
gies [59] have been used for transducing information about chemical cues. It is
worth pointing out that the molecular features that are sensed by olfactory receptors
remain poorly understood. Therefore, the chemical transducers used in electrical
or optical noses do not necessarily contain the same information as the biological
sensor array. Nevertheless, they can be designed to provide a combinatorial input
that is qualitatively similar, thereby allowing subsequent processing using various
bio-inspired approaches.

3.1 Basic Building Blocks of the Biological Olfactory System

This section gives details of the biological olfactory system. The various com-
ponents of the olfactory system are biological transducers/arrays that sense the
cues in the environment, gaining control to normalize the large dynamic range of
encountered stimulus and the circuitry involved in the reduction of overlapping
neural representations. These components handle multiple odors encountered at the
same time and the generation of sparse odor codes.

3.1.1 Biological Transducers and Sensor Arrays
A quick comparison of the organization of the olfactory system indicates that most
animals employ striking similar features to interact with chemical cues in their
environment [61] (Fig. 11). First, a large number of sensors that vary both in their
selectivity and sensitivity [62, 63] and multiple copies of each sensor type are
employed in the sensor array (located at the nasal epithelium invertebrates and the
antenna for invertebrates). Second, this input is quickly sorted such that sensors
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Fig. 11 Different anatomical stages and their putative computational roles in verte-
brate/invertebrate olfactory pathways are identified. (Adapted from [60])

of the same type appear to be grouped in spherical structures of neurophil called
the glomeruli [63]. Here there are some differences between species. In some
animals, such as the fly and the mouse main olfactory bulb, sensors of the same
type send projections to one or two glomeruli in the next anatomical stage (called
the olfactory bulb in vertebrates or antennal lobe in insects), while in other models,
such as locusts [64] and mouse accessory olfactory bulb [64], each sensor projects to
multiple glomeruli. Irrespective of the precise wiring scheme with which the sensors
are connected to the following circuits, this results in a massive reorganization
of the sensory input from biological chemical transducers. This reorganization
helps achieve multiple computational functions, including dimensionality reduction
(several hundreds of thousands of sensors to few tens or hundreds of glomeruli).
Since sensors of the same type are grouped, the uncorrelated fluctuations or noise
can be canceled out using this input sorting scheme [66]. This improves the signal-
to-noise ratio by a factor of

√
(n), where is n is the number of sensors that are

grouped. This mechanism can cause the detection threshold of the overall system to
become lower than that of each individual transducer/sensor [67].

The information from reorganized sensors is then processed in the vertebrate
olfactory bulb/invertebrate antennal lobe by a neural circuit comprising excitatory
and inhibitory elements. In the vertebrate system, the excitatory neurons are
mitral/tufted cells, and inhibitory neurons are periglomerular cells and granule
cells. In invertebrate models, they are referred to as principal/projection neurons
(excitatory) and local neurons (inhibitory). Note that the local neurons, at least in
invertebrates, have been found to be spiking (i.e., digital in fruit flies and honey
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bees) or non-spiking (i.e., analog in locusts) depending on the insect model. Only the
output of the excitatory neurons is projected onto higher centers in both cases. Most
importantly, several signal processing tasks are carried out through interactions
between the neurons present at this anatomical level.

3.1.2 Gain Control and Response Equalization
Chemical cues encountered in natural environments can vary by enormous amounts
(a banana on a plant or underneath your nose). To deal with the challenges
in encountering a stimulus over an extensive dynamic range, the concentration
information is often compressed in a signal processing operation typically referred
to as the gain control. This is true for many sensory system [68] and is also the
case in olfaction. It has been shown in fruit flies, for example, the overall inhibition
received by the second-order projection neurons in the antennal lobe scale with the
total sensory neuron input received [69]. This is succinctly captured in the following
equation:

R = γ
In

σn + In
(9)

where I is the activity of the sensory neuron and the remaining variables determine
the overall shape of the I/O curve (Fig. 12). Furthermore, this sigmoidal input-
output relationship can further be modulated by the presence of masking/competing
odorants that activate other projection neurons in the same neural circuit. The
revised relationship that takes into account the total activation of all other sensory
neurons to the antennae lobe neurons (�) is captured as follows:

R = γ
In

σn + �n + In
(10)

While this form of divisive normalization can help saturate the responses evoked
by odorants at higher intensities, a different mechanism would be necessary to
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boost responses at lower intensities. In vertebrate olfactory systems (and possibly
in invertebrates as well [70]), such a mechanism does seem to exist [71]. Notably,
both signal manipulations seem to be achieved through local neurons that mediate
gain control through GABAergic chemical synapses to saturate responses at high
intensities and excitatory gap junctions that amplify weaker responses evoked by
odorants at lower intensities. Overall this computation has been suggested to help
maintain the representation of odorants relatively stable over a large intensity range.

3.1.3 Contrast Enhancement
The next computation of considerable importance in olfaction is the ability of the
circuits to reduce overlap between neural representations. Note that the sensory
neurons employed in the periphery can have broad specificities and generate a
highly overlapping combinatorial response to any odorant encountered. Therefore,
the following circuits in the antennal lobe/olfactory bulb are tasked with the role
overlap and increasing specificity of the responses elicited by different odorants.

One potential way the olfactory neural circuits downstream to sensory neurons
are thought to make representations of different odorants more specific is through
the refinement of responses elicited by an odorant over time. It has been shown in
zebrafish that the initial responses elicited are highly correlated between different
stimuli. But these initial overlapping response profiles are refined such that more
odor-specific features are extracted, and the neural representation becomes identity-
specific with time [72]. Intuitively, for the problem of recognizing a fruit (say
lemon), the response refinement would progress in the following fashion: odor
present → fruit odor → citrus fruit → lemon (Fig. 13). As can be noted, the
initial responses would be common across a group of odorants (i.e., fruity or citrus),
thereby allowing identification of odor groups (i.e., solves the clustering problem).
At the same time, the later responses would be odor-specific and allow solving the
recognition problem. This computation has also been referred to as de-correlation
over time.

In direct contrast to this approach, a recent work in mice has suggested that only
the early responses may matter for recognition of an odorant [73]. According to this
theory, the most sensitive sensory neurons should have the fastest response to the
stimulus and would be consistently recruited over a wide intensity range. Therefore,
the combination of early responders would represent the stimulus identity robustly
and in an intensity-invariant fashion. Such an approach would be consistent with
behavioral evidence that reveals odor recognition happens rapidly within a few
hundred milliseconds after the onset of a stimulus.

Irrespective of whether the stimulus-evoked responses that evolve over time in
neural circuits are relevant to behavioral readout or not, both these schemes provide
novel approaches to encode a sensory stimulus that could be mimicked in their
engineered counterparts.

Note that contrast enhancement could also occur between stimuli. Recent work
on locusts reveals that when encountered in a non-overlapping sequence, the
response to the second odorant in that sequence varies in a stimulus history-
dependent manner [74]. The neurons that responded to both the first and second
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Fig. 13 Extracting stimulus-specific features over time. Neural responses at different points in
time correspond to each level of this decision tree. Top levels correspond to earlier response phases,
and lower levels are reached through refinement over time. Also, note that top levels uncover odor
groups or clusters, and the bottom level allows precise recognition

stimuli are suppressed, and only the unique responders that represent the second
stimulus in the sequence robustly encode for that odorant. This could be viewed as
a novelty contrast enhancement computation.

3.1.4 Background Invariance
Recognizing a freshly encountered stimulus independent of other compet-
ing/distracting stimuli that are already present in an environment is a computation
that must be performed by all sensory systems. This capability has been reported in
both invertebrate [75] and vertebrate olfaction [76]. In the insect olfactory system,
it was reported that within a few hundred milliseconds, the neural circuits in the
antennal lobe are ready and can robustly track any new stimulus encountered. Neural
responses evoked by the same odorant in different backgrounds pattern-match and
allow for background-invariant recognition of a stimulus.

Furthermore, for robust odor recognition, a very simple framework was proposed
[74]. In this approach, solitary encounters of an odorant without other competing
cues would activate a specific subset of olfactory neurons. Encounters of the
same stimulus in different backgrounds or in different sequences (i.e., varying
stimulus history) would activate only a variable subset of the neurons that are
usually activated in solitary encounters. However, the odor identity could still be
recovered by decoding information from a flexible subset of neurons. A simple
linear perceptron-like classifier with a tunable threshold would be sufficient in such
a scenario to robustly recognize the odorant. Such a computation can also be thought
of as an OR-of-ANDs logic operation (Fig. 14).
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Fig. 14 A simple illustration of a flexible decoding approach allowed robust recognition of
odorants in an invertebrate olfactory system. Each feature corresponds to the activation of a
single projection neuron in the antennal lobe. Each object represents an odor stimulus. Variations
across different chairs are used to indicate the variability encountered when the same stimulus was
received in different stimulus sequences

3.1.5 Handling Chemical Mixtures
Most naturally occurring olfactory stimuli are complex mixtures. However, unlike
vision and audition, handling multiple stimuli that are encountered simultaneously
(i.e., odor mixtures) poses a difficult challenge for the biological olfactory system.
Several studies have investigated how binary mixture that constitutes two indepen-
dent components are processed. Results from those studies indicate that such binary
mixtures can be a linear combination of the component odor responses [77] or
can result in neural representations that switch between different attractor states
with proximity to the dominant component in the mixture [78]. It is well known
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that odor mixtures with more than three components are processed as whole odor
objects that cannot be further segmented [79]. In this sense, olfaction is regarded
as a holistic sense. Note that this processing limitation only applies to temporally
synchronous mixtures where the components are encountered near simultaneously.
For temporally asynchronous mixtures, as noted earlier, the olfactory system rapidly
adapts to the first cue and maintains sensitivity to process novel stimuli encountered.

3.1.6 Sparse Decoders
Odor-evoked responses in the early processing stages in the olfactory system are
dense, and the information about the odorant is usually distributed across a large
combination of neurons. However, as the responses are transmitted to higher centers
(mushroom body in insects and piriform cortex in vertebrates), the activity becomes
sparse both in space and time. How are these sparse odor codes generated? A very
simple mechanism: each decoding neuron in the higher center receives input from
a random combination of neurons in the encoding layer, and a suitably chosen
threshold can generate sparse neural responses [80]. How these neural responses
mediate learning and memory, as they have been hypothesized to, remains to be
understood.

Based on the current understanding of how signals are received and processed in
biology, an overall schematic of a neuromorphic approach for machine olfaction is
shown in Fig. 15.

4 Biological Signal Processing Principles

Sections 2 and 3 discussed neuromorphic cochlea model and olfactory models,
respectively, derived from the underlying physics of biological cochlea and olfactory
systems. This section has two different parts that discuss how biological signal
processing principles are mimicked or can be used in building neuromorphic sensors
and systems. All the principles described in these sections are implemented by the
sensory neuron layer referred in Fig. 1

Fig. 15 A neuromorphic architecture for machine olfaction [56, 60]. Each component represents
sensing or a signal processing module in biological olfaction that has inspired parallel approaches
for analyzing responses of chemical sensor arrays
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4.1 Noise-Shaping in Integrate and Fire Spiking Neural Networks

Even though several spiking neural network architectures have been studied in
literature [81], one of the popular models of neurons is based on the integrate and
fire model. In this model, a neuron receives an external stimulus xi(t) (which is
typically a current) along with pulses from the neighboring neurons d(t) (known as
pre-synaptic spikes), which are then integrated, and the resulting intrinsic voltage
Vi(t) is compared against a random threshold. When this intrinsic voltage exceeds
the threshold, the neuron produces a spike, after which the intrinsic voltage is reset
to a random parameter that is below the threshold voltage. This section illustrates
the concept of noise-shaping using a mathematical model of an integrate-and-fire
spiking neural network. Consider a neuronal network consisting of N integrate-and-
fire neurons. Each neuron is characterized by its intrinsic voltage Vi(t), i = 1, .., N

and fires whenever Vi exceeds a threshold V th. Between consecutive firings, the
dynamics for Vi are given by the coupled differential equation 14

dVi

dt
= − Vi

τm

−
N∑

j=1

∑
m

Kijd(t − tmj ) + xi(t) (11)

where tmj ,m = 1, 2, . . . is the set of firing times of the j th neuron and τm denotes
the time constant of the neuron capturing the “leaky” nature of integration. The
parameter set Kij denotes the synaptic weights between the ith and j th neuron
and also denotes the set of learning parameters for this integrate-and-fire neural
network. To show how the synaptic weights Kij influence noise-shaping, consider
two specific cases: (a) when Kij = 0 implying there is no coupling between the
neurons and each neurons fires independently of the other and (b) when Kij = K

implying that the coupling between the neurons is inhibitory and is constant. For
this simple experiment, the set of parameters τm is set to 1 ms, and N is set to 50
neurons. For the case when the input xi(t) is constant, the raster plots indicating the
firing of the 50 neurons are shown in Fig. 16a for the uncoupled case and in Fig. 16b
for the coupled case. The bottom of the plot (the blue band in Fig. 16a and 16b)
shows the firing pattern of the neuronal population, which has been obtained by
combining the firings of all the neurons. It can be seen that for the uncoupled case
(Fig. 16a), the population firing show clustered behavior where multiple neurons
fire in close proximity, whereas for the coupled case (Fig. 16b), the firing rates are
respectively uniform indicating that the inhibitory coupling reduces the correlation
between the neuronal firings.

The inhibitory coupling of neurons improves the signal-to-noise ratio of the
incoming signal by employing the noise-shaping techniques, which are commonly
used in sigma-delta analog-to-digital converters. The noise-shaping technique alters
the spectral shape of the noise power by pushing it to high-frequency bands
[82,83]. To understand the implication of the inhibitory coupling for noise-shaping,
a sinusoidal input xi(t) = A0sin(2πf0t) at frequency f0 = 1 KHz is applied to all
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Fig. 16 Raster plot corresponding to the (a) uncoupled and (b) coupled case along with their
spectra (c)

the neurons, and the population firing rates are analyzed in the frequency domain
using a short Fourier transform. Figure 16c shows a comparison of the power
spectrum obtained for a coupled, an uncoupled, and a single neuron. The spectrum
corresponding to a single neuron shows that it cannot track the input signal since
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its bandwidth (1 KHz) is much larger than the firing rate of the neuron, whereas, for
the uncoupled/coupled case, the input signal can be easily seen. For the uncoupled
case, the noise floor, however, is flat, whereas, for the coupled case, the noise from
the signal band is shifted outside (shown in Fig. 16c). The shaping of the in-band
noise-floor enhances the signal-to-noise ratio of the network, and it was shown
that for a large network, the improvement is directly proportional to the number
of neurons. However, exploiting the full potential of noise-shaping in a spiking
neural network requires the appropriate choice of the learning parameters Kij

(excitatory and inhibitory) that can take advantage of the spectral properties
of the input signal. Even though several learning algorithms have been proposed
for spiking neural network for supervised and unsupervised learning, none of them
exploit the spectral properties of the input signal. Also, in a usual setting, the neural
network could receive diverse input signals (rather than a common input), which
motivates investigation into a generic framework of spiking neural network learning
algorithms combining noise-shaping principles.

4.2 Adaptive Analog-to-Digital Converter Based on Spiking
Neural Networks

The mathematical model corresponding to the integrate-and-fire network given
in equation 11 can be approximated in its vector differential form as dV

dt
=

−K(t)d(t) + x(t), where K(t) denotes the synaptic weight matrix. We have also
ignored the leakage term in this formulation since silicon implementation has
superior integration properties than biological neurons. Assuming that the inverse
of the parameter K−1 exists and varies slowly with respect to time (this can be
guaranteed by imposing mild structural and convergence constraints), the network

differential equation can be expressed as dK−1V
dt

= −d(t) + K−1(t)x(t) which after
a change of variables w(t) = K−1(t)v(t), A(t) = K−1(t) leads to

dw
dt

= −d(t) + A(t)x(t) (12)

Equation 12 can then be expressed as the time-domain evolution of a min-max
optimization function given by

max
A

min
w

‖w‖1 − wT Ax (13)

where the vector w ∈ RM denotes an internal state vector of the network. The
L1 norm in the objective function (11) denotes a regularization factor [84, 85] that
penalizes large excursion of the vector w. The minimization step in (11) will ensure
that the state vector w correlates with the transformed input signal AT x (tracking
step), and the maximization step in (11) will be used to learn the parameters of the
linear transformation A such that it minimizes the correlation (de-correlation step).
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Fig. 17 (a) Concept behind on-line delta-sigma learning where the objective is to induce bounded
limit cycles about an optimal point. The statistical property of the oscillations will encode
information embedded in the high-dimensional manifold. (b) The architecture of delta-sigma
neural network

The approach bears similarities with game-theoretic techniques where tracking and
de-correlation have been formulated as conflicting objectives.

The uniqueness of the formulation as compared to other neural network learn-
ing algorithms is the use of L1 regularization in Equation 13 for generating
bounded delta-sigma limit cycles. This is illustrated in Fig. 17a which shows a
two-dimensional contour for the optimization function in Eq. 13. For a bounded
transform ‖A‖1 ≤ M, the solution to Eq. 13 is well defined and is given by w∗ = 0
(see Fig. 17a). In the proposed learning approach, only the path to the final solution
w∗ and statistical property of the limit cycles about the solution are of importance
since it encodes the temporal dynamics of the spike train (digital pulses). The
gradient descent step for the inner-loop minimization in Eq. 13 is given by

wn = wn−1 + (An−1x − dn) (14)

where dn = sgn(wn−1) is the binary valued spike output obtained using the
L1 norm of the state vector w. Equation 14 is equivalent to a first-order delta-
sigma modulation and hence inherits its noise-shaping characteristics. As the
recursion (14) progresses, a binary limit cycle about the solution w∗ is generated
which is shown in Fig. 17a. However, these limit cycles are bounded and ‖wn‖1 ≤
2M for all n, and the asymptotic behavior of recursion (14) can be expressed as

En{dn} −−−→
n→∞ A∞x (15)

where the expectation operator En{.} is with respect to time instants n. Equation 15
shows that the mean of the binary sequence dn asymptotically approaches the
desired transformation where the linear transform is denoted by A∞ . Hence, the
binary sequence dn asymptotically encodes the transformed signal with infinite
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precision. Updates for matrix A are determined by the maximization step of Eq. 13
and is given by a gradient ascent as

An = An−1 − 2−P dn	(x)T (16)

where 	 : M → M being any monotonic function and P being an update parameter
that determines the resolution of the manifold. If the transformation A is bounded,
recursion (16) asymptotically leads to

En{dn	(xn)} −−−→
n→∞ 0 (17)

which shows that the learning algorithm converges to a manifold with parameters
A∞ such that the binary sequence produced by recursion (14) is orthogonal to
a set of functions 	. Equations 14 and 16 will be the basis of delta-sigma
learning algorithms proposed in this work. Update given by Equation 16 bears
similarity with gradient-based rules used in neural network algorithms except
for binary sequences dn, which in spike-based learning will embed noise-
shaping characteristics. The proposed formulation leads to a high-dimensional
analog-to-digital converter whose architecture is shown in Fig. 5b. It consists an
analog projection A followed by a delta-sigma array and an adaptation unit which
implement the recursions (14) and (16).

4.3 Signal De-Correlation and Network Stability

The basic learning algorithm given by Equations 14 and 16 has been validated in
[53] using multi-channel neural data recorded from the dorsal cochlear nucleus
in adult guinea pigs. For this preliminary experiment, eight channels of neural
data were used, and the manifold parameter matrix A was constrained to a lower-
triangular form. The data were recorded at a sampling rate of 20 KHz and at a
resolution of 16 bits. Figure 18a shows a clip of multi-channel recording for duration
of 0.5 s. It can be seen from the highlighted portion of Fig. 18a that the data exhibits a
high degree of cross-channel correlation. Therefore, localization of individual spikes
across the channel is difficult.

Fig. 18 Preliminary results using a recorded eight-channel neuronal data from the dorsal cochlear
nucleus of a guinea pig [53]: (a) the x-axis denotes time, and the gray scale represents the amplitude
of the input signal. (b) Output produced by the learning algorithm
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The recursions (14) and (16) were applied to the eight-dimensional inputs
x, and a running average is computed using the digital sequence produced by
recursion (14) and is plotted in Fig. 18b. It can be seen that the on-line learning
algorithm determines the spatial distribution of neuronal signal across channels
and, in the process, localizes the spikes in the multi-channel data. The convergence
of the recursions (14) and (16) can be verified by observing the norm of the
parameter matrix as shown in Fig. 19b. During the learning (adaptation) period, the
algorithm learns the spatial distribution of the neural signals and then subsequently
tracks any drift in spatial distribution. To verify that the learned transformation
is information-preserving, the original signal is reconstructed using the parameter
matrix as x̂ = A−1 1

N

∑N
n=1 dn. Figure 19a shows plots of the mean square error

between the original input signal and the reconstructed signal, showing that the error
asymptotically decreases with final reconstruction error determined by the size of
the reconstruction window N (oversampling rate). Thus, the recursions (14) and (16)

Fig. 19 (a) Mean square
error between reconstructed
multi-channel data and
original neural data. (b) Norm
of the parameter matrix
demonstrating bounded limit
cycles
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are information-preserving and de-correlated the high-dimensional input signal in
real time.

The salient outcomes of this preliminary study were: (a) Within the constraints
imposed on the matrix (A), delta-sigma learner can estimate the parameters of the
manifold, such that it captures low-dimensional information embedded in high-
dimensional neural data. (b) After the learner has estimated the model parameters
based on input data, it tracks drift in the statistical distribution in the input signal
and accordingly updates the network parameters. (c) The performance of learning
is dependent on the oversampling rate (ratio of recursion rate to Nyquist rate) but
asymptotically converges to a constant error. Prior knowledge is embedded into the
structure of the parameter matrix A which also affects the speed of the delta-sigma
learning algorithm.

4.4 Neuromorphic Olfaction: Dimensionality Reduction

The sorting of olfactory sensory neuron output wires (i.e., their axons) such that
sensors of the same type send input to the same region has inspired the development
of a dimensionality reduction approach [60, 86, 87]. In this approach, the response
of a chemosensor to a panel of odorants was used to define its selectivity profile.
Chemosensors with similar selectivity profiles or vectors were clustered (i.e., group
similar sensors) using a topology-preserving self-organized maps. This resulted in a
2D map of response profiles (Fig. 20). As the information from multiple redundant
sensors was integrated, the SNR and, therefore, odor separability improved as a
result of reorganizing sensor input in this fashion [87].

Fig. 20 (a) A schematic of the approach followed to mimic clustering of sensory neuron axons at
the input of the olfactory bulb [60,86,87]. Responses of similar sensors, i.e., have similar responses
to the odor panel (aligned selectivity vector), were grouped using a self-organizing map to create a
2D spatial image for each odorant. (b) Artificial odor maps created from an array of chemosensors
are shown. Each row corresponds to a single odorant, and each column represents a particular
concentration of that odorant
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4.5 Neuromorphic Olfaction: Gain Control

Neuronal circuits at the input of the olfactory bulb have inspired dynamic, recurrent
neural networks to perform gain control computation. To model the periglomerular
circuits in the olfactory bulb, a model of lateral shunting inhibition was proposed
[88]. In this model, the activity of neuron xi was modeled as follows:

dx0
j (t)

dt
= −Dx0

j (t)︸ ︷︷ ︸
neuron dynamics

+ (B − xo
j (t))Go

j︸ ︷︷ ︸
self excitation

− xo
j (t)

∑
k 	=i

ckiG
o
k

︸ ︷︷ ︸
shunting lateral inhibition

(18)

where D relates inversely to decay constant, B represents saturation response level,
Gi represents the input received by the ith neuron, and the matrix C represents
the connectivity matrix (with cki being the connection weights between the kth and
the ith neurons). It can be easily shown that the steady-state response of neuron xi

becomes

x0
i = BG0

i

D + G0
i + ∑

k 	=i ckiG
0
k

(19)

For parameters B = 1,D = 0 and cki = 1∀k, i this converges to the L1-norm
of the input received. Representative results from this model are shown in Fig. 22.
Note that the responses of a chemiresistive sensory array to three odorants each
delivered at three different concentrations are shown. As can be noted, when lateral
shunting inhibition is removed (cki = 0∀k, i), the variations due to concentrations
become dominant (Fig. 21a). With global shunting inhibition (cki = 1∀k, i), the
concentration information is squashed (Fig. 21c). Notably, by controlling the extent
or spread of lateral inhibition, the amount of variation introduced by odor intensity-
related information can be controlled (Fig. 21b).

Fig. 21 Results from a shunting inhibition model for gain control [88]. Multivariate sensor
responses were used as inputs to a network of neurons modeled using Eq. 18. The steady-state
network activity is shown for three odorants each presented at three different concentrations. (a)
Output of a network of neurons with no lateral shunting inhibition (cki = 0∀k, i) is shown. (b)
Output of the neural network with local shunting inhibition is shown. (c) Output of the neural
network model with global shunting inhibition (cki = 1∀k, i) is shown
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4.6 Neuromorphic Olfaction: Contrast Enhancement

Similarly, circuits at the output of the olfactory bulb involving principal mitral/tufted
cells and inhibitory granule cells have been modeled to enhance separability
between odor signals [89]. Unlike the shunting model with multiplicative interaction
between neurons in the circuit, here the lateral interactions were modeled as additive
connections as follows:

dmj (t)

dt
= −mj(t)

τj︸ ︷︷ ︸
neuron dynamics

+
M∑

k=1

Lkjφ(mk(t))

︸ ︷︷ ︸
lateral inhibition

+ Gj︸︷︷︸
ORN input

(20)

where τj is the time constant for decay of response of neuron j, Lki indicates
connection strength between neurons k and i, φ() is a logistic function, and Gj

is the input received by the neuron. Note that the connectivity matrix was modeled
to mediate center surround-type interactions.

The time evolution of the neural responses in this network to different odorants
revealed an initial transient phase that settled into a steady-state or a fixed-point
attractor very similar to the results reported in vivo (Fig. 22) [90]. Notably, similar
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Fig. 22 Neural responses from a recurrent neural network model with additive lateral interactions
(Eq. 20) are shown after PCA dimensionality reduction. Responses over time are connected to
create a stimulus-evoked response trajectory. Nine trajectories are shown corresponding to sensor
responses to three different odorants at three different intensities [89]. Note that the direction of
the trajectories encodes stimulus identity information in an intensity-invariant fashion
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Fig. 23 Response dynamics of neural networks with short-term adaptation are shown after PCA
dimensionality reduction. Neural responses that are temporally contiguous are connected to create
a stimulus-evoked response trajectory and reveal how activity in the neural network evolves. Note
that each odorant is now encoded by a limit-cycle attractor [92]

results were also obtained when the analog neurons in Equation 20 were replaced
by integrate-and-fire spiking neurons [91].

A further extension to this model that also included a short-term response
adaptation was proposed. Inclusion of adaptation term altered the odor-evoked
attractors from a fixed-point dynamics to a limit-cycle one (Fig. 23).

4.7 Neuromorphic Olfaction: Mixture Segmentation and
Background Suppression

To process more complex signals that arise from multiple competing odorants
encountered simultaneously (i.e., odor mixtures), a highly integrated model of
olfactory bulb and olfactory cortex was proposed (Equations 21, 22) [60, 93]
(Fig. 24).

dM

dt
= − 1

τ
+ Lφ(M) + G︸ ︷︷ ︸

same as before

+ FBφ(P )︸ ︷︷ ︸
Cortex-to-bulb-feedback

(21)

dM

dt
= −1

λ
+ ACφ(P )︸ ︷︷ ︸

Cortico-cortcal connections

+ FFφ(P )︸ ︷︷ ︸
Feedforward Connections

(22)
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Fig. 24 A schematic of the
olfactory bulb-olfactory
cortex model. Note that the
model is driven by inputs
from a chemosensor array

Fig. 25 Simulated patterns generated by two odorants A and B, and their binary mixtures are
shown on the top panel. The bulb neural response and the cortical activity when Hebbian feedback
connections were used are shown on the left panel. Note that the mixture response is dominated by
the odorant A pattern, and therefore the weaker component B is completely suppressed in the bulb
and cortex. Similar results using anti-Hebbian feedback is shown on the right panel. Note that the
activity oscillates between activation that corresponded to odorant A (bulb and cortical neurons 1
and 2) and switched to activation that corresponded to odorant B (bulb and cortical neurons 3 and 4)

Cortical neurons in this model combined neural responses from the bulb (FF) in
operation typically referred to as coincidence detection. The Association connection
(AC) between pyramidal cortical neurons in the cortex was learned using Hebbian
learning and allows for pattern completion of incomplete input from the bulb. The
feedback connections (FB) from the cortex to the olfactory bulb were established
using either Hebbian or anti-Hebbian learning. Note that Hebbian feedback allowed
the strongest component in the odor mixture to drive the olfactory bulb and olfactory
cortex neural responses (i.e., winner takes all) (Fig. 25; left panel). However, anti-
Hebbian feedback suppressed the input activated in the cortex and allowed each
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component of a mixture to drive the model response and, therefore, be recognized
sequentially over time (Fig. 25; right panel).

4.8 Neuromorphic Olfaction: De-correlation of Signals

As mentioned earlier, evidence suggests that in certain models of biological
olfaction, neural responses are refined over time such that features that are common
across groups of chemicals are extracted first and odor-specific response attributes
get emphasized later [94]. Inspired by this approach, analytical techniques have
been proposed that can perform similar computations but to process responses from
a chemosensory array (Fig. 26). This divide-and-conquer strategy was demonstrated
to have several advantages. First, since only those features that have the highest SNR
were utilized for making categorical decisions at each decision node, this approach
was shown to be less sensitive to noise that creeps in as the chemosensors age over
time. Second, since the nodes that are in the higher levels are common to multiple
analyses, it provides a generalizable approach where some predictions about an
odorant not used during the training phase can still be made.

Fig. 26 Refinement of information to allow identification of generic chemical categories first,
followed by more precise recognition later. Note that at each step, only those features that provide
the best separation between the branching options are used. This makes this approach less sensitive
to noise caused by the aging of sensors. More importantly, this approach allows generalization to
chemicals not used during the training phase [94]
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5 Discussion and Future Direction

Audition and olfaction are sensory modalities that have highly divergent require-
ments. Audition is fast and can encode more information in small time windows,
while olfaction is relatively slow and is low-bandwidth. Audition is highly robust,
and the recognition performance gracefully declines in noisy environments. On the
other hand, olfaction is highly sensitive to changes in ambient conditions. Separating
auditory signals from multiple sources (i.e., the cocktail party problem) is a feat
of pattern recognition achieved daily. In contrast, odor mixtures with more than
three components are difficult to segment. So, the two systems chosen for this book
chapter may appear to have less in common. However, as we have discussed so far
when you “look under the hood,” the computational processing principles in the two
sensory systems have several things in common.

Even more, parallels can be observed when a dynamical systems perspective
is followed to understand the encoding of sounds and odorants. A recent study
compared what neural response features evoked by an odor and a monotone have in
common [95]. It was shown that a sensory stimulus, be it an odorant or a monotone,
evoked a highly transient response (i.e., ON transient) that was information-rich
and activated a larger number of neurons. When the stimulus was sustained, again in
both systems, the activity converged onto stable patterns of neural firings distributed
in a subset of neurons that were active during the ON-transient period. This epoch is
referred to as the “fixed-point” activity. The ensemble neural responses remained
in this fixed-point activity until the stimulus was removed. Following stimulus
termination, another round of dynamic activity (i.e., OFF transient) was observed.
Intriguingly, most neurons that were active during the ON-transient phase were
silenced, and many neurons silenced during the ON-transient phase became active
following stimulus termination. Therefore, both stimulus presence and its absences
(at least immediate following its termination) were actively encoded by two nearly
orthogonal sets of neurons in both sensory systems. Whether such dynamical
coding principles provide an advantage in realizing neuromorphic computational
architectures still needs to be explored.

Particularly in olfaction technologies, it has been more than three decades since
the concept of an electronic nose was first proposed [96]. Despite a growing need for
a portable, noninvasive chemical sensing tool in several application domains (such
as security, environmental monitoring, and medical diagnostics), this demand has
not been met. The capabilities of the state-of-the-art chemical sensing technologies
still pale in comparison with their biological counterparts. This raises a fundamental
question, why can’t electronic noses as good as biological noses or even an insect
antenna be engineered?

There are two main reasons that could contribute to this difference in capabilities:
sensors and computations. Even a relatively simple invertebrate olfactory system
has 50–100 different proteins or sensors to transduce chemical information. There
is still a lack of a rich repertoire of materials that can function as chemical sensors
in electronic noses. Therefore, a key area of improvement is in developing diverse
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sensing materials that can provide a high-dimensional and information-rich sensory
input to subsequent pattern recognition engine. Additionally, keeping these sensors
stable and viable for long periods of operation (days/weeks/months/years) is a key
challenge that must be met to ensure that recognition performance does not degrade
over time (a task that is easier said than done!)

Second, the neural circuits that process information from olfactory receptor
neurons are highly conserved across divergent species [97]. This possibly indicates
that the subsequent information processing schemes have been highly optimized,
and a conserved set of signal processing motifs may be used to manipulate and
extract information about chemical cues in the organisms’ surroundings. While
these circuits are still being understood, modeling and developing neuromorphic
solutions inspired by them could potentially diminish this gap in performance.

Finally, until such time when a rich repertoire of chemical transducers and
highly optimized neuromorphic processing modules for chemosensory signals are
available, a potential stop-gap solution that exists involves developing hybrid
systems that are part-engineering and part-biology. The key idea here would let
biology solve the difficult task of transducing chemical information into an electrical
signal using its exquisite sensor array. Once the signal has been received and
processed by the olfactory neural networks, these signals can be tapped using
electrodes implanted into the brain of the organism to realize an “biosensor” [98].
The pattern of neural signals extracted can be used to determine the identity of the
odorant/chemical that is in the vicinity of the organism. Such an approach can be
regarded as a sophisticated version of the “canary in the coal mine” approach but one
that takes advantage of the modern tools that enable sophisticated neural readouts
for chemical discrimination.

Overall, in this chapter, we have discussed audition and olfaction pathways
with several important neuromorphic signal processing techniques such as jump-
resonance, noise shaping, dimensionality reduction, adaptive gain control, and so
on. However, these case studies illustrate a few specific examples. The future
challenges lie in extending these neuromorphic principles to build more complex
perceptual tasks. In this regard, the futuristic goal would be to apply these concepts
to emerging devices like memristor that store and process data simultaneously just
like the brain does. This is also known as in-memory computing, unlike von Neuman
architecture, where the logic and memory blocks are located separately.

Acknowledgments The authors would like to thank the Scheme for Promotion of Academic
and Research Collaboration (SPARC), MHRD, Govt. of India, for funding (SPARC/2018-
2019/P606/SL) this work. The authors acknowledge the Brain, Computation and Learning
workshop at the Indian Institute of Science, India, where much of this work has been done.



Sensing-to-Learn and Learning-to-Sense: Principles for Designing. . . 41

References

1. Arisoy, F.D., et al.: Bioinspired photocatalytic shark-skin surfaces with antibacterial and
antifouling activity via nanoimprint lithography. ACS Appl. Mater. Interfaces (2018). https://
doi.org/10.1021/acsami.8b05066

2. Barth, F.G.: Spider strain detection. In: Barth, F.G., Humphrey, J.A.C., Srinivasan, M.V. (eds.)
Frontiers in Sensing: From Biology to Engineering, pp. 251–273. Springer, New York/Wien
(2012). ISBN: 9783211997482

3. Miles, R.N., Hoy, R.R.: The development of a biologically-inspired directional microphone for
hearing aids. Audiol. Neuro-Otol. 11(2):86–94 (2006)

4. Sarpeshkar, R.: Neuromorphic and biomorphic engineering systems. McGraw-Hill Yearbook
of Science & Technology 2009, pp. 250–252. McGraw-Hill, New York (2009)

5. Barth, F.G.: Spider mechanoreceptors. Curr. Opin. Neurobiol. 14(4):415–422 (2004). https://
doi.org/10.1016/j.conb.2004.07.005

6. Lichtsteiner, P., Delbruck, T.: 64 × 64 event-driven logarithmic temporal derivative silicon
retina. In: IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, pp. 157–
160 (2005)

7. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 × 128 120 dB 30 mW asynchronous vision
sensor that responds to relative intensity change. In: IEEE International Solid-State Circuits
Conference (ISSCC), pp. 2060–2069 (2006)

8. Lichtsteiner, P.: An AER temporal contrast vision sensor. Ph. D. Thesis, ETH Zurich,
Department of Physics (D-PHYS), Zurich (2006))

9. Mar, D.J., Chow, C.C., Gerstner, W., Adams, R.W., Collins, J.J.: Noise shaping in populations
of coupled model neurons. Proc. Natl. Acad. Sci. U. S. A. 96, 10450–10455 (1999)

10. Linden, J.F., Liu, R.C., Sahani, M., Schreiner, C.E., Merzenich, M.M.: Spectrotemporal
structure of receptive fields in areas AI and AAF of mouse auditory cortex. J. Neurophysiol.
90(4):2660–2675 (2003)

11. Aono, K., Shaga, R., Chakrabartty, S.: Exploiting jump-resonance hysteresis in silicon cochlea
for extracting speaker discriminative formant trajectories. IEEE Trans. Biomed. Circuits Syst.
7(4):389–400 (2013)

12. Altoé, A., Pulkki, V.: Transmission line cochlear models: improved accuracy and efficiency. J.
Acoust. Soc. Am. 136:302–308 (2014). https://doi.org/10.1121/1.4896416

13. Glasberg, B.R., Moore, B.C., Nimmo-smith, I.: Comparison of auditory filter shapes derived
with three different maskers maskers. J. Acoust. Soc. Am. 75:536 (1984). https://doi.org/10.
1121/1.390487

14. Patterson, R.D., Unoki, M., Irino, T.: Extending the domain of center frequencies for the
compressive gammachirp auditory filter. J. Acoust. Soc. Am. 114, 1529–1542 (2003). https://
doi.org/10.1121/1.1600720

15. Lyon, R.F., Katsiamis, A.G., Drakakis, E.M.: History and future of auditory filter models.
In: IEEE International Symposium on Circuits and Systems (ISCAS) (Paris), pp. 3809–3812
(2010). https://doi.org/10.1109/ISCAS.2010.5537724

16. Wang, S., Koickal, T.J., Hamilton, A., Cheung, R., Smith, L.S.: A bio-realistic analog CMOS
cochlea filter with high tunability and ultra steep roll-off. IEEE Trans. Biomed. Circ. Syst. 9,
297–311 (2015). https://doi.org/10.1109/TBCAS.2014.2328321

17. Lyon, R.F.: Human and Machine Hearing -Extracting Meaning from Sound. Cambridge
University Press, Mountain View (2017)

18. Xu, Y., Thakur, C.S., Singh, R.K., Hamilton, T.J., Wang, R.M., van Schaik, A.: A FPGA
implementation of the CAR-FAC cochlear model. Front. Neurosci. 12:198 (2018)

19. Lyon Richard, F., Moore, Brian CJ.: Human and Machine Hearing: Extracting Meaning from
SoundHuman and Machine Learning: Extracting Meaning from Sound, 567pp. Cambridge
University Press, Cambridge (2017). Price:$ 54.99. ISBN: 978-1-107-007536. Acoust. Soc.
Am. J. 144:567 (2018)

https://doi.org/10.1021/acsami.8b05066
https://doi.org/10.1021/acsami.8b05066
https://doi.org/10.1016/j.conb.2004.07.005
https://doi.org/10.1016/j.conb.2004.07.005
https://doi.org/10.1121/1.4896416
https://doi.org/10.1121/1.390487
https://doi.org/10.1121/1.390487
https://doi.org/10.1121/1.1600720
https://doi.org/10.1121/1.1600720
https://doi.org/10.1109/ISCAS.2010.5537724
https://doi.org/10.1109/TBCAS.2014.2328321


42 S. Chakrabartty et al.

20. Xu Y., Thakur, C.S., Hamilton, T.J., Wang, R., van Schaik, A.: An FPGA implementation of
the CAR-FAC cochlear model. Front. Neurosci. 12:198 (2018)

21. Thakur, C.S., et al.: FPGA implementation of the CAR model of cochlea. In: IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS) (2014)

22. Lyon, R.F.: Human and Machine Hearing -Extracting Meaning from Sound. Cambridge
University Press, Mountain View (2017)

23. Thakur, C.S., Hamilton, T.J., Tapson, J., van Schaik, A., Lyon, R.F.: FPGA implementation
of the CAR model of the cochlea. In: 2014 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1853–1856 (2014)

24. Thakur, C.S., Hamilton, T.J., Tapson, J., van Schaik, A., Lyon, R.F.: Live demonstration: FPGA
implementation of the CAR model of the cochlea. In: 2014 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1853–1856 (2014)

25. Xu, Y., Thakur, C.S., et al.: Electronic cochlea: car-FAC model on FPGA. In: IEEE Biomedical
Circuits and Systems Conference (BioCAS 2016) (2016)

26. Fukuma, A., Matsubara, M.: Jump resonance criteria of nonlinear control systems. IEEE Trans.
Autom. Control 11(4):699–706 (1966)

27. Martin, P., Mehta, A.D., Hudspeth, A.J.: Negative hair-bundle stiffness betrays a mechanism
for mechanical amplification by the hair cell. Proc. Natl. Acad. Sci. 97(22):12026–12031
(2000)

28. Aono, K., Shaga, R.K., Chakrabartty, S.: Exploiting jump-resonance hysteresis in silicon
auditory front-ends for extracting speaker discriminative formant trajectories. Biomed. Circuits
Syst. IEEE Trans. PP(99):1 (2013)

29. Aono, K., Shaga, R.K., Chakrabartty, S.: Exploiting jump-resonance hysteresis in silicon
cochlea for formant trajectory encoding. In: 2012 IEEE 55th International Midwest Sympo-
sium on Circuits and Systems (MWSCAS), pp. 85–88, 5–8 Aug 2012

30. Moni, R.S., Rao, K.R.: Jump-phenomenon in active-RC filters. IEEE Trans. Circuits Syst.
29(1):54–55 (1982)

31. Aono, K., Shaga, R., Chakrabartty, S.: Exploiting jump-resonance hysteresis in silicon cochlea
for extracting speaker discriminative formant trajectories. IEEE Trans. Biomed. Circuits Syst.
7(4):389–400 (2013)

32. Chakrabartty, S., Cauwenberghs, G.: Gini-support vector machine: quadratic entropy based
multi-class probability regression. J. Mach. Learn. Res. 8:813–839 (2007)

33. Fazel, A., Chakrabartty, S.: An overview of statistical pattern recognition techniques for
speaker verification. IEEE Circuits Syst. Mag. 11(2):62–81 (2011)

34. Aono, K., Shaga, R., Chakrabartty, S.: Exploiting jump-resonance hysteresis in silicon cochlea
for extracting speaker discriminative formant trajectories. IEEE Trans. Biomed. Circuits Syst.
7(4):389–400 (2013)

35. Chi, T., Ru, P., Shamma, S.A.: Multiresolution spectrotemporal analysis of complex sounds. J.
Acoust. Soc. Am. 118(2):887–906 (2005). https://doi.org/10.1121/1.1945807

36. Patil, K., et al.: Music in our ears: the biological bases of musical timbre perception. PLoS
Comput. Biol. 8(11):e1002759 (2012)

37. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In:
Advanced Neural Information Processing Systems (NIPS), vol. 8, pp. 757–763. MIT Press,
Cambridge, MA (1996)

38. Chakrabartty, S., Deng, Y., Cauwenberghs, G.: Robust speech feature extraction by growth
transformation in reproducing Kernel Hilbert space. IEEE Trans. Speech Lang. Acoust.
15(6):1842–1849 (2007)

39. Patterson, R., Moore, B.: Auditory filters and excitation patterns as representations of
frequency resolution. Freq. Sel. Hearing 363:123–177 (1986)

40. Smith, E.C., Lewicki, M.S.: Efficient auditory coding. Nature 439:978–982 (2006)
41. Chi, T., Ru, P., Shamma, S.: Multiresolution spectrotemporal analysis of complex sounds. J.

Acoust. Soc. Am. 118:887–906 (2005)
42. Chi, T., Ru, P., Shamma, S.: Multiresolution spectrotemporal analysis of complex sounds. J.

Acoust. Soc. Am. 118:887–906 (2005)

https://doi.org/10.1121/1.1945807


Sensing-to-Learn and Learning-to-Sense: Principles for Designing. . . 43

43. Wessinger, C.M., VanMeter, J., Tian, B., Lare, J.V., Pekar, J., Rauschecker, J.P.: Hierarchical
organization of the human auditory cortex revealed by functional magnetic resonance imaging.
J. Cogn. Neurosci. 13:1–7 (2001)

44. Okada, K., Rong, F., Venezia, J., Matchin, W., Hsieh, I.-H., Saberi, K., Serences, J.T., Hickok,
G.: Hierarchical organization of human auditory cortex: evidence from acoustic invariance in
the response to intelligible speech. Cereb. Cortex 20:2486–2495 (2010)

45. Boemio, A., Fromm, S., Braun, A., Poeppel, D.: Hierarchical and asymmetric temporal
sensitivity in human auditory cortices. Nat. Neurosci. 8:389–395 (2005)

46. Fazel, A., Chakrabartty, S.: Sparse auditory reproducing kernel (SPARK) features for noise-
robust speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(4) (2012). https://doi.
org/10.1109/TASL.2011.2179294

47. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature
Neurosci. 2:1019–1025 (1999)

48. Wahba, G.: Splines Models for Observational Data. Series in Applied Mathematics, vol. 59.
SIAM, Philadelphia (1990)

49. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures.
Neural Comput. 7:219–269 (1995)

50. Fazel, A., Chakrabartty, S.: Sparse auditory reproducing kernel (SPARK) features for noise-
robust speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(4) (2012). https://doi.
org/10.1109/TASL.2011.2179294

51. Hirsch, H.G., Pearce, D.: The Aurora experimental framework for the performance evaluation
of speech recognition systems under noisy conditions. In: Proceedings of ASR, pp. 181–188
(2000)

52. Mar, D.J., Chow, C.C., Gerstner, W., Adams, R.W., Collins, J.J.: Noise shaping in populations
of coupled model neurons. Proc. Natl. Acad. Sci. U. S. A. 96:10450–10455 (1999)

53. Gore, A., Chakrbartty, S.: Large Margin Analog-to-digital converters with applications in
Neural Prosthetics. In: Advances in Neural Information Processing Systems (NIPS) (2006)

54. Pearce, T.C.: Computational parallels between the biological olfactory pathway and its
analogue ‘the electronic nose’: Part I. Biological olfaction. Biosystems 41:43–67 (1997)

55. Pearce, T.C.: Computational parallels between the biological olfactory pathway and its
analogue ‘the electronic nose’: Part II. Sensor-based machine olfaction. Biosystems 41:69–90
(1997)

56. Raman, B., Stopfer, M., Semancik, S.: Mimicking biological design and computing principles
in artificial olfaction. ACS Chem. Neurosci. 2:487–499 (2011)

57. Persaud, K., Dodd, G.: Analysis of discrimination mechanisms in the mammalian olfactory
system using a model nose. Nature 299:352–355 (1982)

58. Nagle, T., Schiffman, S.S., Gutierrez-Osuna, R.: The how and why of electronic noses. IEEE
Spectr. 35(9):22–34 (1998)

59. Pearce, T.C., et al.: Handbook of Machine Olfaction: Electronic Nose Technology. Wiley,
Wiley-VCH Verlag GmbH & Co. KGaA (2006)

60. Raman, B.: Sensor-based machine olfaction with neuromorphic models of the olfactory system.
Ph. D. Dissertation, Texas A&M University, College Station (2005)

61. Ache, B.W., Young, J.M.: Olfaction: diverse species, conserved principles. Neuron 48:417–430
(2005)

62. Hallem, E.A., Carlson, J.R.: Coding of odors by a receptor repertoire. Cell 125:143–160 (2006)
63. Uchida, N., Poo, C., Haddad, R.: Coding and transformationsin the olfactory system. Ann. Rev.

Neurosci. 37:363–385 (2014)
64. Farivar, S.: Cytoarchitecture of the locust olfactory system. In: Biology. Califonia Institute of

Technology (2005). https://doi.org/10.7907/4Y60-KH68
65. Belluscio, L., et al.: A map of pheromone receptor activation in the mammalian brain. Cell

97(2):209–220 (1999)
66. Laurent, G.: A systems perspective on olfactory coding. Science 286:723–728 (1999)

https://doi.org/10.1109/TASL.2011.2179294
https://doi.org/10.1109/TASL.2011.2179294
https://doi.org/10.1109/TASL.2011.2179294
https://doi.org/10.1109/TASL.2011.2179294
https://doi.org/10.7907/4Y60-KH68


44 S. Chakrabartty et al.

67. Pearce, T.C., et al.: Robust stimulus encoding in olfactory processing: hyperacuity and efficient
signal transmission. In: Emergent Neural Computational Architectures Based on Neuroscience,
Springer, Berlin, Heidelberg, pp. 461–479 (2001)

68. Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev.
Neurosci. 13:51–62

69. Olsen, S.R., Bhandawat, V., Wilson, R.I.: Divisive normalization in olfactory population codes.
Neuron 66:287–299 (2010)

70. Yaksi, E., Wilson, R.: Electrical coupling between olfactory glomeruli. Neuron 67:1034–1047
(2010)

71. Zhu, P., Frank, T., Friedrich, R.W.: Equalization of odor representations by a network of
electrically coupled inhibitory interneurons. Nat. Neurosci. 16(11):1678–1686 (2013)

72. Friedrich, R.W., Laurent, G.: Dynamic optimization of odor representations by slow temporal
patterning of mitral cell activity. Science 291:889–894 (2001)

73. Wilson, C.D., et al.: A primacy code for odor identity. Nat. Commun. 8:1477 (2017)
74. Nizampatnam, S., et al.: Dynamic contrast enhancement and flexible odor codes. Nat.

Commun. 9:3062 (2018)
75. Saha, D., et al.: A spatiotemporal coding mechanism for background-invariant odor recogni-

tion. Nat. Neurosci. 16:1830–1839 (2013)
76. Rokni, D., et al.: An olfactory cocktail party: figure-ground segregation of odorants in rodents.

Nat. Neurosci. 17:1225–1232 (2014)
77. Khan, A.G., Thattai, M., Bhalla, U.S.: Odor representations in the rat olfactory bulb change

smoothly with morphing stimuli. Neuron 57(4):571–585 (2008)
78. Niessing, J., Friedrich, R.W.: Olfactory pattern classification by discrete neuronal network

states. Nature 465:47–52 (2010)
79. Liang, D.G.: Perception of odor mixtures. In: Doty, R.L., (ed.) The Handbook of Olfaction and

Gustation, pp. 283–298. Marcel Dekker, New York (1995)
80. Jortner, R.A., Farivar, S., Laurent, G.: A simple connectivity scheme for sparse coding in an

olfactory system. J. Neurosci. 14(7):1659–1669 (2007)
81. Gerstner, W.: Population dynamics of spiking neurons: fast transients, asynchronous states, and

locking. Neural Comput. 12(1):43–89 (2000)
82. Chacron, M.J., Lindner, B., Longtin, A.: Noise shaping by interval correlations increases

information transfer. Phys. Rev. Lett. 92:080601 (2004)
83. Wiesenfeld, K., Satija, I.: Noise tolerance of frequency-locked dynamics. Phys. Rev. B

36:2483–2492 (1987)
84. Gore, A., Chakrabartty, S.: Min-max optimization framework for designing sigma-delta

learners: theory and hardware. IEEE Trans. Circuits Syst. I 57(3):604–617 (2010). https://doi.
org/10.1109/TCSI.2009.2025002

85. Chakrabartty, S.: Multiple-input multiple-output analog-to-digital converter US Patent no:
7,479,911, Issued 20 Jan 2009

86. Perera, A., et al.: A dimensionality-reduction technique inspired by receptor convergence in
the olfactory system. Sens. Actuat B: Chem. 116:17–22 (2006)

87. Raman, B., et al.: Processing of chemical sensor array with a biologically inspired model of
olfactory coding. IEEE Trans. Neural Netw. 17:1015–1024 (2006)

88. Raman, B., Gutierrez-Osuna, R.: Concentration normalization with a model of gain control in
the olfactory bulb. Sens. Actuat. B: Chem. 116:36–42 (2006)

89. Raman, B., Yamanaka, T., Gutierrez-Osuna, R.: Contrast enhancement of gas sensor array
patterns with a neurodynamics model of the olfactory bulb. Sens. Actuat. B: Chem. 119:547–
555 (2006)

90. Stopfer, M., et al.: Odor identity vs. intensity coding in an olfactory system. Neuron 39(6):991–
1004 (2003)

91. Raman, B., Gutierrez-Osuna, R.: Chemosensory processing in a spiking model of the olfactory
bulb: chemotopic convergence and center surround inhibition. In: Proceedings of Advances in
Neural Information Processing Systems (NIPS 2004), Vancouver, vol. 17 (2004)

92. Raman, B., et al.: Sensor-based machine olfaction with a neurodynamics model of the olfactory
bulb. In: IEEE Intelligence Robots and Systems. IEEE, Sendai (2004)

https://doi.org/10.1109/TCSI.2009.2025002
https://doi.org/10.1109/TCSI.2009.2025002


Sensing-to-Learn and Learning-to-Sense: Principles for Designing. . . 45

93. Raman, B., Gutierrez-Osuna, R.: Mixture segmentation and background suppression in
chemosensor arrays with a model of olfactory bulb-cortex interaction. In: International Joint
Conference on Neural Networks. IEEE, Montreal (2005)

94. Raman, B., et al.: A bioinspired methodology for artificial olfaction. Anal. Chem. 80:8364–
8371 (2008)

95. Saha, D., et al.: Engaging and disengaging recurrent inhibition coincides with sensing and
unsensing of a sensory stimulus. Nat. Commun. 8:15413 (2017)

96. Persaud, K., Dodd, G.: Analysis of discrimination mechanisms in the mammalian olfactory
system using a model nose. Nature 299:352–355 (1982)

97. Ache, B.W., Young, J.M.: Olfaction: diverse species, conserved principles. Neuron 48:417–430
(2005)

98. Saha, D., et al.: Explosive sensing with insect-based biorobots. Biosens. Bioelectron. X
6:100050 (2020)


	Sensing-to-Learn and Learning-to-Sense: Principles for Designing Neuromorphic Sensors
	Contents
	1 Introduction
	2 Case Study I: Neuromorphic Audition
	2.1 Biological Cochlea Model: Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC)
	2.1.1 Basilar Membrane (BM)
	2.1.2 Outer Hair Cells (OHC)
	2.1.3 Inner Hair Cells (IHC)
	2.1.4 Automatic Gain Control (AGC)

	2.2 Jump-Resonance-Based Auditory Filter Banks
	2.3 Biological Feature Extraction (Spectro-temporal Receptive Field (STRF)-Based Approach)
	2.4 Statistical Learning-Based Feature Extraction

	3 Case Study II: Neuromorphic Olfaction
	3.1 Basic Building Blocks of the Biological Olfactory System
	3.1.1 Biological Transducers and Sensor Arrays
	3.1.2 Gain Control and Response Equalization
	3.1.3 Contrast Enhancement
	3.1.4 Background Invariance
	3.1.5 Handling Chemical Mixtures
	3.1.6 Sparse Decoders


	4 Biological Signal Processing Principles
	4.1 Noise-Shaping in Integrate and Fire Spiking Neural Networks
	4.2 Adaptive Analog-to-Digital Converter Based on Spiking Neural Networks
	4.3 Signal De-Correlation and Network Stability
	4.4 Neuromorphic Olfaction: Dimensionality Reduction
	4.5 Neuromorphic Olfaction: Gain Control
	4.6 Neuromorphic Olfaction: Contrast Enhancement
	4.7 Neuromorphic Olfaction: Mixture Segmentation and Background Suppression
	4.8 Neuromorphic Olfaction: De-correlation of Signals

	5 Discussion and Future Direction
	References


