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The human brain can be characterized by its large number of adaptive synapses, connecting
billions of neurons capable of both learning and perceiving the environment. Neuromorphic com-
puting, based on brain-inspired principles, is a promising technology, to build low-power, distributed,
fault-tolerant intelligent systems mainly for perception tasks. Here, we demonstrate the intrinsic
capability of floating gate (FG) MoS2 device (MoS2 FG-FET) to model the spike time dependent
plasticity (STDP) learning rule that is based on the transient response of the MoS2 channel to
spikes applied to the source and gate leads. We implemented the STDP learning protocol in a neu-
romorphic speech recognition system (NSRS), inspired by the human auditory pathway, for various
auditory recognition tasks. Our proposed NSRS consists of a cochlea model, an unsupervised feature
learning stage and a simple linear classifier. The unsupervised learning stage uses the biologically
plausible STDP learning in novel two-dimensional MoS2 FG-FET memory which circumvents the
requirement of any other learning circuitry.

Keywords: Neuromorphic computing, electronic cochlea, brain-inspired learning, emerging de-
vices, beyond CMOS, MoS2 memristors

I. INTRODUCTION

von-Neumann architecture, introduced by John von
Neumann in 1945, is the most widely used architecture
in modern computing devices[1]. A key feature of this
framework is the utilization of dedicated hardware com-
ponents for computation and storage. Improvements in
fabrication capabilities have resulted in an increase in the
number of transistors per microchip, augmenting both
the speed of computation and storage space available.
However, this architectural framework wih a separation
between the computation and storage units makes it inef-
ficient at solving problems that require simultaneous pro-
cessing of large amounts of data. These mostly include
ill-defined constructs such as image, speech or pattern
recognition and necessiate a learning capability similar
to that in a biological brain. Meeting the computational
challenges posed by problems of an ill-defined nature ne-
cessiates an architecture capable of in-memory comput-
ing, analogous to the synapses in a brain[2]. Silicon-based
synapses with learning capabilities like spike time depen-
dent plasticity (STDP) (the variation of synaptic conduc-
tance with time difference (∆t) between pre- and post-

synaptic spikes) have been demonstrated[3–5]. However,
integration complexities due to short-channel effects and
high switching power in devices based on silicon nan-
otechnology, makes it fundamentally difficult to attain
the synaptic density (∼ 1010 synapses per cm2 as in the
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human brain) and energy efficiency necessary for neuro-
morphic computing.

Investigating an alternative hardware platform based
on two-dimensional (2D) materials has certain advan-

tages over silicon[6]. The atomic confinement leads to
strong gate coupling, suppresses short-channel effects and
reduces device footprints[7–9] which is ideal for large neu-
romorphic systems. Furthermore, advancement of fab-
rication techniques allows for the vertical and lateral
stacking of different 2D materials into heterostructures
with clean interfaces. This introduces flexibility in device
design resulting in unique device architectures for elec-
tronics[10–14], optoelectronics[15–18]and memory applica-
tions[12,19–22] with functionalities often surpassing those
of silicon-based solutions. MoS2 is of particular inter-
est in this context because of its large intrinsic band
gap[23], high ON/OFF ratio[12,21], near-ideal subthresh-

old swing[21,24] and high carrier mobility[25]. These prop-
erties make MoS2 an ideal candidate for low-power in-
memory computing applications for edge devices[26–28].

Several architectures for 2D memory have already been
explored. These include, intercalation of ions using liq-
uid gates in MoO3

[29] and WSe2
[30], filament formation

in MoS2
[31] and defect induced resistive switching in h-

BN[32,33]. However, these methods either use ionic liquids
which are environment sensitive and degrade with time
or are dependent on the defect densities in the nanosheets
which are difficult to control. There have also been re-
ports of 2D materials with STDP capabilities using cop-
per filament formation in MOCVD grown MoS2 flakes[31].
Although the vertical geometry reduces device footprint,
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FIG. 1: Neuromorphic speech recognition system (NSRS). a, Block diagram of the proposed NSRS compared with
its biological counterpart. The cochlear processing unit filters various frequency components from the raw audio samples and
performs nonlinear transduction, to mimic basilar membrane (BM) and inner hair cells (IHC) functions respectively. Output
spectrogram of digits 0-9 is shown. Poisson neurons model the spiral ganglion cell (SGC) and features are extracted through the
STDP Layer to the output neurons. The postsynaptic potential at the output neurons are used to perform speech recognition
task on TIDIGITS isolated digits. b, Typical shape of a bio-realistic spike used in the STDP layer. c, Schematic of the MoS2

FG-FET used for STDP learning. Details related to the MoS2 FG-FET and bio−realistic spike are presented in the main text.
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the presence of copper filaments in both the low (LRS)
and high (HRS) resistance states leads to a low ON/OFF
ratio and reduces the range of accessible conductance
states. In this work, we employ an all-2D architecture
with a floating gate MoS2 device from multilayer van
der Waals heterostructure, where the operation of the
device is entirely based on tunneling of charge across
the layers. While 2D material-based FG memory has
been demonstrated before, their usage was restricted
to that of passive memristors describing analog mem-
ory behaviour[19,21,22,26,34–36]. Notably, Kim et al.[37]

demonstrated STDP in a FG carbon nanotube
transistor. The authors achieve this by utilizing
a 3T-Synapse, with the FG transistor acting as an
analog memory. The current work demonstrates
the inherent STDP learning capabilities in a sin-
gle solid-state MoS2 FG transistor without any
additional circutit overheads. The introduction of
inherent learning capabilities like STDP, reduces hard-
ware complexity by avoiding additional learning circuitry
and is an important step towards developing emergent
device platforms for neuromorphic applications.

We have considered the neuromorphic speech recog-
nition system (NSRS), shown in Fig. 1a, to illustrate
the utility of intrinsic STDP response in MoS2 FG de-
vices. The NSRS is inspired by the human auditory
pathway, which represents a neuro-physical action where
the cochlea transforms the incoming acoustic signal to a
time-frequency map, also called a spectogram (schematic
of the process is in Fig. 1a). The cochlea is a fluid-
filled, spiral structure that transduces the mechanical vi-
brations received into waves, which vibrate the basilar
membrane (BM). The movement of the BM varies at dif-
ferent locations within the cochlea, since the stiffness of
the membrane gradually decreases from its basal end to
the apex. Inner Hair Cells (IHCs) are the transducers,
that help to convert the sound generated motion of the
cochlea, to neurotransmitter release at synapses which
excite the primary auditory neurons. After the cochlea,
the second major transformation occurs at primary audi-
tory cortex, where more complex processing takes place,
such as high-level feature extraction followed by accous-
tic tasks such as speaker recognition, sound segregation,
denoising, voice activity detection. This high-level fea-
ture extraction stage involves the learning of synaptic
connections between the neurons in the cortical areas.
The synaptic plasticity is the ability to strengthen or
weaken synapses, based on the order of occurrence of the
pre- and post-synaptic neuronal spikes. The synapses
are increased in strength if presynaptic spikes repeatedly
occur before postsynaptic spikes, within a range of few
milliseconds, otherwise they are decreased in strength for
the opposite temporal order[38].

The NSRS depicted in Fig. 1a can be broadly divided
into three blocks. The first stage, or the cochlea, converts
the sound waves into neural spikes that act as inputs

for the feature learning stage. The second stage com-
prises of a neural network. An important aspect of this
stage is the inherent plasticity of the synaptic transis-
tors which is used to model the STDP learning rule. We
demonstrate here that individual MoS2 FG-FET is ca-
pable of exhibiting such STDP learning capability, that
will allow for unsupervised feature learning within the
MoS2 FG-FET without the necessity of additional learn-
ing circuitry. In the final stage, the classification per-
formance of the system is checked for a target applica-
tion using a linear classifier. The key advantage of re-
alizing STDP capability on an all-2D MoS2 FG-FET is
that it is based entirely on the gate-controlled charge
transfer across different layers of a van der Waals het-
erostructure, and thus highly tunable both in response
time and magnitude. This reflects in the maximum con-
ductance change (∆G%) observable in STDP behaviour
to be ≥ 100% for MoS2 FG device (Fig. 3e and Fig. 6a).
Larger changes in conductance allow for distinct,
separated states and improve the temporal sensi-
tivity of the STDP response[39]. The number of
states attainable in a multi-state memory device
is governed by two factors, the range of accessible
conductance values and the temporal stability of
each state. The former provides a choice of con-
ductance values for possible memory levels while
the latter defines how closely spaced these lev-
els can be. Apart from quantum confined states
such as those observed in the quantum hall ef-
fect[40], memory levels are not perfectly stable
and are prone to conductance decay, which occur,
for example, in FG memory devices, due to dielec-
tric relaxation, leakage of carriers through defects
in the dielectric, thermal excitation etc.[41]. A
larger operation range in conductance facilitates
a larger choice of states which corresponds to a
larger choice of time difference ∆t between the
pre- and post-synaptic spikes for the STDP re-
sponse. This makes it possible to have distinct
states which are separated by small differences in
∆t and hence, a better temporal sensitivity. The
methodology used for determining the number of
states in the current work is presented in Sec-
tion II C.

The manuscript is organized as follows. In Section II A,
we describe the electrical characterization and STDP re-
sponse in MoS2 FG-FET. Section II B outlines the per-
formance of the NSRS trained using the inherent STDP
of the MoS2 synapse and Section II C investigates the
effects of device-to-device mismatch on the performance
of the NSRS. We conclude with a brief discussion of the
main observations and future possibilities.
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FIG. 2: Electrical characterization of MoS2 FG-FET.
a, Optical micrograph of a typical MoS2 FG-FET with indi-
vidual layers outlined. b, and c, show the transfer and output
characteristics, respectively, for MoS2 FG-FET. Solid lines de-
note forward sweep directions (from -ve to +ve values) and
dashed lines reverse sweep directions (from +ve to -ve values)
in both graphs.

II. EXPERIMENTAL RESULTS

A. STDP in the MoS2 FG-FET

Fig. 2a shows the optical micrograph of a typical MoS2

synaptic device with dashed lines outlining the compo-
nent atomic layers. The device geometry consists of a top
MoS2 layer, the channel, and bottom few layer graphene
(FLG) FG, which are separated by a h-BN tunnel bar-
rier. The complete stack is placed on an Si++/SiO2

(285 nm) substrate acting as the back-gate (Fig. 1c).
We fabricated the device using a dry stacking technique
to assure clean interfaces for better performance. De-
tails related to the fabrication technique are provided in
the Methods Section (Section IV). We demonstrate
the transfer and output characteristics of typi-
cal MoS2 FG-FET devices in Fig. 2b and c, re-
spectively. The transfer characteristics (Fig. 2b)
are obtained by sweeping the back gate voltage
(Vbg) while maintaining a constant source-drain
bias (Vsd) of 0.05 V. The output characteristics
(Fig. 2c) are measured by varying the Vsd at a
constant Vbg = 0 V. All MoS2 FG-FET devices stud-
ied in this work demonstrate a large hysteresis in both
the transfer (Fig. 2b) and output characteristics (Fig. 2c)
with distinct low resistance (LR) erase and high resis-
tance (HR) program states. The hysteresis is known
to originate from field assisted tunneling and subsequent
trapping of charges in the FG due to the applied gate
or drain bias[21]. A temporal control over the charge
tunneling leads to analog memory behaviour as outlined
in Ref. [21] and Supplementary Section [III]. The re-
sulting conductance states are a pre-requisite for demon-
strating learning mechanisms like STDP. The devices
also demonstrate near ideal subthreshold swing of
∼85 mV/decade for over three decades of current
and large ON/OFF ratios of ∼ 5×105 (Supplemen-
tary Section VII).

Our previous work[21] demonstrated the synaptic prop-
erties like pulsed potentiation and depression, and paired
pulse potentiation (PPF) using the current device ge-
ometry. However, the demonstration of STDP used a
combination of multiplexer and the FG device, resulting
in additional circuit overhead as well as increased com-
plexity. The current work rectifies these issues by
demonstrating an intrinsic STDP learning rule in
MoS2 FG-FET using the method of overlapping
pulses[39,42]. As previously reported[42], the shape of
the spike plays a very important role in determining the
nature of STDP response. The MoS2 FG-FETs demon-
strate STDP response for different pulse shapes (Supple-
mentary Section [IV]), however, bio-realistic pulses with
a functional form similar to action potentials in the ner-
vous system[38] (Fig. 1b) result in STDP responses that
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FIG. 3: Spike time dependent plasticity (STDP) in MoS2 FG-FET.a, Circuit configuration for STDP measurements.
Gate and source are considered as the pre- and post-synaptic terminals, respectively. The arrows show the direction of tunnel
current (Itunnel) for positive and negative ∆t. Top and middle horizontal panels of b, and c, depict the pre- and post-synaptic
spikes for a −ve and +ve ∆t, respectively. The bottom panel shows the resulting overlap potential (Vpre − Vpost). Vertical
panels (I-IV) at the bottom of the figures demonstrate the band configuration for four different regimes of the overlap potential.
Magnitude and direction of the tunneling current Itunnel are indicated by the size and direction of black arrow at the base of
each panel, respectively. d, Temporal response of the MoS2 FG-FET to a pair of pre- and post-synaptic spikes. Iinitial and
Ifinal represent the channel current before and after the application of the spikes, respectively, for a Vread = 0.05 V. e, Graph
showing the variation of ∆G% as a function of ∆t. The experimental data is indicated by open circles while the dashed line is
an exponential fit following Eq. 2.
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are comparable to biological systems and is the pulse
shape of choice for this work.

Fig. 1b shows a typical spike which can be modelled in
the following fashion. The spike onset is marked by
the time-period t+ail (= 10 µs) when an exponential
rise to the positive peak amplitude of A+

mp from
the rest potential (0 V) commences with a small
time constant (ζ+ = 3 µs). This is followed by a sharp
decrease in the voltage to the negative peak amplitude of
-A−

mp at which time a slow exponential decay with large
time constant (ζ− = 330 µs) takes the spike voltage to
its resting value over a time period t−ail (= 1 ms). The

functional dependence of Vspike is given by[42]

Vspike (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A+
mp

e
t
ζ+ − e

−t+
ail
ζ+

1− e

−t+
ail
ζ+

, if − t+ail < t < 0

−A−
mp

e
−t
ζ− − e

−t−
ail
ζ−

1− e

−t−
ail
ζ−

, if 0 < t < t−ail

(1)

To measure the STDP response, spikes are applied
to the pre- (Vpre) and post- (Vpost) synaptic termi-
nal (source and gate, respectively) of the MoS2 FG-
FET (Fig. 3a) with a pre-defined time difference (∆t =
tpost−tpre) as depicted in Fig. 3b, c. A small read voltage
(Vread = 0.05 V) is also applied to measure the changes in
channel current, which reflects the change in conductance
(Details in the Methods Section (Section IV)). Fig. 3d
shows the time series response of a typical MoS2 FG-
FET to pre- and post-synaptic spike pairs with differ-
ent ∆t values. Iinital and Ifinal represent the chan-
nel current before and after the application of
the pre- and post-synaptic spikes. The measure-
ments are performed by applying pre- and post-
synaptic spikes with A+

mp/A−
mp values 6.5 V/7 V

and 7 V/6.5 V, respectively. The channel conduc-
tance increases (decreases) for positive (negative) ∆t val-
ues with larger changes for smaller time differences, mim-
icking the observations in biological synapses following
STDP protocol[38]. The STDP behaviour is also demon-
strated by plotting the percentage change in device con-
ductance ∆G % = (Ifinal − Iinital)/Iinitial (computed
from the time series data shown in Fig. 3d) as a function
of ∆t which is depicted in Fig. 3e for a starting conduc-
tance of 6 µS. We observe an exponential reduction in
∆G% with increasing ∆t which is modelled as follows

∆G% ∝
⎧⎪⎪⎨⎪⎪⎩

e
−∆t
τ+ , if ∆t ≥ 0

e
+∆t
τ− , if ∆t ≤ 0

(2)

where τ+ and τ− denote the timescales for which the
synaptic device remains sensitive to the pre- and post-
synaptic spiking.

The microscopic origin of the plasticity of the device
(Fig. 3e) can be explained from the time dependent over-
lap potential (Vpre − Vpost) of the pre- and post-synaptic
spikes (Fig. 3b and c). We observe that the tunneling
of charges and consequent changes in synaptic weights
are only possible when this voltage is above a thresh-
old voltage. Negative values of ∆t (Fig. 3b) result in
an increase of the overlap potential above Vth pos leading
to a decrease in channel conductance while for positive
∆t values (Fig. 3c) the opposite scenario occurs resulting
in a decreased channel resistance. The positive (Vth pos)
and negative (Vth neg) threshold voltages are indicated
by dashed lines in the bottom panel of Fig. 3b and c.

The overlap potential can be broadly divided in four
regions. Fig. 3b and c demonstrates this for a negative
and positive ∆t, respectively. Since both the scenarios
can be explained by similar arguments, we limit our-
self to the discussion of negative ∆t values (Fig. 3b).
Region I shows the band alignment before the arrival
of pre- or post-synaptic spike with both pre- and post-
synaptic potentials at their resting values. The MoS2

channel has a finite conductance indicating some effec-
tive positive charge on the FG. However, the potential
across the h−BN tunnel barrier is insufficient for the tun-
neling of charges leading to a negligible tunnel current
(Itunnel). This is indicated by the small arrow at the
base of the panel. The size and direction of the arrow
represents the magnitude and direction of Itunnel, respec-
tively. Region II denotes the arrival of the post-synaptic
spike with the pre-synaptic spike at rest-value. The pos-
itive voltage on the source terminal reduces the poten-
tial of the MoS2 channel relative to the FG, but since
Vpre − Vpost < Vth neg, there is negligible Itunnel and con-
sequently no long term changes in channel conductance.
Region III represents the arrival of the pre-synaptic spike
while the post-synaptic potential is returning to its rest-
ing value. Now, Vpre−Vpost > Vth pos, leading to a consid-
erable Itunnel, and an accumulation of negative charges
on the FG. The enhanced negative charge on the FG leads
to a decrease in channel conductance (negative ∆G%) for
negative ∆t (Panel IV). We define Vth pos (Vth neg) as the
maximum positive (negative) peak voltage of the overlap
potential for the largest negative (positive) time differ-
ence ∆t at which a ∣∆G%∣ > 3% is observed. For the
DUT, we find, Vth neg ≈ −8 V, and Vth pos ≈ 7.6 V.

For a quantitative analysis, we hypothesize[21] that
the experimentally observed STDP behavior of the MoS2

FG-FET, occurs due to an electric field (Etunnel) driven
tunneling of charges from the channel to the FG. In the
context of our device geometry, Etunnel is the electric
field developed across the h-BN layer due to the voltage
applied at the pre (gate) - and/or post (source) -synaptic
terminal. This electric field results in a tunneling current
(Itunnel) which follows the Fowler Nordheim (FN) mech-
anism

Itunnel(V ) = Achq
3mV 2

tunnel

8πhφbd2m∗ exp[
−8π

√
2m∗φ

3
2

b d

3hqVtunnel
] (3)
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TABLE I: Range of tunnel barrier height for electrons and
holes in MoS2 FG-FET

Electron
affinity
of h-BN
(eV)
(χh−BN)

Band
gap of h-
BN (eV)
(λh−BN)

Work
function
of MoS2

(eV)
(φMoS)

Electron
barrier
height
(eV)
(φelectron

b =

χh−BN
−

φMoS)

Hole
barrier
height
(eV)
(φhole

b =

χh−BN
+

λh−BN
−

φMoS)

1.1 - 2.3 5.2 - 5.9 4.6 - 4.9 2.6 - 3.5 1.7 - 3.3

where Ach and d are the channel area and the thick-
ness of the h-BN tunnel barrier, respectively, Vtunnel =
Etunnel ×d is the tunnelling bias across the h-BN tunnel

barrier and m∗ = 0.26m is the effective mass of charge
carriers in h-BN[43]. The barrier height for tunnelling φb
is the energy barrier at the MoS2/h-BN junction and is
calculated from the electron affinity of h-BN and work
function of MoS2 (Fig. 4a). From previous reports, the
electron affinity and band gap of h-BN ranges between
1.1-2.3 eV[19,44] and 5.2-5.9 eV[19,44], respectively, while
the work function of MoS2 is 4.6-4.9 eV[19]. The corre-
sponding range of φb values in the current device geom-
etry is presented in the Table I.

The STDP response is numerically calculated
by finding the ∆G% for every ∆t. To perform this,
the overlap potential is discretized using a time
interval of 0.1 µs. The tunnel bias Vtunnel, at each
instant of time ti, is given by the overlap potential
modified by the potential of the FG (VFG) at that
instant of time.

Vtunnel (ti) = Vpre (ti) − Vpost (ti) + VFG(ti) (4)

where, Vtunnel (ti), Vpre (ti), Vpost (ti) and VFG(ti) are
the tunnel, pre-synaptic, post-synaptic and FG
bias, respectively at the instant ti. Here, we have
assumed that the total applied bias (Vpre) is ap-
plied at the FG terminal. This is valid due to the
capacitance engineering introduced by an exten-
sion of the FG[21]. For i=1, i.e. the first instant,
VFG(t1) is the gate bias above threshold needed
to attain the initial conductance state of the de-
vice. This is demonstrated for an initial current
of 300 nA and drain bias of 0.05 V in Fig. [4]b.

In response to the applied Vtunnel (ti), a tunnel
current Itunnel (ti) (Eq. 3) flows across the h-BN
barrier leading to the storage of positive (nega-
tive) charges on the FG, thereby increasing (de-
creasing) its potential by

∆VFG (ti) =
Qtunnel (ti)

Cself
(5)

where, Qtunnel (ti) = Itunnel (ti)× 0.1 µs, is the
charge stored on the FG due to a single pulse
and Cself = 8ε0AFG, is the self-capacitance of the
FG with ε0 the permittivity of free space and AFG

(≈ 45000 µm2) the area of the FG.

The FG potential is updated for the next in-
stant (ti+1) following

VFG(ti+1) = VFG(ti) +∆VFG(ti) (6)

and the same is used to obtain the tunneling cur-
rent for the next time interval using Eq. 3. Re-
peating this process for all ti values gives us the
total FG voltage change (∆VFG total) for a pair of
pre- and post-synaptic spikes separated by ∆t.

∆VFG total =
N

∑
i=1

∆VFG(ti) (7)

∆VFG total represents the total back-gate voltage
change due to the overlapping of the pre- and
post-synaptic spikes. The resulting change in the
channel conductance is estimated from the trans-
fer characteristics (Fig. [4]b) and the correspond-
ing ∆G% is computed.

The simulated plot, dashed line in Fig. 4c, is obtained
by repeating the process for different ∆t values and shows
good agreement with the experimental data for hole and
electron barrier of 2.66 eV and 3.04 eV, respectively.
These values match closely with the reported values for
MoS2/h-BN interface presented in Table [I], making us
believe that electric field dependent FN tunneling is at
the heart of the observed STDP behaviour in MoS2 FG-
FET. A numerical analysis of the pulsed potentiation and
depression behavior in the MoS2 FG-FET devices and
the energy dissipated during training and reading can be
found in Supplementary Section [III] and [V] , respec-
tively.

Notably, the STDP timescales (τ+, τ−) of ∼100 µs
obtained in Fig. 3e are smaller than the millisecond
timescales observed in biological systems[38]. However,
these timescales are tunable by changing the spike pa-
rameters. Fig. 4d demonstrates this for four different pre-
and post-synaptic spike combinations. τ+, τ− and max-
imum ∆G% increase with increasing spike amplitudes
A+

mp and A−
mp. For a particular ∆t, the magnitude of

overlap potential (Vpre − Vpost) and hence ∆G% is de-
termined by the magnitude of the pre and post-synaptic
spike. Higher spike heights result in a larger overlap po-
tential and tunnel current (Eq. 3). The increased storage
of charges on the FG leads to greater changes in conduc-
tance lasting for a wider range of ∆t values. We obtained
a time-scale tunability over a factor of five by changing
the pulsing amplitude, indicating a key advantage of pure
electrostatic operation. This is an important feature and
opens up the possibility of engineering tailor-made STDP
responses for specific applications.
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FIG. 4: Modelling spike time dependent plasticity (STDP) in MoS2 FG-FET. a, Schematic depiction of the tunnel
barrier height and band alignment at MoS2/h-BN interface. b, Graphical determination of VFG from the transfer characteristics.
c, Experimentally observed (symbols) and numerically simulated (red dashed line) STDP characteristics of MoS2 FG FET.
Inset shows the full STDP response while the main panel zooms into time differences near ∆t = 0 µs. d, From top to bottom
panel. Graphs demonstrating STDP response for increasing spike heights. We find an increase in decay timescales for both
positive (τ+) and negative (τ−) ∆t with increasing spike height.

B. Cochlear recognition with STDP in MoS2

FG-FETs

Our earlier work demonstrated the real-time hardware
implementation[45] of a biologically plausible cochlea
model known as Cascade of Asymmetric Resonators with
Fast-Acting Compression (CAR-FAC) model[45,46]. The
system proposed here only uses the CAR part of the
model, which emulates the behavior of the BM, the IHC
and the spiral ganglion cells (SGCs). The SGC is simply
modelled as a Poisson process, which converts the IHC
output into spike trains. The output of the IHC is the
spectrogram , which is down sampled in time to reduce
computational complexity (LHS of Fig. 5a). A detailed
description of this block is provided in the Supplemen-
tary Section [I]. The spiked output of the SGCs are con-
nected to the next layer with spiking neurons via adaptive

synaptic connections, which learn acoustic features from
the input using the STDP rule. The synapses in this un-
supervised feature learning stage are implemented using
a MoS2 FG-FET acting as a multi-state memory with
inherent STDP learning capability.

The update rule (mentioned in detail in Supplemen-
tary Section [II]) for all synapses connecting the pre- and
post- synaptic neurons in the feature learning stage of the
NSRS can be summarized using Eq. 2. For a relatively
short (≤ 0.5 × τ+/−) and long (≥ 4.5 × τ+/−) time interval,
as compared to τ+ and τ−, synapses are not altered since
they don’t contribute to the post-synaptic firing. Other-
wise, the synaptic weights, w, are updated with learning
rate, η, times the conductance, ∆G%, corresponding to
∆t. Since, the update rule is independent of the class of
the spoken digit, the synapses of the output neurons in
the neural network learns the auditory features using
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output neuron after training showing weight patterns which are similar to the original spectrograms (LHS). b, Confusion matrix
and c, t-SNE visualization of the speech recognition task performed over TIDIGITS dataset.
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the states of the MoS2 memory, in an unsupervised man-
ner.

wnew = wold+η ∆G%, if 0.5×τ+/− ≤ ∣∆t∣ ≤ 4.5×τ+/− (8)

The proposed neuromorphic hearing system is vali-
dated using isolated digits of the TIDIGITS database.
The dataset consists of 6520 audio recordings of isolated
digits 0 to 9, sampled at 20kHz, split equally into train
and test set. Based on onset and offset of the spoken digit
recording, all audios are fit into a 1 second time frame.
The N-channel CAR model used to mimic cochlear be-
havior, takes the 1 second audio samples as input and
based on the constant Q-filter parameters (Supplemen-
tary Section [I]), outputs the time-frequency mapping, i.e
the spectrogram corresponding to the audio input. Here,
we use 54-channel CAR model to extract frequency com-
ponents within 100 Hz - 4 kHz range, as this range cap-
tures most of the speech information.

Fig. 5a (LHS) shows the CAR output spectrogram
(54-channel × 20,000-samples) obtained for digits 0-9,
respectively, down-sampled into 54 × 108 dimension to
reduce the computational complexity on the neural net-
work. Poisson neurons are used to model the response
of the spiral ganglion neurons within the cochlea, to the
down-sampled spectrogram. Each sample from the Pois-
son neuron’s distribution is fed to the STDP neural net-
work. The synapses in the STDP architecture learn con-
nections from the Poisson neurons to the output integrate
and fire (IF) neurons in an unsupervised manner. We
use 16 IF neurons at the output, to capture various au-
dio patterns within the down-sampled spectrogram of all
digits. During the training phase of the neural network,
the firing threshold of all IF neurons, Vthreshold is set as
1.5% of the energy in the input down-sampled spectro-
gram. This is done to compensate for the variation of
energy within different digits, thereby ensuring uniform
firing rate for all digits.

We adopt a winner-take-all strategy to update the
synaptic connections, when IF neurons fire (details in
Supplementary Section [II]). When more than one IF
neuron fires simultaneously, the neuron with the high-
est membrane potential (the winner-neuron) is activated,
and undergoes update based on STDP characteristics,
to learn the input pattern. Since the input to the fea-
ture learning stage is the Poisson neuron response to the
two-dimenisonal spectrogram, the learned synapses are
also two-dimensional and of same size as that of down-
sampled spectrogram (54×108). Once activated, the neu-
ron enters its refractory period, within which the mem-
brane potential of the neuron is reset to its initial state.
This way, all the neurons compete with each other for
activation. The IF neurons are further connected to each
other with inhibitory connections. Thus, when an IF

neuron fires, remaining IF neurons are forced to inhibit
their membrane potential. Moreover, when none of the
IF neurons fire, the membrane potential of all the neu-
rons are decreased, so as to enhance competitive learning
among the neurons.

The update value of synaptic connections (∆G% in
Eq. 8) is influenced by the time difference between the
Poisson neuron firing (pre-synaptic spike) and the IF
neuron firing (post-synaptic spike). A time-continuous
STDP function, as in Eq. 2 is defined, which best fits the
MoS2 memory device STDP characteristics (as shown in
Fig. 3e). The STDP function is further quantized us-
ing the defined states of the memory device, and these
are used to update the synapses for the digit recognition
task under consideration. The STDP update is limited
to 0.5 × τ+/− ≤ ∣∆t∣ ≤ 4.5 × τ+/−, as was explained using
Eq. 8.

Fig. 5a (RHS) shows the synapses obtained after train-
ing is done on the STDP architecture with the down-
sampled spectrogram. The various patterns within the
synapse shows that with STDP updates, each synapse
learns different speech formants hidden in different fre-
quency ranges of the spectrogram. For example, the high
frequency information in digits 2, 3 and 8 around fre-
quency channel 20 is captured dominantly by neurons 2,
7, 10 and 12 around the same channel. Whereas the en-
ergy of digits 4, 5 and 9 around frequency channel 30-40
is captured by neurons 2, 4, 6 and 14. The high fre-
quency information of digit 1 is captured by neurons 8
and 13 only. Hence, we can conclude that the synapses
learns patterns from spectrograms, few of which may be
common among different spoken digits, and few of which
differentiates them from one another. The accumulated
post-synaptic potential (PSP) of all the 16 IF neurons,
which indicates the correlation between the input spec-
trogram and the trained synapse of each IF neuron, can
be used as an effective measure to classify the spoken
digits.

The accumulated PSP of all the 16 IF neurons, for
all 3260 spoken digits in the training set of TIDIGITS
database, was used to train the linear SVM classifier in
the final stage of the NSRS. The trained linear SVM pro-
vides 88.92% accuracy for the remaining 3260 spoken dig-
its in the test set of the TIDIGITS database. Fig. 5b
shows the confusion matrix for the speech recognition
task performed. True label on the x-axis indicates the ac-
tual class/digit to which the audio belonged to, and the
the predicted label on the y-axis indicates the class/digit
the classifier predicted for the given audio. The higher
value on the diagonal in the confusion matrix, therefore,
indicates higher number of spoken digits were predicted
correctly. Fig. 5c represents t-SNE visualization, a form
of clustering representation of the the 3260 test audios.
Each dot in the visualization represents an audio, de-
fined by the 16 IF neuron’s accumulated PSP, obtained
after the feature learning stage for that audio. Audios of
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different spoken digits are represented using different col-
ors. Hence, clusters of same color in the plot, represents
how close the pattern of accumulated PSP of the output
neurons are for audios belonging to same class/digit.

C. Device-to-device variation and its effect on
neuromorphic speech recognition

We performed STDP measurements on six separate de-
vices and the results depicting device-to-device variation
are presented in Fig. 6. The STDP response shows a
variation in both ∆G% and time constant (τ+ and τ−)
(Fig. 6a). Device-to-device variability can arise from
numerous sources, however, in the case of MoS2 FG-
FET, this is mostly due to a variability in the mobil-
ity and contact resistance of the MoS2 channel in dif-
ferent devices. A combination of these factors leads to
a device-to-device variation in the maximum attainable
conductance, and hence ∆G% as well. The variability
in time constant is a direct consequence of the varia-
tion in ∆G%, since devices with a larger overall change
in conductance generally demonstrate higher time con-
stants (Fig. 6a (Device D01 and D03) and Fig. 4d). An-
other possible source of mismatch is the variability in bar-
rier injection height at the MoS2/h-BN interface, which
arises from defects and/or interfacial hydrocarbon forma-

tion (more commonly referred to as bubbles)[47] during
the stacking process for fabricating the heterostructure.
Removal of bubbles from heterostructure interfaces is still

an ongoing effort in the two-dimensional device commu-
nity, and effort was made in the current work to reduce
the number of such disorders while fabricating the het-
erostructures. However, their effects, cannot be ruled out
altogether. Alongwith the STDP response, the number
of quantized states obtained per device also demonstrates
slight variation (Fig. 6b). This number, which ranges be-
tween 19-24 for the devices measured, is obtained from
the average spread of each state in the ∆G% axis (Error
bars in Fig. 6a). The spread/error in each state is deter-
mined statistically by computing the standard deviation
from multiple (> 3) independent measurements at the
same ∆t. Our analysis shows a temporal sensitivity of
≈ 10−15 µs in our synaptic devices. The variation in the
number of quantized states is an important parameter
and affects the quantization of the STDP function used
for the cochlear recognition algorithm. A larger number
of states is favourable and improves the capability of the
NSRS in classifying different auditory inputs leading to
better performance.

The performance of the NSRS was checked for device-
to-device variation. Device mismatch was incorpo-
rated by a Gaussian distribution covering the range of
timescales (τ+ and τ−) for the six measured devices, which
were used to generate 54× 108 STDP characteristics em-
ployed in updating the synapses. The speech recognition
system is insensitive to device-to-device variation as in-
dicated by the high rate of correct classification in the
confusion matrix (Supplementary Section [VI]). We re-
port an accuracy rate of 89.11% which is similar to the
accuracy rate without including device mismatch. The
robustness of our speech recognition system to device
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mismatches is an important real-world-test as device-to-
device variations are bound to exist in any fabrication
process.

III. DISCUSSION

In this paper, we have demonstrated a MoS2 mem-
ory device, with which a neuromorphic hearing system
is developed and validated using the TIDIGITS audio
database. The main novelty lies in demonstration and
use of inherent plasticity of 2D-MoS2 device to model
the STDP rule as a synaptic memory, in a single de-
vice, without requiring any other learning circuitry. This
is a significant advantage over other emerging memories,
which only act as storage element. This reduces the com-
putational complexity and memory requirement during
training significantly as compare to conventional classifi-
cation networks, which are based on back-propagation al-
gorithm. The unsupervised feature learning stage learns
low dimensional feature representation (in this case 16)
from the input spectrogram, which makes our classifier
very simple unlike traditional end-to-end supervised neu-
ral network architectures.

The proposed system has three major building blocks
cochlea block, unsupervised feature extraction block and
a linear classifier block. We have shown a novel neuro-
morphic architecture for machine hearing tasks applied
to spoken digit recognition, but the system can be con-
figured to learn for other auditory cognitive tasks such
as speech recognition, speaker identifications and so on.
We can envision the complete system integrated together
using the three separate blocks in order to demonstrate
the real time applications. We already have the in-house
built cochlea model on FPGA[45], which can be interfaced
with the 2D-MoS2 based memory array to implement the
STDP learning capability, followed by a linear classifier
system[48–54]. The future work will be to integrate all
these three separate systems on a single substrate.

IV. METHODS

To fabricate the MoS2 FETs, we mechanically exfoli-
ate MoS2, h-BN and graphene on Si++/SiO2 (285 nm)

substrate using the Scotch Tape method[55]. Exfoliated
flakes are searched under an optical microscope. The
thickness of hBN flakes are determined by atomic force
microcscopy (AFM). The layer number of MoS2 and
crystallinity of graphene are verified using Raman spec-
troscopy[21]. Selected flakes are aligned, stacked,
and transferred onto a pre-patterned substrate
using a home built micro-mechanical transfer

setup. The polymer used for transfer is com-
mercially available nail top coat solution (Lakme
Color Crush), which shows good adhesion to two-
simensional materials at temperatures between
60 and 120○C and is easily dissolved in ace-
tone[56,57]. Electrical contacts to the MoS2 chan-
nel and the extension of the FG are defined us-
ing electron beam lithography (EBL). For EBL,
a double layer of commercially available electron
beam resist, PMMA (Poly methyl methacrylate)
(495PMMA A/950PMMA A MicroChem) with
a total thickness of ∼ 250 nm was spincoated on
the device followed by exposure to electron beam.
Subsequently, the patterns are developed in 1:3
MIBK:IPA, metallization is performed via ther-
mal deposition of Cr (5 nm)/ Au (50 nm) in
high vacuum (∼ 10−6 mbar) conditions and ex-
cess metal is removed via lift-off in acetone. Elec-
trical measurements are performed in vacuum at
room temperature in a probestation (Lakeshore
CPX-VF). For the transfer and output character-
istics, two source meter units (SMUs) of the semi-
conductor parameter analyser (Keithley 4200A-
SCS) was used to apply the Vbg and Vsd, while the
current was measured using the SMU supplying
the Vsd. For STDP measurements, the pre- and
post-synaptic spikes are applied using two sepa-
rate function generators (SRS DS 345) operated
in the arbitrary function mode (ARB), fng pre
and fng post, respectively. The pre- and post-
spikes with defined ∆t are loaded onto fng pre
and fng post, respectively. To perform the mea-
surement, the trigger out of fng pre is connected
to trigger in of fng post. fng pre is triggered us-
ing GPIB which triggers fng post and two spikes
with pre-determined time separation are applied.
The resulting conductance change is obtained by
measuring the current due to a small read voltage
Vread = 0.05 V applied at the drain terminal using
the Keithley 4200A-SCS.
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