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ABSTRACT

Particle filtering is very reliable in modelling non-Gaussian and non-linear elements of physical
systems, which makes it ideal for tracking and localization applications. However, a major drawback
of particle filters is their computational complexity, which inhibits their use in real-time applications with
conventional CPU or DSP based implementation schemes. The re-sampling step in the particle filters
creates a computational bottleneck since it is inherently sequential and cannot be parallelized. This paper
proposes a modification to the existing particle filter algorithm, which enables parallel re-sampling and
reduces the effect of the re-sampling bottleneck. We then present a high-speed and dedicated hardware
architecture incorporating pipe-lining and parallelization design strategies to supplement the modified
algorithm and lower the execution time considerably. From an application standpoint, we propose a
novel source localization model to estimate the position of a source in a noisy environment using
the particle filter algorithm implemented on hardware. The design has been prototyped using Artix-7
field-programmable gate array (FPGA), and resource utilization for the proposed system is presented.
Further, we show the execution time and estimation accuracy of the high-speed architecture and observe
a significant reduction in computational time. Our implementation of particle filters on FPGA is scalable
and modular, with a low execution time of about 5.62 us for processing 1024 particles (compared to 64
ms on Intel Core 17-7700 CPU with eight cores clocking at 3.60 GHz) and can be deployed for real-time
applications.

INDEX TERMS Particle filters, Field programmable gate array, Bearings-only tracking, Bayesian

filtering, Unmanned ground vehicle, Hardware architectures, Real-time processing.

l. INTRODUCTION

Emergency response operations such as disaster relief, and
military applications often require localization of a con-
taminant chemical or biological source in an unknown
environment. Unmanned vehicles are gaining popularity in
such applications in recent times due to reduced human
involvement and the ability to carry out the task remotely.
These autonomous systems can eventually supplement hu-
man intervention in various safety-critical and hazardous
missions. Nevertheless, conditions in which these missions
are conducted vary drastically depending on the environ-
mental factors that result in the sensor receiving noise-
corrupted measurements. This poses a significant challenge
to unmanned vehicles to navigate and locate a target in an
unknown environment autonomously.

Our study demonstrates autonomous source localization
using an Unmanned ground vehicle (UGV) and proposes a
novel source localization model for light source localization

with noise-corrupted input measurements as a proof-of-
concept. The model presented here uses a particle filter
algorithm [1f] to increase the robustness to false detections
and noise-corrupted measurements. In recent times, there
is a growing popularity of particle filters (PFs) in signal
processing and communication applications to solve various
state estimation problems like tracking [2], localization,
navigation [3], and fault diagnosis [4]. PFs have been
applied for models described using a dynamic state-space
approach comprising a system model representing the state
evolution and a measurement model representing the noisy
measurements of the state [5]]. In most real-time scenarios,
these models are non-linear and non-Gaussian. Traditional
filters like Kalman filters prove to be less reliable for
such applications, and it is proven that PFs outperform
conventional filters in such scenarios [6].

PFs are inherently Bayesian in nature, intending to con-
struct a posterior density of the state (e.g., the location of a
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target or source) from observed noisy measurements. In PFs,
the posterior of the state is represented by a set of weighted
random samples known as particles. A weighted average of
the samples gives the state estimate (location of the source).
PFs use three major steps: Sampling, Importance, and Re-
sampling for state estimation, thus deriving the name SIR fil-
ter. In the sampling step, particles from the prior distribution
are drawn. The importance step is used to update the weights
of particles based on input measurements. The re-sampling
step prevents any weight degeneracy by discarding particles
with lower weights and replicating particles having higher
weights. Since PFs apply a recursive Bayesian calculation,
all particles must be processed for sampling, importance,
and re-sampling steps. Then, the process is repeated for
the next input measurement, resulting in enormous com-
putational complexity. Further, the execution time of PFs is
proportional to the number of particles, which inhibits the
use of PFs in various real-time applications wherein a large
number of particles need to be processed to obtain a good
performance. Several implementation strategies have been
proposed in the literature to address this issue and make
PFs feasible in real-time applications discussed in Section.
1]

A. OUR CONTRIBUTIONS
The contributions of this paper are on algorithmic and
hardware fronts:

1) Algorithmic Contribution

We propose a novel source localization model employing
a light source as the target/source to be localized and
an UGV carrying an array of photodiodes to sense and
localize the source. Photodiode measurements and the UGV
position are processed to estimate the bearing of the light
source relative to the UGV. Based on the bearing of the
light source, we try to localize the source using the PF
algorithm. Reflective objects and other stray light sources
are also picked by the sensor (photodiodes), leading to false
detections. In this study, we have successfully demonstrated
that our PF system is robust to noise and can localize the
source even when the environment is noisy. We introduce
two parameters « and [ to model the sensor imperfections
and background noise activity, respectively. However, the
PFs are computationally very expensive, and the execution
time often becomes unrealistic using a traditional CPU-
based platform. The primary issue faced during the design
of high-speed PF architecture is the parallelization of the
re-sampling step. The re-sampling step is inherently not
parallelizable as it needs the information of all particles.
We propose a modification to the standard SIR filter (cf.
Algorithm [I)) to address this problem and make a parallel
and high-speed implementation possible. The modified algo-
rithm proposed (cf. Algorithm [J)) uses a network of smaller
filters termed sub-filters, each processing independently
and concurrently. The processing of total N particles is
partitioned into K sub-filters so that at most N/ K particles

are processed within a sub-filter. This method reduces the
overall computation time by a factor of K. The modified
algorithm also introduces an additional particle routing step
(cf. Algorithm [2), which distributes the particles among
the sub-filters and makes the parallel implementation of re-
sampling possible. The particle routing step is integrated
with the sampling step in the architecture proposed and does
not require any additional time for computation. We also
compare the estimation accuracy of the standard algorithm
with the modified algorithm in Section [VIII-C] and infer
that the modified and the standard approaches do not vary
significantly in terms of estimation error. Additionally, the
modified algorithm achieves a very low execution time of
about 5.62 ps when implemented on FPGA, compared to
64 ms on Intel Core i7-7700 CPU with eight cores clocking
at 3.60 GHz for processing 1024 particles and outperforms
other state-of-the-art FPGA implementation techniques.

2) Hardware Contribution

We implemented the modified SIR algorithm on an FPGA

and key features of the proposed architecture are:

« Modularity: We divide the overall computation into multi-
ple sub-filters, which process a fixed number of particles
in parallel, and the processing of the particles is local
to the sub-filter. This modular approach makes the design
adaptable and straightforward as it allows us to customize
the number of sub-filters in the design depending on the
sampling rate of input measurement and the amount of
parallelism needed.

o Scalability: Our architecture can be scaled easily to pro-
cess a large number of particles without increasing the
execution time by using additional sub-filters.

o Design complexity: The proposed architecture relies on
the exchange of particles between sub-filters. However,
communication and design complexity increase propor-
tionally with the number of sub-filters used in the design.
In our architecture, we employ a simple ring topology to
exchange particles between sub-filters to reduce complex-
ity and design time.

« Memory utilization: The sampling step uses particles from
the previous time instant to estimate the particles of the
present time instant. This requires the sampled and re-
sampled particles to be cached in two separate memories.
The straightforward implementation of the modified SIR
algorithm needs 2 x K memory elements each of depth
M for storing the sampled and re-sampled particles for
K sub-filters. Here, M is the number of particles in a
sub-filter (M = N/K). However, applications involving
non-linear models require a large number of particles [7].
This would make the total memory requirement 2 x K
significant for large K or M. The proposed architecture
reduces this memory requirement to X memory elements
each of depth M using a dual-port ram, as explained
in Section Therefore, the proposed architecture
lowers memory utilization, and reduced memory access
makes it more energy-efficient.
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o Real-time: Since all sub-filters operate in parallel, the
execution time is significantly reduced compared to that
of other traditional implementation schemes that use just
one filter block [8]. Our implementation has a very low
execution time of about 5.62 us (i.e., a sampling rate of
178 kHz) for processing 1024 particles and outperforms
most state-of-the-art implementations, allowing real-time
deployment.

« Flexibility: The proposed architecture is not limited to a
single application, and the design can be easily modified
by making slight changes to the architecture for other PF
applications.

The architecture was successfully implemented on the
Artix-7 FPGA and the experimental results show its efficacy
in source localization.

The rest of the paper is organized as follows: We provide
the theory behind Bayesian filtering and PFs in Section [ITI]
and[[V] respectively. An experimental setup for the proposed
source localization model using a Bearings-only tracking
(BOT) framework is presented in section [V] In this frame-
work, input to the filter is a time-varying angle (bearing) of
the source, and each input is processed by the PF algorithm
implemented on hardware to estimate the source location.
Further, in section [V, we propose algorithmic modifications
to the existing PF algorithm that make the high-speed
implementation possible. The architecture for implementing
PFs on hardware is provided in Section [VII] Evaluation
of resource utilization on the Artix-7 FPGA, performance
analysis in terms of execution time, estimation accuracy, and
the experimental results are provided in Section

Il. STATE-OF-THE-ART

The first hardware prototype for PFs was proposed by
Athalye et al. [8] by implementing a standard SIR filter
on an FPGA. They provided a generic hardware framework
for realizing SIR filters and implemented traditional PFs
without parallelization on FPGA. As an extension to [§]],
Bolic et al. [9] suggested a theoretical framework for
parallelizing the re-sampling step by proposing distributed
algorithms called Re-sampling with Proportional Allocation
(RPA) and Re-sampling with Non-proportional Allocation
(RNA) of particles to minimize execution time. The design
complexity of RPA is significantly higher than that of
RNA due to non-deterministic routing and complex routing
protocol. Though the RNA solution is preferred over RPA
for high-speed implementations with low design time, the
RNA algorithm trades performance for speed improvement.
Agrawal et al. [10] proposed an FPGA implementation of
a PF algorithm for object tracking in video. Ye and Zhang
[11]] implemented a SIR filter on the Xilinx Virtex-5 FPGA
for bearings-only tracking applications. Sileshi et al. [12]-
[14] suggested two methods for implementation of PFs
on an FPGA: the first method is a hardware/software co-
design approach for implementing PFs using MicroBlaze
soft-core processor, and the second approach is a full
hardware design to reduce execution time. Velmurugan [[15]]

proposed an FPGA implementation of a PF algorithm for
tracking applications without any parallelization using the
Xilinx system generator tool. Schwiegelshohn et al. [16]
proposed the FPGA optimized re-sampling (FO-resampling)
to parallelize the re-sampling step by introducing virtual
particles. A fixed number of virtual particles are generated
around every real particle, and if the importance factor
(weight) of the real particle is less than the virtual particle,
then it gets replaced. Otherwise, the same real particles
are propagated in the next iteration. However, the resource
utilization of their architecture is substantially higher com-
pared to the conventional PF algorithms. Mountney et al.
[17] proposed a modular PF architecture for Brain Machine
Interfaces (BMI). Their architecture introduces multiple
particle processors to parallelize the state vector and likeli-
hood estimations. Although the state vector estimation and
likelihood computations are parallelized, the re-sampling
step is done sequentially, which is the major drawback of
the architecture. Recently, Alam et al. [18]] proposed an im-
proved re-sampling architecture by introducing a weight pre-
fetch mechanism to reduce the latency of the re-sampling
step. In this technique, new particle weights are pre-fetched
along with the random values concurrently, which help in
reducing the total number of cycles for re-sampling. Pre-
fetching parameters, on the other hand, necessitates the use
of additional buffers to store the pre-fetched data, resulting
in the increased area and power consumption. Miao et al.
[19] proposed a parallel implementation scheme for PFs
using multiple processing elements (PEs) and a central unit
(CU) to reduce the execution time. PE performs sampling
and weight update, while CU performs re-sampling. The
communication overhead between the PE and the CU, on the
other hand, grows linearly with the number of PEs, render-
ing the design unscalable for large-scale particle processing.
In other work, Velmurugan et al. [20] took an analog
approach to implement PF with low-power consumption.
Their implementation utilizes a minimum number of data
converters to reduce both area and power. However, owing
to the analog mixed mode implementation, their architecture
is not scalable, and verification of the design is difficult
compared to the digital counterparts due to lack of standard
design and test flows in large analog implementation.
Further, several real-time software-based implementation
schemes have been proposed with the intent to reduce
computational time. Hendeby et al. [21], [22] proposed the
first Graphical Processing Unit (GPU) based PFs, demon-
strating that the GPU-based architecture outperforms the
CPU-based implementation in terms of processing speed.
Murray et al. [27] provided an analysis of two alternative
schemes for the re-sampling step based on Metropolis and
Rejection samplers to reduce the overall execution time.
They compared it with standard Systematic resamplers [28]]
over GPU and CPU platforms. Chitchian et al. [23]] devised
an algorithm for implementing a distributed computation PF
on GPU for fast real-time control applications. Zhang et al.
[29] suggested an architecture for efficiently implementing
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TABLE 1: State-of-the-art PF implementations. [New Table]

Implementation| Related Works | Algorithm [ Device [ Application [ Remarks
Athalye et al. SIR with systematic . . Sequential implementation with low design
8] re-sampling Virtex II pro Tracking complexity.
. Parallel implementation utilizing multiple
. SIR with RPA & . . o - .
FPGA based Bolic et al. [9] RNA Virtex II pro Tracking concurrent PEs. nglh design complexity &
digital . . . ___ not easily s.calable. ]
implementation Agarwal et al. Color histogram Virtex-5 Object tracking in Sequential implementation of PF for object
P [10] based PF video tracking in video.
Ye and Zhang SIRSWSltt:mr:;Ldual Virtex-5 Radar Trackin Sequential implementation with low design
[T1] y‘ . x & complexity.
re-sampling
Sileshi et al lnsdIeReﬁélt:nt Proposed HW/SW co-design & fully
oS ’ pe . Kintex-7 SLAM hardware solutions for PF implementation.
[T2)-[14) Metropolis Hasting No parallelism incorporated in the design
(IMHA) re-sampling )
SIR with modified
Velmurugan residual systematic . S Sequential implementation using a system
[[15] re-sampling Virtex I pro Tracking generator tool with high resource utilization.
algorithm
Schwiegelshohn | 1o OPUIIzed S0 020 Position Parallel implementation with limited
et al. [16] plng yng estimation scalability and high resource utilization.

(FO-resampling)

Mountney et

Bayesian auxiliary
particle filter

Not provided

State estimation and likelihood computation

Brain Machine . L
are parallelized, however, re-sampling is done

al {17 algorithm (BAPF) Interfaces sequentially.
. . Improved re-sampling of particle filter design
Alam et al. Multmon_nal Virtex-6 Generic that included a weight pre-fetch function to
(18] re-sampling : s
reduce the re-sampling step’s latency.
Parallel implementation utilizing multiple
Miao et al Probability Tracking of PEs. Sampling and weight update is done
(19 ’ hypothesis density Virtex-5 multiple sources inside a PE and resampling within a CU.
filtering of neural activity High communication overhead between PE
and CU. Not easily scalable.
Modified SIR with Source Parallel and pipelined architecture which is
This work systematic Artix-7 o highly scalable with low design complexity
. Localization e
re-sampling and comparable resource utilization.
Mixed mode ASIC (0.35 Re-sampllng is 1mplerr}epted in the.d1g1tal
Velmurugan . domain and the remaining stages in the
Analog Im- SIR pm CMOS Target tracking .
. [20] analog domain. It consumes very low power.
plementation process) .
However, not easily scalable.
I-{endeby et Proposed modified G("}ng)go((:)El
o al. [21], [22), __algorithms to GTX 580%%, More generic in Parallelized the operation by utilizing
Graphical Chitchian et implement particle : :
. 2 ) . Quadro FX nature. multiple cores available on GPU.
Processing al.” [23], filters efficiently on a 5800°. Jetson
Unit (GPU) Gong et al.3 GPU. 21550
TX1
[24],
Par et al.# [25],
Kim et al.’
261 . . . . .
Murray et al. PF’w1th Metrppo]ls NVIDIA K20 o Shc’)wed the 1fnp]e{nentat10n of Metrvopolls
271 and Rejection GPU Tracking and Rejection samplers on GPU and

resamplers

compared them with Systematic resamplers.

PFs on a DSP for wireless network tracking applications.
Gong et al. [24] present a shared-memory systematic re-
sampling (SMSR) algorithm to parallelize the re-sampling
step on a GPU. Their algorithm is very challenging to
implement on an FPGA due to the use of shared memory
architecture and parallel scan step to obtain the prefix
sum. Furthermore, they don’t present any architecture for
implementing the algorithm on hardware. Choppala et al.
[30] introduced a random network as a fixed re-sampling
unit in PF. This network assigns each particle a predeter-
mined set of other particles with which it will interact,
and the re-sampler randomly selects one particle from the

set. However, they don’t show the hardware feasibility of
the proposed network on FPGA. Par et al. [25] present
a parallel implementation of PF algorithm based on both
multi-core processors and on a GPU using Compute Unified
Device Architecture (CUDA). Their performance analysis
shows that up to 75x speedup can be achieved on a 512-
core GPU over sequential implementation. Kim et al. [26]
implemented PF on a GPU for target position estimation
and parallelized the calculation process utilizing multiple
GPU cores. The proposed algorithm was simulated on a
CPU in MATLAB and then verified on GPU, resulting in
a 55% reduction in execution time. However, they do not
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show the hardware feasibility. In addition, these software-
based methods have their own drawbacks when it comes to
hardware implementation owing to their high computational
complexity. Therefore, it is essential to develop a high-
speed and dedicated hardware design with the capacity to
process a large number of particles in specified time to meet
the speed demands of real-time applications. This paper
addresses this issue by proposing a high-speed architecture
that is massively parallel and easily scalable to handle a
large number of particles. The benefits of the proposed
architecture are summarized in Section. [FA2]

lll. BAYESIAN FRAMEWORK
The evolution of the state sequence z; in a dynamic state
space model is characterised by:

Ty = ft(xt—lawt) (D

where, f; is a nonlinear function of the state x;_1, and wy
represents the process noise. The objective is to recursively
estimate the state x; based on a measurement defined by:

2t = ge(we,v4) )

where, g; is a nonlinear function describing the measure-
ment model, and z; is the system’s observation vector
corrupted by measurement noise v, at time instant ¢.

From a Bayesian standpoint, the objective is to construct
the posterior p(x¢|z;.¢) of the state z; from the measurement
data z;.; up to time t. By definition, the posterior is
constructed in two stages: prediction and update.

The prediction stage uses the system model (cf. Eq.|l) to
estimate a prediction probability density function (PDF) of
the state at time instant ¢, using the Chapman-Kolmogorov
equation:

(x| z1:0-1) = Z p(welae1)p(re—1]|21:0-1) 3)
Tt—1
where, the transition probability p(x¢|z;—1) is defined by
the system model (cf. Eq. [I).
In the update stage, the measurement data z; at time step
t is used to update the PDF obtained from the prediction
stage using Bayes rule, to construct the posterior:

— plat|z)p(e]21:0-1)
th p(zt |It)p($t|z1:t—1)
where, p(z:¢|x:) is a likelihood function defined by the

measurement model (cf. Eq. [2).

The process of prediction (cf. Eq. B) and update (cf.
Eq. @) are done recursively for every new measurement
z¢. Constructing the posterior based on Bayes rule is a
conceptual solution and is analytically estimated using tra-
ditional Kalman filters. However, in a non-Gaussian and
non-linear setting, the analytic solution is intractable, and
approximation-based methods such as PFs are employed to
find an approximate Bayesian solution. A detailed illustra-
tion of the Bayesian framework and its implementation for
estimating the state of a system is provided by Thakur et
al. [31].

p(xt‘zlzt) (€]

IV. PARTICLE FILTERS BACKGROUND

The core principle behind PFs is to represent the required
posterior density with a collection of random samples called
particles, each with its own weights, and then calculate
the state estimate using these particles and weights. The
particles and their weights are represented by {xi, wi} |,
where N is the total number of particles. z¢ denotes the
ith particle at time instant ¢. w! represents the weight
corresponding to the particle z%. The variant of PF called
sampling, importance, and re-sampling filter (SIRF) is pre-
sented in Algorithm [1}

Algorithm 1 : SIR Algorithm

Initialization: Set the particle weights of the previous
time step to I/N, {w!_;}¥, =1/N.

Input: Particles from previous time step {zi_;}& ; and
measurement z;.

Output: Particles of current time step {7:}V .
Method:

1: Sampling and Importance:

2 fori=1to N do

3 Sample xi ~ p(z|xi_ ;)

4 Calculate wi = wi_;p(z|z?)

5 end for

6: Re-sampling: Deduce the re-sampled particles {7i}Y
from {z%, wi}N ;.

In the sampling step, particles are drawn from the prior
density p(z¢|xi_;) to generate particles at time instant ¢.
p(x¢|zi_,) is deduced from (). Intuitively, it can be thought
as propagating the particles from time step ¢ — 1 to ¢. The
sampled particles at time instant ¢ is denoted by {xi} YV . At
time instant 0, particles are initialized with prior distribution
to start the iteration. These particles are then successively
propagated in time.

The importance step assigns weights to every particle x
based on the measurement z;. By definition, the weights are
given by:

wi = wj_yp(z|x}) )

However, weights of the previous time step are initialized
to 1/N ie wj_; = 1/N. Thus, we have:

wi o plze|at) ©)

The re-sampling step is used to deal with the degeneracy
problem in PFs. In the re-sampling step, particles with lower
weights are eliminated, and particles with higher weights
are replicated to compensate for the discarded particles
depending on the weight w{ associated with the particle x:.
The re-sampled set of particles is denoted by {Zi}Y ;.

V. SOURCE LOCALIZATION MODEL
This section gives an overview of the experimental setup
and measurement model relevant to the source localization.
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FIGURE 1: UGV Design. (a) Schematic of the UGV with a photodiode housing mounted on top. (b) The region around

the UGV is divided into 8 sectors with 45° angular separation.

A. OVERVIEW OF THE EXPERIMENTAL SETUP

In our source localization model, an omnidirectional light
source serves as a source to be localized. A photodiode
housing mounted on top of the UGV (cf. Fig. [T(a)) consti-
tutes a sensor to measure the relative intensity of light in a
horizontal plane. The space around the UGV is divided into
8 sectors with 45° angular separation, as shown in Fig. [T(b),
and an array of 8 photodiodes are placed inside the circular
housing to sense the light source in all directions. The
housing confines the angle of exposure of the photodiode to
45°. Depending on the light incident on each photodiode,
we consider the output of the photodiode to be either O or
1.

The PF algorithm applied to the BOT model requires
dynamic motion between the sensor and source [32]]. In our
experimental configuration, we have a stationary source and
a moving sensor mounted on the UGV. The UGV is made
to traverse in the direction of the source and eventually
converges at the source location. Reflective sources and
other stray light sources are potential sources of noise picked
up by the sensor, producing false detections. A target-
originated measurement, along with noise, is sensed by the
photodiodes and processed in addition to the UGV position
data to measure the light source’s bearing with respect to
the UGV. Based on the bearing of the light source, we try
to estimate its position using the PF algorithm.

B. MEASUREMENT MODEL
The position of UGV (zV¢V) at time instant ¢ is defined
by the Cartesian co-ordinate system:

2UGV = [XUGV yUGV)
The orientation of the longitudinal axis of UGV is repre-
sented by ¢U“Y, which gives its true bearing.

The source is considered to be stationary, and its co-
ordinates in the 2-dimensional setting is given by:

Ty = [Xt,Y;s] @)

Vi

At time instant ¢, a set of 8 photodiode measurements are
captured z; = {z}, 27 - -- 28}, which comprise of the target-
associated measurement and clutter noise. Then, based on
the measurement model (]Z[), the source-associated measure-
ment can be modelled as:

2 = g(we) + vy (8)

Since the measurement gives the bearing information of the

source, we have:
Y, — YUGV
—1 t t
g(zy) = tan ()
(1) X — XtUGV

The four-quadrant inverse tangent function evaluated from

[0,27) gives the true bearing of the source.

The relevant probabilities needed to model the sensor
imperfections and clutter noise are as follows:

(i) The probability of clutter noise (n:) produced by a
stray or reflective light source is: p(n;) = .

(ii) The probability of the jt" photodiode output being 1
ie., (27 = 1) either due to the light source or clutter
noise is: p(z]|z¢,nt) = a.

(iii) If there is a light source in the sector j, then ;%"
photodiode output will be 1 with a probability of «
irrespective of noise. The likelihood of photodiode
output being 1 or 0 in the presence of the source is:

p(zflxt) = {

(iv) If there is no source in sector j, then there is a noise
source with probability 3. The likelihood of photodiode
output being 1 or 0 in the absence of the source is:

. af for 2/ = 1.
2| T) = ’ t
p(z2t) {1046, for 2] = 0.

These two likelihoods are used in our system to model the
sensor imperfections and noise, and even with high noise
probability [, the PF algorithm is robust enough to localize
the source.

©))

a, for 2 = 1. (10)

1—a, forz/ =0.

an
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VI. ALGORITHMIC MODIFICATION OF SIRF FOR
REALIZING HIGH-SPEED ARCHITECTURE

In this section, we suggest modifications to the standard
SIR algorithm to make it parallelizable. The key idea of
high-speed architecture is to utilize multiple parallel filters,
termed sub-filters, working simultaneously and performing
sampling, importance, and re-sampling operations indepen-
dently on particles. The architecture utilizes K sub-filters in
parallel to process a total of N particles. Thus, the number
of particles processed within each sub-filter is M = N/K.
In comparison to traditional filters, the amount of particles
processed inside each sub-filter is reduced by a factor of K.

Algorithm 2 : High-level description of each sub-filter k
performing SIR and particle routing operations.

Initialization: Set the particle weights of previous time
step to 1/M, {wFNM = 1/M.

Input: Particles from previous time step {x
measurement z; ]
Output: Particles of current time step {7\ }M
Method:

g’) Mland

1: Particle Routing: Exchange Q particles with neigh-
bouring sub-filters.

e {xt BOY9 | for k=2,--- K, and

3: {J;(k q)} , {xt }Q_1 for k=1.

4: Sampling and Importance

5: for i =1to M do

6: Sample :CE ") p(x |x(k Z))

7: Calculate w(k 4 = w(k 9 (zt|x(k 1))

8:  end for

9: Re-sampling Compute the re-sampled particles
@M, from {af™) wi® M,

The sampling and importance steps are inherently par-
allelizable since there is no data dependency for the par-
ticle generation and weight calculation. However, the re-
sampling step cannot be parallelized as it needs to have the
information of all particles. This creates a major bottleneck
in the parallel implementation scheme. Thus, in addition
to the SIR stage, we introduce a particle routing step,
as shown in Algorithm [2} to route particles between sub-
filters. Our empirical analysis shows that the particle routing
step enables the distribution of particles among sub-filters,
and the re-sampling step can be effectively parallelized.
Section. shows that there is no substantial variation
in the estimation error between the proposed modified SIR
algorithm and the conventional algorithm. An algorithmic
flowchart is shown in Fig. [2]

The particles and their associated weights in sub-filter
k at time step ¢ are represented by {z\"" w{*}M | for
k =1,--- K. The particle xtk’l) represents the position in
the Cartesian co-ordinate system.

VIl. ARCHITECTURE OVERVIEW
In this section, we present a high-speed architecture for PFs,
based on the modified SIRF algorithm presented in Section
V1

The top-level architecture shown in Fig. |3| utilizes a
filter bank consisting of K sub-filters working in paral-
lel. Sampling, importance, and re-sampling operations are
carried out within a sub-filter. In addition to the SIR
step, a fixed number of particles are routed between sub-
filters after the completion of every iteration as part of
a particle routing operation. The sub-filters are connected
based on ring-topology inside the filter bank. M particles
are time-multiplexed and processed within each sub-filter,
and Q = M/2 particles are exchanged with neighbouring
sub-filters. Since the number of particles exchanged and
the routing topology are fixed, the proposed architecture
has very low design complexity. The design can be easily
scaled up to process a large number of particles (N) by
replicating sub-filters. The binary measurements of the eight
photodiodes (z;) are fed as an input to the filter bank
along with the true bearing (¢Y“V) and the position of
the UGV (2Y&V). Random number generation needed for
the sampling and re-sampling steps is provided by a random
number generator block. We use a parallel multiple output
LFSR architecture presented by Milovanovié¢ et al. [33]]
for random number generation. A 16 bit LFSR is used
since our internal variables are 16 bits wide. Further, a
detailed description of the sub-filter architecture is provided
in Section The sector check block, described in
Section [VII-B| computes the particle population in each of
the eight sectors and outputs a sector index that has the
maximum particle population. This information is used by
the UGV to traverse in the direction of the source. The mean
computational block used to calculate the global mean of
all N particles from K sub-filters to estimate the source
location (pos;), is explained in Section

A. SUB-FILTER ARCHITECTURE

The sub-filter is the main computational block responsible
for particle generation, processing, and filtering. It consists
of three main sub-modules, namely, sampling, importance
and re-sampling, as shown in Fig. |4 The sampling and im-
portance blocks are pipelined in operation. The re-sampling
step cannot be pipelined with the former steps as it requires
weight information of all particles. Thus, it is started after
the completion of the importance step. Since sampling and
importance stages are pipelined, together they take M clock
cycles to iterate for M particles, as shown in Algorithm [2]
from line 5 to line 8. The particle routing between the sub-
filters is done along with the sampling step and does not
require any additional cycles. The re-sampling step takes
3M clock cycles, as discussed in Section

1) Sampling and routing
The sampling step involves generating new sampled par-
ticles {wgk’l)}i]\il by propagating re-sampled particles

vii
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FIGURE 2: Flowchart illustrating the sequence of operations carried out incorporating the modified SIR algorithm. T'
represents the total time steps for localizing the source. [New figure]

{A(’c ’)}M from the previous time step using the dynamic
state space model:

2P~ p(a, |A<’“ )

Ty (12)

Conventionally, particles {xt WIM. are used to gener-
ate the weights {wtl”)} v, in the importance unit, and
using these weights we determme the re-sampled particles
{A(k Z)}M 1. Further, {x(k g M. is utilized to obtain par-
ticles {z; +i)} 1, of the next time step. Thus, with the
straightforward approach, we would need two memories

viii

each of depth M to store {z\*"}M and {z*"}M within
a sub-filter. Similarly, for K sub-filters we would require
2 x K memory elements, each of depth M. This increases
memory usage for higher K or M. In this work, we suggest
a novel scheme to store the particles using a single dual-
port memory instead of two memory blocks, which brings
down the total memory requirement for storing particles to
K memory elements, each of depth M.

In this scheme, since the re-sampled particles are ac-
tually the subset of sampled particles (ie. {a§ M c

{mgk’i)}i]‘il) instead of storing {§§ }Ml in a dlffef@ﬂt
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FIGURE 4: Sub-filter architecture.

kyi

memory, we can use the same memory as {z; ”}gl and
. . o (ki

use suitable pointers or indices to read {x,g ’)}ﬁl.

The re-sampling unit in our case is modified such that
instead of returning re-sampled particles §§’i’{>, it returns the
indices of replicated (Ind R*?)) and discarded (Ind D(*-9))
particles (cf. Fig. . Ind R(%% is used as a read address of
the dual-port particle memory shown in Fig. [5|to point to the
re-sampled particles E&’Z). The dual-port memory enables
us to perform read and write operations simultaneously;
however, this might result in data overwriting. For example,
consider six particles, after re-sampling particle 2 (xgli’f))
is replicated four times; particle 5 (scgli’f)) is replicated
two times and particles 1,3,4& 6 are discarded. The re-
sampling unit returns Ind R = (2,2,2,2,5,5) and Ind
D = (1,3,4,6). The read sequence of the dual-port memory
is (2,2,2,2,5 & 5) and the write sequence is (2,1,3,4,5

& 6). Initially, particle 2 (xi’if)) is read from the dual-

port memory and after propagation in the sampling block,
the sampled particle xi ') is written back to the memory
location 2. Next, particle 2 is read again from memory
location 2. However, this time the content of the location is
changed, and it no longer holds the original particle xiﬁf ),
which causes an error while reading. In order to avoid this
scenario, we introduce a sub-block (a) (cf. Fig. E[), wherein
when we read the particle from the memory for the first
time, it is temporarily stored in a register. Hence, whenever
there is a replication in Ind R or read address, we read the
particle from the register instead of memory. The Rep signal
is generated by comparing Ind R with its previous value and
if both are same, Rep will be made high.

Further, we introduce a sub-block (b) (cf. Fig. El) which is
responsible for routing the particles between neighbouring

ix
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sub-filters. Out of M particles read from the particle mem-
ory of sub-filter k, the first M /2 particles, i.e., {ziﬁ*?}jﬁﬁ
are sent to sub-filter k+1, and simultaneously the first M /2
particles, i.e., {xif}l’q)}gi/f, of sub-filter k—1 are read and
fed to the sampling block of sub-filter k. The sampling block
propagates the particles from time step ¢ — 1 to time step t.
The routed particles from sub-filter k—1 {xii}lm },]Ivi/ 2, and
last M /2 local particles {xiﬁf) é”: /241 Fead from particle
memory of sub-filter k are propagated by the sampling block

and written back to the memory. The in(put to the sampling
block are particles of time step ¢ — 1 (xt’ii)) and the output
(ki)

are particles of current time step ¢ (x; ). The sampling
block pseudocode is provided by Algorithm [3] The random
number PRN () needed for random sampling of particles
as shown in Algorithm 3] line 2 and line 3 is provided by a

random number generator block (cf. Fig.[3). The Sel Route
signal is used to control the switching between the local and
routed particles by making it low for the first M /2 cycles
and then making it high for the next M /2 cycles. Further, at
time instant 0, we feed the UGV position 2§ ¢V as a prior
to the sampling block to distribute the particles around the
UGV. The Sel Int control signal is made low in the first
iteration, i.e., at time instant 0, and then made high for the
subsequent iterations.

2) Importance

The importance unit computes the weights of the particles
based on the photodiode measurements z; given by:

ki ki ki
w = wDp(z 2

13)
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Algorithm 3 : Sampling block pseudocode

Input: Particles from previous time step
xfﬁi) = [Xt(f’f), Yt(f“f)} and random number
PRN® = [PRN  PRN{M).
Output: Particles of current time step xik’i).
Method:

1: fori=1to M do
2 x5 = x4 PRNY « std
3 v =y %0 L pPRN « std
standard deviation. .
xikﬂ) _ [Xt(k)l)7)/t(k71)}
end for

> std is the

v

(k)

Wy_q

is initialized to /M. Estimation of p(z/|z!"")

involves determining the angle of each particle (ng’i)),
which is computed using an inverse tangent function based
on the position of the UGV (zY%") and position of the
(k’i)), as follows:

particle (x;
5 Y(kvl) _ YUG’V
Ht(kﬁ = tan”! < t(k i) tUGV
Xt ' _Xt

where, Xt(k’i) and Yt(k’i) represents the co-ordinates of
the particle z{F
system.

The inverse tangent function is implemented using a
Cordic IP block provided by Xilinx [34]]. The architecture of
the importance unit is shown in Fig. [6] The index generator
block estimates the angle of the particles with respect to the
longitudinal axis of the UGV based on the bearing of the
UGV (¢“V). In addition to this, the index generator block
is used for determining the sector indices (Ind Gt(k’l)) of the
particles based on the angle information. The sector indices
of the particle can be defined as follows:

in two-dimensional Cartesian co-ordinate

Ind 9% = [4/m (%) — V)]

z¢ is 8 bit wide data consisting of 8 binary photodiode
measurements {z}, z2---28}. Based on the measurement
z¢ and the sector indices of particles, weights are generated
by the weight computation block. These weights are stored
in the weight memory using the address provided by the
sampling unit, to store weights in the same order as the
sampled particles :cgk’z). The sum of all the weights required
by the re-sampling unit is obtained by an accumulator. The
particle population block is used to estimate the number
of particles present in each of the eight sectors, using
the sector indices of particles for a given sub-filter. The
particle count in each of the eight sectors of sub-filter &
is concatenated and given as the output Count Ind (%),
For example, if sector 1 has 15 particles, sector 3 has
14 particles, and sector 5 has 3 particles, then Count Ind
6 = {15,0,14,0,3,0,0,0}.

3) Re-sampling

Particles with higher weights are replicated, while particles
with lower weights are discarded during the re-sampling
process. This is accomplished by utilizing a Systematic
re-sampling algorithm shown in Algorithm @] A detailed
description of the systematic re-sampling algorithm is pro-
vided in [8], [28]]. The weights and sum of all weights
are obtained from the importance unit. The random number
(Up) needed to compute the parameter U_scale in line 2 of
Algorithm [] is provided by the Random number generator
block shown in Fig. [3] The algorithm presented works
with un-normalized weights, which will avoid M division
operations on all particles to implement normalization. The
division required to compute A, in line 1 of Algorithm
H] is implemented using the right shift operation. This ap-
proach consumes fewer resources and area on hardware. The
replicated and discarded indices generated by the systematic
re-sampling block are stored in their respective memories,
as shown in Fig. [/| In the worst-case scenario, the inner
loop of Algorithm [] takes 2M cycles for execution in
hardware as it involves fetching M weights from weight
memory and doing M comparison operations. Further, line
13 and line 14 take M cycles to obtain M replicated indices.
Thus, in total, the execution of the re-sampling step requires
2M + M = 3M cycles.

Algorithm 4 : Systematic Re-sampling.

Input: Un-normalized weights ({wgk’i)}i]‘il) of M
particles, summation of all the weights in a sub-filter (Sum
w) and the uniform random number (Uy) between [0, 1]
Output: Replicated index (Ind R) and Discarded index
(Ind D).
Method:

Sumw

1: Compute A, = i
2: Initialize : U_scale = Uy x Aw
3: s=0,p=0,m=0
4: for i=1 to M do
5 while s < U_scale do
6: p=p+1

7: s =5+ wkr)

8 if s < U_scale then
9

: m=m-++1
10: Ind D*™) = p
11: end if
12: end while
13: U_scale = U_scale + A,
14: Ind R*%) =p
15: end for

B. SECTOR CHECK BLOCK

The direction/orientation of the UGV is decided by the
population of particles in different sectors and is used to
move towards the source. This is achieved by the sector

Xi
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check block, which estimates the particle population in
each of the eight sectors and gives the sector index with
maximum particle count. The block diagram shown in Fig.[§]
utilizes eight parallel adders to count the number of particles
in each sector. The particle count in a given sector of K
sub-filters is fed as an input to the adder. Count Ind QSLk) in
Fig. [8] denotes the particle count in sector n of sub-filter k.
The output of an adder gives the total particle population
in a particular sector. Furthermore, the sector index (Ind
#) having the maximum particle count is estimated using a
max computation block. The UGV uses this information to
traverse in the direction of the source.

Count Ind 6"
1 Count Ind 6,

)2

Count Ind 9(1’0 >

Count Ind 6"
2 *) CountInd 6, |

”| Max Computation
Block

Count Ind 6;10 —> ————1Ind 0

Count Ind 6" —)
8 : Count Ind 63

\ 4

D

Count Ind 6’;’0 >

FIGURE 8: Sector check block architecture.

C. MEAN ESTIMATION BLOCK

The mean of total N particle positions is estimated using
the mean estimation block. Particle positions from K sub-
filters are fed in parallel and accumulated over M cycles to
generate the sum, which is further divided by N, by right
shifting log2(N) times to get the mean. In our implemen-
tation, we consider N as a power of 2. The mean gives an
estimate of the position of the source pos;.

VIIl. RESULTS

In this section, we present the resource utilization of the
proposed design on an FPGA. We also evaluate the execu-
tion time of the proposed architecture as a function of the
number of sub-filters and inspect the estimation accuracy by
scaling the number of particles. We then compare our design

Xii

to the current state-of-the-art implementations. Furthermore,
we present experimental results for the source localization
problem implemented on FPGA using the proposed archi-
tecture.

A. RESOURCE UTILIZATION

The architecture presented was implemented on Artix-7
FPGA. Resource utilization of the implemented design for
the different number of sub-filters is summarized in Table 2
The number of particles per sub-filter (M) was fixed to 32
for synthesizing the design. All memory modules shown in
the architecture for storing particles, weights, replicated, and
discarded indices are translated into embedded 18kb block
random access memory (BRAM) available on the FPGA,
using a block memory generator (BMG) IP [35] provided
by Xilinx. The number of 18kb BRAM blocks needed on
the FPGA is indicated in the Block RAM column of Table
Rl It can be seen that the resource utilization increases
proportionally with the number of sub-filters. For 64 sub-
filters, 64% of the slice LUTs (lookup tables) are used, and
a maximum of approximately 90 sub-filters can fit onto a
single Artix-7 (xc7a200tfbg484-1) FPGA platform.

B. EXECUTION TIME

The proposed design utilizes K parallel sub-filters, thus
bringing down the number of particles processed within a
sub-filter to /K. Since, sampling and importance blocks
are pipelined, these steps take N/K + 75 + 7; clock cycles
and the re-sampling step takes 3N/ K + 7, cycles to process
N/K particles, where 75 , 7; and 7, represent the start-up
latency of the sampling, importance and re-sampling units,
respectively. Since all the K sub-filters are parallelized, the
time taken to process a total of NV particles for SIR operation
is:

TSIR = (4N/K + T)Tclk

where, 7 = 75 + 7; + 7 and T, is the clock period of the
design.

Fig. 0] gives the timing diagram for completion of SIR
operations using the proposed architecture for N particles,
for a single iteration. Furthermore, since particle routing
is incorporated within the sampling step, the transfer of
particles between the sub-filters do not take any additional
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TABLE 2: Resource utilization on Artix-7 FPGA.

Sub-filters K Occupied slices | Slice LUTs | LUTRAM | Slice Registers | Block RAM
1 505 1,437 51 1,735 2
(1.5%) (1.07%) (0.11%) (0.65%) (0.55%)
9 942 2,847 102 3,259 4
(2.8%) (2.13%) (0.22%) (1.22%) (1.10%)
1,710 5,494 204 6,297 8
4 (5.1%) (4.11%) (0.44%) (2.35%) (2.19%)
3,465 10,973 408 12,356 16
8 (10.3%) (8.20%) (0.88%) (4.62%) (4.38%)
16 6,834 21,885 816 24,460 32
(20.3%) (16.36%) (1.77%) (9.14%) (8.77%)
39 14,513 43,804 1,632 48,645 64
(43.1%) (32.74%) (3.53%) (18.18%) (17.53%)
64 29,290 86,101 3,264 95,570 128
(87%) (64.35%) (7.06%) (35.71%) (35.07%)

cycles. This makes the design scalable for a large number of
sub-filters, as the routing operation requires no extra time.

In Fig. [I0[(a), we show the execution time of the proposed
architecture as a function of the number of sub-filters (K)
for different N. As expected, the execution time increases
with the number of particles (). In many applications, for
example, in biomedical signal processing, the state space
dimension is very high [7]. Consequently, a large number
of particles are needed to obtain satisfactory performance. In
such cases, the computation time often becomes unrealistic.
Introducing parallelization in the design by using more sub-
filters (K) brings down the execution time significantly, as
shown in Fig. [I0fa). However, the reduction in execution
time by increasing K comes at the cost of added hardware,
which can be inferred from Fig. @kb). Thus, there is a
trade-off between the speed and the hardware utilized. For
instance, using a single sub-filter and no parallelization uses
a mere 1.4k (1%) LUTSs to process 256 particles, and the
time taken for SIR operations is around 1075 clock cycles.
On the other hand, an 8 sub-filter design takes only 178
clock cycles for SIR operations, but utilizes 11k (8%) LUTs.
Thus, there is a trade-off between speed and hardware used.
The given FPGA resources limit the total number of sub-
filters that can be accommodated on an FPGA, thus limiting
the maximum achievable speed.

C. ESTIMATION ACCURACY

We analyzed the estimation accuracy for the 2D source
localization problem as a function of the number of particles
(N) for the standard and the modified SIR algorithm. The
estimation error gives the error between the actual source
location and the estimated source location given by:

Error = \/(posx — )% + (posy — y)? (14)

where, pos, and pos, denote the estimated position of the
source obtained from the PF algorithm, in the 2D Cartesian
co-ordinate system. x and y denote the true position of the
source in the 2D arena.

The algorithm for the standard SIR filter is presented
in Section. and has no parallelization incorporated.

The modified SIR algorithm implements parallelization by
utilizing K sub-filters working concurrently to reduce the
execution time, introduced in Section. [VI} The estimation
errors presented in Fig. [I0[c) are the average errors in
1000 runs over 250 time-steps. It is inferred that there is
no significant difference in the estimation error between
the standard and the modified SIR algorithm. Additionally,
the modified algorithm achieves lower execution time and
allows the parallel computation of PFs. Further, it is noted
that by scaling the number of particles, the estimation
accuracy improves as the error decreases.

D. CHOICE OF THE NUMBER OF SUB-FILTERS K

Choice of the number of sub-filters (K') used in the design
depends on several factors such as, the number of particles
(N), the clock frequency of the design (f.x), and the
observation sampling rate (fs) of the measurement sam-
ples. The sampling rate gives the rate at which new input
measurements can be processed. N is chosen depending on
the application for which the particle filter is applied. fox
is selected based on the maximum frequency supported by
the design. The relationship between the sampling rate and
the execution time (Tsyr) of the filter is given by:

f clk
fs =1/Tsir = GN/K £7)
where, for = 1/Tug. Thus, for a specified measurement
sampling rate (f), the clock frequency of the design (feix),
and the number of particles (N'), we can determine the num-
ber of sub-filters (K) needed from the above equation. For
instance, in our application, we use 256 particles because
the error curve levels off at N = 256 (cf. Fig. [I0[c)), and
there is no improvement in the estimation error by further
increasing N. Thus, to achieve a sampling rate of f; = 562
kHz, with 256 particles and clock frequency f.r = 100
MHz, we utilize K = 8 sub-filters. The maximum number
of sub-filters that can be used in the design depends on the
resources of the given FPGA.

Xiii

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3094962, IEEE Access

Krishna et al.: FPGA Implementation of Particle Filters for Robotic Source Localization

Sampling & Routing

Importance

R R >
<

Re-sampling

FIGURE 9: Timing diagram for SIR operations of the proposed design.
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FIGURE 10: Performance analysis of the proposed design. (a) Execution time of the proposed design as a function of the
number of sub-filters (K'), for different number of particles (N). (b) Resource utilization in terms of the number of slice
LUTs used as a function of the number of sub-filters (K). (c) Estimation error as a function of the number of particles
(N) for the standard SIR filter without any parallelization using Algorithm (1] and the modified SIR filter with parallelization

using Algorithm [2}

E. COMPARISON WITH STATE-OF-THE-ART
IMPLEMENTATIONS

A comparison of our design with state-of-the-art implemen-
tations is provided in Table 3] To obtain a valid assessment
with other works, we have used N = 1,024 particles
(although 256 particles are sufficient for our application
as error curve levels off at N = 256 (cf. Fig. @Kc)) and
K = 8 sub-filters for comparison. The majority of current
implementation schemes use the standard SIR algorithm

Xiv

(cf. Algorithm [T)), which does not support parallelization.
Moreover, their architectures are not scalable to process
a large number of particles at the high sampling rate,
as the execution time is proportional to the number of
particles. Also, the re-sampling step is a major compu-
tational bottleneck, as it is inherently not parallelizable.
In this work, we propose a modification to the existing
algorithm that overcomes this computational bottleneck of
the PF algorithm and makes the high-speed implementation
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TABLE 3: Performance summary and comparison with state-of-the-art particle filter implementation schemes. [Table

Updated]
Number of Tims e(c:stiov?nh Sampling
Reference Application Device particles Resources 100 MHz Rate (kHz)
N)
clock
Athalye et al. . Virtex II 4.39k FFs, 3.85k LUTs,
i8] Tracking pro 2048 18 BRAMs & 13 DSPs 60.24 16
Agarwal et al. Object . 59.30k LUTs, 52 BRAMs
(10} tracl.qng in Virtex-5 31 & 2 DSPs 23.5 42.55
video
Ye and Zhang . . 13.69k FFs, 7.38 LUTs,
(1] Tracking Virtex-5 1024 13 BRAMs & 4 DSPs 21.74 46
Sileshi et al. . . 1.46k FFs, 19.12k LUTs,
(2] Localization Kintex-7 1024 86 DSPs & 260 BRAMs 55.37 18
Velmurugan . Virtex II 17.42k FFs, 30.9k LUTs
(73] Tracking pro 1000 & 3 DSPs 33.33 30
Schwiegelshohn Position 5.93k FFs, 52.41k LUTs b +
et al. [16] estimation | ZY"47020 14 & 214 DSPs 6 166.67
Brain
Mountney et Machine Not 1000 Not Provided ~11 ~ 90
al. [17] o Provided
Interfaces
3 S T :
Alam et al. Generic Virtex-6 1000 299* LUTs & 2 .BRAMS Not Provided
(18] (For re-sampling)
Tracking of
Miao et al. S&‘iﬁ?fﬁ Virtex.s 2200 43.64k FFs, 42.38k LUTS, 18,52 20.61
[19] Neural 134 BRAMs & 283 DSPs ’ ’
Activity
. . . 12.35k FFs, 10.97k LUTs * -
This Work Localization Artix-7 1024 & 16 BRAMs 5.62 178

* K = 8 sub-filters are used for the calculation.
14 real particles are used for the evaluation [16].
 On hardware, only the re-sampling stage is implemented.

possible. We introduce an additional particle routing step
(cf. Algorithm [2) allowing for parallel re-sampling. We
develop a PF architecture based on the modified algorithm
incorporating parallelization and pipelining design strategies
to reduce the execution time. Since the particle routing
step is coupled with the sampling step and the routing is
constrained between the two neighboring sub-filters, our
implementation is highly scalable and has low complexity.
In comparison, other parallel implementations suffer from
scalability issues due to the high communication overhead
between the concurrent processing elements.

Despite the difficulty of directly comparing the proposed
architecture to other implementations owing to variation
in model, application, device, and particle count (N), our
design achieves high input sampling rates, even for a large
number of particles, by scaling the number of sub-filters
K. The first hardware architecture for implementing PFs on
an FPGA was provided by Athalye et al. [8], applied to
a tracking problem. Their architecture is generic and does
not incorporate any parallelization in the design. Thus, their
architecture suffers from a low sampling rate of about 16
kHz for 2048 particles, which is approximately 11 times
lower than the sampling rate of our design. However, owing
to non-parallel architecture, the resource consumption of
their design (4.4k registers and 3.8k LUTs) is relatively
low. Agarwal et al. [10] proposed a PF architecture for

object tracking in video with 59k LUTs and a sampling
rate of around 42kHz. Another state-of-the-art system was
presented in [[11]]. The authors implemented the SIR filter
on the Xilinx Virtex-5 FPGA platform for bearings-only
tracking application and achieved a sampling rate of 46 kHz
for 1024 particles. Regarding its hardware utilization, it uses
13.6k registers and 7.3k LUTs, which are comparable to
those of our design; however, their sampling rate is four
times lower than that of our system. Sileshi et al. [12]
proposed two methods for implementing PFs on hardware.
The first method was a hardware/software (HW/SW) co-
design framework, where the software components were
implemented using an embedded MicroBlaze processor. A
PF hardware acceleration module on an FPGA was used for
the hardware portion. This HW/SW co-design approach has
a low sampling rate of about 1 kHz due to communication
overhead between the MicroBlaze soft processor and the
hardware acceleration module. Furthermore, using a large
number of parallel particle processors to speed up the design
is constrained by the number of bus interfaces available
in the soft-core processor (MicroBlaze). Thus, to improve
the sampling rate, they proposed a second approach which
is entirely a hardware design. However, their architecture
does not support parallel processing and achieves a low
sampling rate of about 18 kHz, whereas our system can
sample at 178 kHz for processing the same 1024 par-
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FIGURE 11: 2D source localization experimental result. The source is positioned at [6, 22] marked by a ’red’ circular dot. At
the start, the UGV is positioned at [38, —4]. The model is run over 250 time-steps for 256 particles, and the UGV traverses
towards the source based on sensor measurements. The final source estimate (pos;) obtained by the PF algorithm is marked
by a ’yellow’ circular dot and has an estimation error of 0.5. The probabilities « and § are set as 0.8 and 0.6, respectively.

[Figure Updated]

ticles. Their full hardware system utilizes 1.4k registers
and 19k LUTs. Velmurugan [15] proposed a fully digital
PF FPGA implementation for tracking application, without
any parallelization in the design. They used a high-level
Xilinx system generator tool to generate the VHDL code
for deployment on a Xilinx FPGA from Simulink models
or MATLAB code. Their design is not optimized in terms
of hardware utilization as they use a high-level abstraction
tool and lack flexibility to fine-tune the design. On the other
hand, our design is completely hand-coded in Verilog and
provides granular control to tweak the design parameters,
and ensures that the design can be easily integrated into a
multitude of PF applications. They achieve a sampling rate
of about 30 kHz for 1000 particles, which is six times lower
than that of our design. Further, their resource consumption
is relatively high (17.4k registers and 30.9k LUTs) as
they use high-level abstraction tools for implementation.
In other work, Schwiegelshohn et al. [16] proposed an
FPGA optimized re-sampling to support parallelism and
demonstrated the hardware implementation for meager 14
particles with 5.93k registers and 52.41k LUTs. Due to
low particle count, they achieve a sampling rate of around
166 kHz. Mountney et al. [[17] implemented a Bayesian
auxiliary particle filter algorithm (BAPF) on an FPGA for
brain machine interfaces with a 90 kHz sampling rate. Alam
et al. [18] proposed an improved multinomial re-sampling
scheme to reduce the re-sampling latency and implemented
the same on an FPGA with 299 LUTs and 2 BRAMs for 1k
particles. However, they don’t report the sampling rate of the
whole architecture. Miao et al. [[19]] introduced a probability
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hypothesis density filtering for tracking multiple sources
of neural activity. The sampling and weight update steps
are distributed over concurrent PEs, and the re-sampling is
done within a CU. The communication cost between the
multiple PEs and CU increases linearly with the number
of PEs, making the architecture not scalable to process
a large number of particles. In contrast, the re-sampling
in our architecture is local to the sub-filter and the ring
topology employed limits the communication to adjacent
sub-filters, thereby reducing the routing overhead. Their
implementation utilizes 43.6k flip flops (FFs) and 42.3k
LUTs with sampling rate of 20 kHz for 3200 particles.

Our system has a comparable resource utilization (12.3k
registers and 10.9k LUTs for 8 sub-filters) with a low
execution time of about 5.62 us and achieves a sampling
rate of about 178 kHz. Our design can be used in real-
time applications due to the low execution time. Further, to
achieve a high sampling rate even with a large number of
particles, more sub-filters can be used, as shown in Fig.
[Eka). However, this comes at the expense of additional
hardware. On the other hand, the resource utilization of our
system can go as low as 1.7k registers and 1.4k LUTSs using
a single sub-filter (cf. Table [2) for applications that have
stringent resource constraints, but at the cost of increased
execution time (cf. Fig. [I0fa)).

F. EXPERIMENTAL RESULTS

The design was implemented on an Opal Kelly board [36]
with Artix-7 FPGA for 2D source localization. The imple-
mentation result is shown in Fig. [IT] The state in this 2D
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FIGURE 13: 3D source localization experimental result. The source is positioned at [40, 5, 25], and the initial position of
the UGV is [10, 30, 0]. The model is run over 350 time-steps for 512 particles. Here, the UAV traverses in three dimensions
to move towards the source. The error between the source and the estimated location is 0.83. The probabilities o and g are

set as 0.8 and 0.4, respectively. [Figure updated]

model is 2-dimensional and incorporates position in x and y
directions. The input to the design is binary measurements
from a set of 8 photodiodes and the instantaneous position
of the UGV. Inputs are sampled and processed by the PF
system over 250 time-steps on an FPGA to estimate the
source location. We consider the probabilities o and [
to be 0.8 and 0.6, respectively. It can be seen that the
algorithm is robust enough to localize the source even with
a noise probability of 0.6. However, with an increase in
noise probability (/3), the number of time-steps or iterations
required to localize the source also increases, as shown in
Fig. [[2] The source is considered to be localized if the
estimation error is less than the predetermined threshold,
which is 2.5 in our case. The time-steps shown in Fig. [12]
are the average time required to localize the source over 500
runs. The entire design was coded in Verilog HDL, and the
design was implemented on FPGA.

All variables were translated from the floating-point to
the fixed-point representation for the implementation on
FPGA. We have used a 16-bit fixed-point representation for
particles and their associated weights. All bearing-related
information, such as the angle of the UGV and the angle
of particles used in the importance block, is represented
by a 12-bit fixed-point representation. Further, the indices
of the replicated and the discarded particles are integers
and are represented using loga(M) = 5 bits. The output
estimate of the source location (pos;) is represented using
a 16-bit representation. N = 256 particles were used for
processing. K = 8 sub-filters were used in the design
with M = 32 particles processed within each sub-filter.
M/2 = 16 particles were exchanged between the sub-
filters after the completion of every iteration as part of
the particle routing operation. The time taken to complete
SIR operations for N = 256 and K = 8 is 178 clock
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cycles. With a clock frequency of 100 MHz, the speed at
which we can process new samples is around 562 kHz,
and the execution time for SIR operation is 1.78 us. This
high sampling rate enables us to use the proposed hardware
architecture in various real-time applications.

Further, we show that the 2D source localization problem
can be extended to 3D, and we have modelled it in software
using MATLAB. This 3D model incorporates position along
the x, y, and z directions. Here, an Unmanned Aerial Vehicle
(UAV) can be utilized to localize the source. As compared to
8 sensors used in 2D localization, here we utilize 16 sensors
for scanning the entire 3D space. We consider o = 0.8 and
B = 0.4, and the model was run over 350 time-steps for
512 particles to localize the source. The result is presented
in Fig. [I3] The estimation error between the actual source
location and the estimated source location in the 3D arena
is given by:

Error = \/(posw — )%+ (posy — y)? + (pos, — z)?
15)
where, pos,,, pos, and pos, denote the estimated position of
the source obtained from PF algorithm, in the 3D Cartesian
co-ordinate system. x, y and z represent the true position
of the source in the 3D arena.

IX. CONCLUSIONS AND OUTLOOK

In this paper, we presented an architecture for the hardware
realization of PFs, particularly sampling, importance, and
re-sampling filters, on an FPGA. PFs perform better than
traditional Kalman filters in non-linear and non-Gaussian
settings. Interesting insights into the advantages of PFs,
performance comparison, and trade-offs of PFs over other
non-PF solutions are provided by [37], [38]]. However, PFs
are computationally very demanding and take a significant
amount of time to process a large number of particles;
hence, PFs are seldom used for real-time applications. In
our architecture, we try to address this issue by exploiting
parallelization and pipelining design techniques to reduce
the overall execution time, thus making the real-time im-
plementation of PFs feasible. However, a major bottleneck
in high-speed parallel implementation of the SIR filter is
the re-sampling step, as it is inherently not parallelizable and
cannot be pipelined with other operations. In this regard, we
modified the standard SIR filter to make it parallelizable.
The modified algorithm has an additional particle routing
step and utilizes several sub-filters working concurrently
and performing SIR operations independently on particles
to reduce the overall execution time. Our implementation is
highly scalable and has low complexity since the particle
routing step is integrated with the sampling step, and the
routing is confined between the two adjacent sub-filters. On
the other hand, other parallel architectures have scalability
issues due to the high communication overhead between the
concurrent processing elements.
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A performance assessment in terms of the resource uti-
lized on an FPGA, execution time, and estimation accuracy
is presented. We also compared the estimation error of
the modified SIR algorithm with that of the standard SIR
algorithm and noted that there is no significant difference
in the estimation error. The proposed architecture has a
total execution time of about 5.62 us (i.e., a sampling
rate of 178 kHz) by utilizing 8 sub-filters for processing
N = 1024 particles. We compared our design with state-of-
the-art FPGA implementation schemes and found that our
design outperforms other implementation schemes in terms
of execution time. The low execution time (i.e., high input
sampling rate) makes our architecture ideal for real-time
applications.

The proposed PF architecture is not limited to a particular
application and can be used for other applications by mod-
ifying the importance block of the sub-filter. The sampling
and re-sampling block designs are generic and can be used
for any application.

We also present a novel source localization model to
estimate the position of a source based on received sensor
measurements. Our PF implementation is robust to noise
and can predict the source position even with a high noise
probability. Experimental results show the estimated source
location with respect to the actual location for 2D and 3D
settings and demonstrate the effectiveness of the proposed
algorithm.

In recent times, there has been an increase in the uti-
lization of UGVs in several instances, such as disaster
relief, and military applications, due to reduced human
involvement and the ability to carry out the task remotely.
The proposed source localization model using PFs can
autonomously navigate and localize the source of interest
without any human intervention, which would be very
helpful in missions wherein there is an imminent threat
involved, such as locating chemical, biological or radiative
sources in an unknown environment. Further, the proposed
PF framework and its hardware realization would be useful
for the signal processing community for solving various
state estimation problems such as tracking, navigation, and
positioning in real-time.
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