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Abstract: We present a biologically inspired sound localisation system for reverberant environments
using the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear
model. The system exploits a CAR-FAC pair to pre-process binaural signals that travel through the
inherent delay line of the cascade structures, as each filter acts as a delay unit. Following the filtering,
each cochlear channel is cross-correlated with all the channels of the other cochlea using a quantised
instantaneous correlation function to form a 2-D instantaneous correlation matrix (correlogram).
The correlogram contains both interaural time difference and spectral information. The generated
correlograms are analysed using a regression neural network for localisation. We investigate the
effect of the CAR-FAC nonlinearity on the system performance by comparing it with a CAR only
version. To verify that the CAR/CAR-FAC and the quantised instantaneous correlation provide a
suitable basis with which to perform sound localisation tasks, a linear regression, an extreme learning
machine, and a convolutional neural network are trained to learn the azimuthal angle of the sound
source from the correlogram. The system is evaluated using speech data recorded in a reverberant
environment. We compare the performance of the linear CAR and nonlinear CAR-FAC models with
current sound localisation systems as well as with human performance.

Keywords: electronic cochlea; neuromorphic engineering; sound localisation; onset detection; pro-
cess innovation; ITD; ELM; CNN

1. Introduction

This work is inspired by the high accuracy and robustness with which the human
auditory system perceives sound in cluttered acoustical environments. In the human
auditory pathway, binaural signals are pre-processed in the cochlea, transformed into
neural signals in the auditory nerve (AN), and transmitted through the cochlear nucleus
(CN) to the superior olivary complex (SOC). The interaural time difference (ITD) cues of
the binaural signal are believed to be encoded in the medial superior olive (MSO) [1,2].
The neurons in the MSO receive excitation from large spherical bushy cells (SBCs) of the
CN in both the ipsilateral and contralateral side and inhibitory from the ipsilateral lateral
nucleus of the trapezoid body. The interaural level difference (ILD) cues of the binaural
signal are believed to be encoded in the lateral superior olive (LSO) [2,3]. The neurons in
the LSO receive excitation from the small SBCs of the ipsilateral CN, and inhibition from
the contralateral side relayed through inhibitory neurons in the nucleus of the trapezoid
body. The ITD and ILD are the primary cues for sound source localisation according to
the “duplex theory of sound localisation” proposed by Rayleigh in Reference [4]. Rayleigh
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theorised the ITD cues dominate at low frequencies while the ILD cues dominate at high
frequencies (in humans, above 2–3 kHz) where the wavelength is short, and the head can
act as an acoustic shadow. So far, many psychophysical experiments have shown support
for the duplex theory [2,5–11], and the duplex conception is still a standard idea for how
binaural hearing works.

To try to mimic the human auditory system in localising a sound source, biologically
inspired sound localisation systems have been proposed and developed. For example,
R. F. Lyon [12] proposed a computational model of binaural localisation and separation,
in which peaks of short-time cross-correlation functions between each channel of two
cochlear models indicate the direction of a sound source; S. A. Shamma et al. [13] proposed
a computational model including two cochlear models and a Jeffress delay line [14] to
encode the ITD cues. In a study by M. Heckmann et al. [15], both ITD cues from cross-
correlation functions and ILD cues were used for echoic and noisy environments.

Although both ITD and ILD cues are involved in human sound localisation horizon-
tally [16], hardware development mainly uses the ITD cue since it is relatively strong and
easy to obtain without any additional requirements such as a dummy head or an artificial
pinna pair. The first neuromorphic model for auditory localisation was implemented
by Lazzaro and Mead [17]. They built the Jeffress model [18] with a cochlear pair on an
analogue chip. The system created delay lines from two cochlear channels with a maximum
delay value of the maximum ITD expected and a minimum delay value equal to the system
resolution. After this, N. Bhadkamkar et al. [19] implemented a two-chip system: One
chip for a cochlear pair and the other one for a delay line model. I. Grech et al. [20] built
a three-chip system with four microphones to detect the 3-D location of a sound source.
In the system, the first chip was for the cochlear pair and ILD extraction, the second chip
was for the onset detection, and the third chip was for the ITD extraction. This system
showed a root mean square (RMS) error of 5◦ in azimuth and elevation. However, the
hardware implementation of the delay lines makes those systems large. Alternatively,
delay lines can be implemented by using the inherent characteristics of the cascade cochlear
structure. In a cascade cochlear filter model, each stage of the filter adds a certain delay
so that the cascade itself acts as a delay line. The correlations between the two cochlear
channels thus encode the ITD cues of a sound source. Such an approach was implemented
on an analogue chip in Reference [21]. They presented the formations of the 2-D cochlear
correlograms in detail, and it forms the basis of this work. Another way of obtaining ITD
cues was proposed by van Schaik and Shamma. They implemented a neuromorphic sound
localiser in Reference [22]. In the system, a delay between the positive zero-crossings of
both ears was detected, and a pulse was generated with the width equal to the delay value.
A voltage across a capacitor, proportional to the average pulse width, was obtained by
integrating over a fixed number of pulses. Once a fixed number of pulses was counted, the
capacitor was read and reset.

To emulate the robustness of the human sound localisation performance in noisy
environments, neural network algorithms are introduced to analyse the ITD cues from
cochlear models. Implementations of such auditory “where” pathways have been proposed
and developed increasingly [23–27]. For example, K. Iwasa et al. [25] and M. Kugler
et al. [26] used a competitive learning network with a pulsed neuron model (CONP) to
learn the direction of a sound source. C. Schauer et al. [28] proposed to build a spike-
based sound localisation system on Field Programmable Gate Array (FPGA). They used a
Leaky Intgrate-and-Fire (LIF) neuron model to generate spikes from a cochlear inner hair
cell output, and a delay line to extract ITD cues from the spike streams. A Winner-take-
all (WTA) network was then used to select the dominant sound source direction. Chan
et al. proposed a robotic sound localisation system using a WTA network to estimate the
direction of a sound source through the ITD cues from a cochlea pair with an address event
representation (AER) interface [27]. In recent years, deep neural networks (DNN) have
provided more accurate estimations of sound source locations from binaural cues [29–32].
For example, in S. Jiang et al. [32], simulated binaural signals were pre-processed with a
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Gammatone filter bank and used to train a DNN classifier for sound source localisation.
Although some of those systems showed small RMS errors, they used either simulated
signals or sinewaves, instead of natural sounds, such as speech signals, as the input signal.
The robust performance of biologically inspired sound localisation systems for practical
applications are yet to be tested and proved.

In this work, we present a biologically inspired sound localisation system and evaluate
its performance for a practical task: speech localisation, in a small office. We propose to use
the CAR-FAC cochlear model to generate correlograms and a regression Extreme Learning
Machine (ELM) to localise a sound source from the correlograms in Reference [33]. In
the human binaural system, a mechanism called the precedence effect is thought to allow
suppression of echoes to help localisation between a direct sound and a reflection. The
precedence effect refers to the phenomena that we perceive the location of a sound source
based on sound onset and ignore the localisation cues that follow from about 2 ms up
to 40 ms [34,35]. Inspired by this, we use an onset detection algorithm to generate the
correlogram only during the signal onset to decrease the influence of echoes. We then
proposed to use a regression convolutional neural network (CNN) for sound localisation
in Reference [36]. In this work, we describe the system in detail and investigate the effect
of the CAR-FAC nonlinearity on the system performance by comparing it with a CAR
only version. The performance of the quantised correlograms is also compared with
non-quantised correlograms. The implementation and evaluation of the system will be
described in the next sections.

2. Materials and Methods

The top-level structure of the proposed sound location system is shown in Figure 1.
A binaural CAR-FAC cochlear system is built to pre-process binaural signals. It includes
two CAR-FAC modules, and each cochlear channel is connected to a lateral inhibition (LI)
block that models the cochlear nucleus (CN) function. The two CAR-FACs act as delay
lines and the LI output from all the channels are compared with each other in parallel using
coincidence detection to model the medial superior olive (MSO) function. A sound onset
detector is used to detect signal onset so that the correlograms are only generated during
the signal onset period to decrease the influence of echoes. The onset correlograms are
analysed using a regression convolutional neural network (CNN).

2.1. Binaural CAR-FAC Pre-Processing

The CAR-FAC cochlear model was proposed in Reference [37], and a real-time re-
configurable CAR-FAC implementation on FPGA was described in References [38,39]. As
shown in Figure 1A, the CAR models the basilar membrane (BM) function using a cascade
of two-pole-two-zero resonators, H1 to HN. The poles of the two-pole-two-zero resonator
are chosen to be equally spaced along the normalised length of the cochlea according to the
Greenwood map function [40]. The FAC includes a digital outer hair cell (DOHC) model, a
digital inner hair cell (DIHC) model, and combines local instantaneous nonlinearity with a
multi-time-scale automatic gain control (AGC). In this work, to investigate the FAC effect
on the system performance, we also use the CAR only as a linear cochlear pre-processing
step to compare its performance with the CAR-FAC pre-processing. The details are de-
scribed in the Results and Discussion section. The lateral inhibition (LI) function models
the role of cochlear nucleus neurons. Here, we extend the work to implement a real-time
binaural CAR-FAC system on an Altera Cyclone V FPGA board using time multiplexing
and pipeline parallelising techniques, as shown in Figure 2. The detailed implementation of
each element of the CAR-FAC and the LI is described in References [36,38,39,41,42]. In this
work, the LI outputs from both ‘ears’ are used to generate correlogram in the Correlogram
module, and the correlogram is the system output. Other choices for the output of the
binaural CAR-FAC system include the BM and the DIHC.
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of the resonators decrease from H1 to HN. The digital outer hair cell (DOHC), the digital inner hair cell (DIHC), and the 
automatic gain control (AGC) comprise the FAC part. The DIHC output is connected to the lateral inhibition (LI) function. 
(B) The LI unit; (C) The instantaneous correlogram: the circle marked with a cross is an instantaneous correlation unit, and 
the output from all the units forms a 2-D correlogram. (D) The onset detection function; (E) The onset correlogram; a short 
period after the onset detection, 𝒕𝟏 to 𝒕𝒏, includes n instantaneous correlograms. The n instantaneous correlograms are 
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Figure 1. Architecture of the binaural sound localisation system. (A) The Cascade of Asymmetric Resonators with Fast-
Acting Compression (CAR-FAC) model, H1 to HN are the transfer functions of the CAR part, the centre frequencies (CFs)
of the resonators decrease from H1 to HN. The digital outer hair cell (DOHC), the digital inner hair cell (DIHC), and the
automatic gain control (AGC) comprise the FAC part. The DIHC output is connected to the lateral inhibition (LI) function.
(B) The LI unit; (C) The instantaneous correlogram: the circle marked with a cross is an instantaneous correlation unit, and
the output from all the units forms a 2-D correlogram. (D) The onset detection function; (E) The onset correlogram; a short
period after the onset detection, t1 to tn, includes n instantaneous correlograms. The n instantaneous correlograms are
averaged to form the onset correlogram. (F) The regression convolutional neural network (CNN); the onset correlogram is
used to train the CNN to learn the azimuthal angle of the sound source. The details of the CNN will be described later
in the Experiments and Evaluation section. In this system, the binaural CAR FAC and the onset correlogram have been
implemented on Field Programmable Gate Array (FPGA), and the onset detection and the CNN were implemented on a PC,
but can also be ported to FPGA.

The CAR-FAC response forms the basis of this system, Figure 3 presents examples
of a 70-channel CAR-FAC response to different input sounds. Figure 3A shows the BM
response to a 500 Hz sine tone at six channels, and Figure 3B shows the BM spatial response
across all the channels at time t. At higher centre frequency (CF) channels, the 500 Hz
waveform travels without significant gain, and the output shows a gradually increased
gain across those channels. As the waveform reaches the 500 Hz CF channel, a maximum
gain is shown. After this, the gain of the response reduces rapidly. Figure 3C shows the BM
response of seven channels to a “click”. The click is a short period broadband signal so that
each channel effectively shows its impulse response, and the dominant response frequency
corresponds to each channel’s CF. Additionally, the response shows an increased gain in
higher CF channels and a decreased gain in lower CF channels. Figure 3D shows the BM
spatial response across all the channels at three times, to, t1, and t2 (to < t1 < t2). Figure 3E
shows the BM response to a combined 200 Hz and 800 Hz sine wave at seven channels. At
higher CF channels, the 200 Hz and 800 Hz are both visible. At the 800 Hz CF channel, the
800 Hz signal dominates. After this, the gain of the 800 Hz tone falls rapidly and only the
200 Hz tone response is left until the 200 Hz CF channel is reached. Figure 3F shows two
strong response channels corresponding to 200 and 800 Hz across all the channels at time t.
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Figure 2. The binaural CAR-FAC system architecture. The system consists of an audio codec, a controller, a synchronisation
circuit, an external Double Data Rate Synchronous Dynamic Random Access Memory (DDR) and two ‘ears’. Each ear
includes a CAR FAC module. The system provides two ways for sound input. One way is through the SSM2603 audio codec
on the FPGA board, and a second provides recorded audio file input from the PC host through a USB 3.0 interface. There
are two clock domains in the system: a system clock domain (250 MHz) and a synchronisation clock domain (100 MHz).
The system clock domain includes the controller, the two CAR-FACs, and the Correlogram module. The synchronisation
clock domain is unique to the synchronisation unit. The external memory is a 1 GB DDR3 SDRAM on the FPGA board: it
stores the CAR-FAC output or the correlogram via a selector. The USB interface communicates between the FPGA board
and the PC, and transmits the system’s initial parameters, and, if required, the input audio file from the PC to the FPGA
board. The controller state machine determines the cochlear channel to be processed at any particular time and controls the
CAR-FAC coefficients and data for that channel. The BM_start signal controls the start of the system through the controller,
and it is triggered by the “Audio_in ready” signal. The ohc_sel is a selector switch for the CAR/CAR-FAC function. The
agc_sel is a switch for the AGC loop function. The CAR state machine calculates the CAR transfer function and controls the
DOHC and DIHC_AGC start in the system. The DOHC state machine calculates OHC function and feeds back an updated r
to the CAR. The DIHC-AGC calculates the IHC function, as well as the AGC_loop function. The AGC output b feeds back
to the DOHC module. The details of the module are presented in References [38,39]. The DIHC-LI outputs of the two ‘ears’
are used to generate correlograms in the correlogram module, which is presented in Reference [36]. The FPGA board is
hosted by a PC through the USB interface.

The mammalian cochlea exhibits an exponentially increasing delay along with the
BM [43]. The CAR-FAC model also exhibits this effect where the channel delay is propor-
tional to the inverse of the CFs for each cochlear channel and, therefore, scales exponentially.
Figure 4 shows the channel delay of a 70-channel CAR-FAC in response to a speech signal.
Figure 4A (blue line) highlights an exponentially increasing delay along the CAR-FAC
channels. The maximum delay of the 70-channel CAR-FAC delay line to speech is around
6.5 ms. The exponentially increased delay of each section is also shown in Figure 4A
(orange line). The largest section delay is in the last section, and it is around 0.5 ms.
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Figure 4B shows the DIHC-LI output over the DIHC. The LI is inspired by Refer-
ence [44] and for sharping the DIHC response temporally. The LI is implemented using a
simple discrete difference operation between adjacent channels of the DIHC output:

z(i, t) = DIHC(i, t)− DIHC(i + 1, t) (1)

where i is the cochlear channel number, t is the discrete time, and z(i, t) is the LI output.

2.2. Modelling the Medial Superior Olive Using Coincidence Detection

In this work, the MSO is modelled by instantaneous correlations between the two
CAR-FAC delay lines. At each time t, all the channels from the left CAR-FAC are compared
with the right CAR-FAC channels to form a 2-D instantaneous correlogram.

Corrlationi,j(i, j, t) = zl(i, t)× zr(j, t) (2)

Corrlationi,j(i, j, t) is the instantaneous correlation at time t between channel i of the
left CAR-FAC_L output zl(i, t) and channel j of the right CAR-FAC_R output zr(j, t).
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The instantaneous correlation is approximated by computing the quantised channel
outputs:

ˆCorri,j(i, j, t) =
{

1, i f zl(i, t)× zr(j, t) > 0
−1, i f zl(i, t)× zr(j, t) < 0

(3)

By quantising the instantaneous correlation into a binary range, the resource costs
of the hardware implementation are significantly reduced. The FPGA implementation of
the instantaneous correlations is described in Reference [36]. The device utilisation of the
binaural CAR-FAC and the correlogram implementation on the cyclone V starter kit FPGA
board is shown in Table 1.

Table 1. Device utilisation summary.

Used Available Utilisation

ALM 15,122 29,080 52%
Memory (bits) 1,826,816 4,567,040 40%

DSPs 138 150 92%

The quantised instantaneous correlation describes the correlations between two chan-
nels. Correlations of the same polarity of the two inputs produce a positive correlation
signal, and correlations of the opposite polarity of the two inputs produce a negative anti-
correlation signal. Figure 5 illustrates the quantised instantaneous correlation calculation.
At time t, channel m of CAR-FAC_L is compared with all the channels of CAR-FAC_R
(Only channel m to channel r are shown in Figure 5). The rectangular waves represent the
quantised channel output. Within the first m to n channels, the phase shift of CAR-FAC_R
with respect to channel m of CAR-FAC_L is smaller than π/2 (in-phase), then the corre-
lations between channel m of CAR-FAC_L and channel m to n of CAR-FAC_R according
to equation (2) are positive, denoting correlation. As the wave propagates further in the
cascaded structure, the CAR-FAC_R phase shift from channel n to channel p is between π/2
and 3π/2 with respect to channel m of CAR-FAC_L (counter phase). For these channels,
the correlations between the two CAR-FACs are negative, denoting anticorrelation. When
the wave travels down from channel p to channel r, the CAR-FAC_R phase shift is between
3π/2 and 5π/2 (in-phase), showing correlation again, and so forth. By computing the quan-
tised instantaneous cross-correlations, the ITD between CAR-FAC_L and CAR-FAC_R are
actually decided by the interaural phase difference (IPD) of the two cochlear channels. In
the Results and Comparisons section, the performance of the non-quantised instantaneous
correlation (2) and the quantised instantaneous correlation (3) are compared.

Figure 6 shows the formations of correlograms from different input signals with
different ITDs or IPDs. Figure 6A shows an instantaneous correlogram generated from two
200 Hz sine tones with zero delay at time t. Since the two input signals are identical, the
two cochlear outputs from each channel have the same phase. This results in the symmetric
pattern along the diagonal. The off-diagonal stripes are the results of correlation and
anticorrelation of the two cochlear channels at different phases as illustrated in Figure 5.
For example, within around the first 55 channels, the phases of CAR-FAC_R channels and
channel 1 of CAR-FAC_L are the same, the correlations between channel 1 of CAR-FAC_L
and those channels are thus positive (white). As the wave propagates further, the CAR-
FAC_R channels and channel 1 of CAR-FAC_L are counter phases, thus the correlations
between the two CAR-FACs are negative (black), which is followed by another white and
black region. Figure 6B left column shows the correlogram generated by averaging all
the instantaneous correlograms during the input signal duration (1 s). At zero delay, the
correlogram pattern shows a strong correlation stripe along the diagonal, with symmetric
off-diagonal correlation and anticorrelation patterns. Along the series of cochlear channels,
there are groups of channels in phase and in counter phase with respect to the other
cochlea. Due to the exponentially increased delay of each channel, as an example shown in
Figure 4A, the first group has more channels in phase than the second group in counter
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phase, which again has more channels than the third in-phase group, resulting in curved
off-diagonal stripes.

1 
 

 
Figure 5. Quantised instantaneous cross-correlation calculation schematic diagram: The phase shift of the CAR-FAC_R
(channel m to channel r) with respect to channel m of CAR-FAC_L at time t. The magenta circles mark the phases of different
channels at time t.

When there is a delay between the two input signals, for example, one input is delayed
by a phase of π/2, as shown in Figure 6B middle column, the strongest correlation stripe
is shifted off the diagonal towards the cochlea where the signal is delayed, and the off-
diagonal bands show an asymmetric structure. The amount of the shift is a measure of
the ITD encoded in the correlogram. When the signal is delayed by a phase shift of π, as
shown in Figure 6B right column, the input waves are in counter phase and the correlogram
pattern is symmetric to the diagonal again. The correlation and anticorrelation are exactly
opposite to the zero delay correlogram.

Figure 6C,D shows the correlogram generated from two-tone (800 Hz and 1200 Hz)
inputs. Figure 6C shows the CAR-FAC correlogram and Figure 6D shows the CAR
only correlogram. We can see strong activations at 800 Hz as well as 1200 Hz in both
Figure 6C,D). Furthermore, since the nonlinear CAR-FAC model includes cubic difference
tones (CDTs) and quadratic difference tones (QDTs) [37], an additional CDT activation at
2 × 800 − 1200 = 400 Hz is present in the CAR-FAC correlogram.

To test the correlogram patterns in complex acoustic environments, we use two copies
of a Gaussian white noise signal as the input and Figure 6E shows the results. Unlike the
sine tones, the white noise is a broadband signal with various frequency components at
different times. There is thus no regular in-phase and counter phase waveforms shown
along the cochlear channels, except for nearby channels. The correlations of nearby channels
correspond to the diagonal with the sideband region in the correlogram. As a result, at
zero delay, the white noise correlogram has no significant energy in off-diagonal regions,
but a strong correlation band along with black anticorrelation sidebands spaced from the
central correlation diagonal. When there is a delay between the two input signals, the
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strong energy band with correlation and anticorrelation stripes bends to the input that is
delayed.

1 
 

 
  

Figure 6. CAR-FAC quantised instantaneous correlogram (3) generated in response to (A) two 200 Hz sine tone at time t at
zero delay; and averaged correlogram generated over the input duration in response to (B) two 200 Hz sine tone at zero,
π/2, and π radians delay; (C) 800 Hz and 1200 Hz sine tones at 0, 0.5 ms, and 1 ms delays; (D) 800 Hz and 1200 Hz sine
tones at 0, 0.5 ms, and 1 ms delays generated using the CAR only; (E) two white noise signals at 0, 0.5 ms, and 1 ms delays;
(F) two speech signals, spoken digit “eight”, at 0, 0.5 ms, and 1 ms delays; and (G) two noisy speech signals at 0, 0.5 ms, and
1 ms noise delays. Note the speech is zero-delay in this example; (H) CAR-FAC non-quantised correlogram (2) generated in
response to the same speech as in (F).

Figure 6F shows the correlogram generated from speech signals. Similar to the noise
signal, we can see a strong energy band along the diagonal. In addition to this, off-
diagonal stripes are shown in the correlogram. This is because of the formants in the
speech cochleogram. The speech travels down along the cochlear channels, presenting
strong responses in some channels corresponding to the resonance of the human vocal
tract. The regular in-phase and counter phase delays in these channels form correlation
and anticorrelation stripes corresponding to the formants.

Figure 6G shows the CAR-FAC correlogram response to a speech signal embedded in
Gaussian white noise. The binaural noise with 0, 0.5 ms, and 1 ms delay is added to the
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speech with zero delay. The middle and lower right regions in the yellow box show the
symmetric patterns corresponding to the zero-delay speech, whereas the upper left region
in the blue box shows the high-frequency noise component patterns corresponding to the
noise with different delays.

The CAR-FAC includes a fast-acting compression via the DOHC model. This produces
an adaptively compressed cochlear output. Figure 6H shows the CAR-FAC non-quantised
correlogram highlighting the compression effect of the same speech signal as that shown in
Figure 6F. The performance of the non-quantised and quantised method is described in the
Results and Discussion sections.

2.3. Onset Detection and Onset Correlogram

To decrease interference from echoes and detect the start of a new sound source, a
sound onset detection approach is used to generate the correlogram only during the sound
onset. The onset detection starts by calculating:

∆E(t) = log 2

(
∑

n=t+step
n=t v(n)2

∑n=t
n=t−step v(n)2

)
(4)

where v(n)2 is the energy of the sound signal at time n, and step is a time window. ∆E(t) is
the logarithmic input energy change at time t. A predefined threshold ∆E(t) is compared
with ∆Eth. If ∆E(t) ≥ ∆Eth at time t, the onset time t is detected. When an onset is
detected, the onset correlogram is generated by:

ˆCorronset =
1

∆t × fs
×

t=onset+∆t

∑
t=onset

ˆCorr(t) (5)

where fs is the sampling frequency and is 44.1 kHz, onset is the detected onset time, ∆t
is a short period after the signal onset, ˆCorr(t) is the 2D instantaneous correlogram at
time t, and ˆCorronset is the averaged quantised instantaneous correlograms during ∆t. The
selection of ∆Eth, ∆t, and the time window are highly depending on the input data and
will be discussed in the Experiment and Evaluation section.

The log2 on the right side in (4) is chosen to avoid division on the hardware imple-
mentation. The log2 operation can be efficiently implemented on FPGA using a lookup
table (LUT) [45,46]. While in human hearing, the onset detection is found in the cochlear
nucleus after the cochlea, in this work, the onset detection was implemented before the
cochlear. In the hardware implementation, if the onset detection is implemented after the
cochlear, a large number of onset detectors are required (one per cochlear channel). It may
be helpful in certain conditions where the sound source dominating frequency range is
known so that the onset detection from those frequency channels will be more accurate.
However, in this work, a single onset detector was sufficient.

2.4. Regression Neural Network

The generated onset correlograms are then analysed using different regression neural
networks including linear regression, ELM, and CNN. The linear regression is as a baseline.
G. Huang et al. in Reference [47] showed that the ELM can produce good generalisation
performance in most cases and can learn thousands of times faster than conventional
popular learning algorithms for feedforward neural networks [48,49]. We have imple-
mented the ELM on FPGA [50], so with this set-up, the whole system can be implemented
in hardware. Deep CNNs running on GPU platforms represent the current state of the
art in image-related problems and natural language processing. CNNs extract important
features embedded in the input data and are increasingly computationally efficient. As
recent studies have shown the effectiveness of FPGA as a hardware accelerator for the
CNNs [51–53], the CNN in this system is to be built on FPGA as a real-time and low power
consumption system.
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The CNN is built using Theano [54], and it consists of two convolutional layers, two
pooling layers, one all-to-all connection layer and one output layer, as shown in Figure 1F.
For this regression task, the convolutional layer activation function is defined as the rectify
function, and the initial weights are set to have the HeUniform distribution [55]. 2 × 2
max-pooling is used in the two pooling layers. The all-to-all connection layer uses a tanh
activation function and the initial weights are set as the HeUniform distribution. The
output layer has one neuron with a linear activation function. In the training phase, the
loss function is defined as the squared-error loss function, and the RMSprop [56] is set as
the update rule. The configurations of the CNN are set empirically by testing different
settings that are reported to be suitable for a regression task [57,58].

3. Experiment and Evaluation
3.1. Experimental Setup

In the experiment, the binaural data were collected in a reverberant environment, as
shown in Figure 7A. In the setup, the sound source incidence angle ranging from −90◦ to
90◦ was divided into 13 locations with a 15◦ step. Two microphones were placed 0.4 m
apart from each other on the floor. A speaker was placed 0.96 m away from the centre of
the two microphones. The corresponding maximum ITD of this setup is around 1.17 ms
(0.4 m/343 m/s). It is within the range of the 70-channel CAR-FAC delay line, 6.5 ms as
explained in Figure 4. The setup is thus suitable for investigating the system. We used ten
isolated spoken digits (zero to nine) from five speakers in the AusTalk [59,60] database as
the sound source, and the spoken digits were played at all 13 locations. A PC connecting to
the two microphones recorded the speech to create a binaural signal dataset. Additionally,
we augmented the dataset by adding different band-limited noises with different Signal-to-
noise ratio (SNRs) (between 15 dBFS and 25 dBFS) and inverting the signal values in the
time domain. More details about audio data augmentation can be found in Reference [61].
Through data augmentation, the dataset was enlarged to 11,704 samples.

 

2 

 
 

 

  Figure 7. (A) Experiment setup in a reverberant environment (an office); (B) Onset detection; the log-energy change ∆E of
the spoken digit ‘six’ (blue) is shown in red and green, and the circles mark the detected onset time for each input of the
binaural signal. The first onset time t is selected to be the onset time. Adapted from Reference [33].

Figure 7B shows an example of the onset detection in the system. The logarithmic
input sound energy change ∆E(t), threshold ∆Eth, and the time window step are highly
signal- and environment-dependent. In this experiment, we found that the threshold ∆Eth
3 and step 125 ms in (3) are appropriate for most of the data and thus tend to provide
optimal performance. For binaural signals, a separated onset time is detected, and the
earliest of the two is used as the onset time. The onset correlogram then is generated 90 ms
after the onset, i.e., ∆t = 90 ms.

3.2. Results and Comparisons

In the CAR-FAC implementation, the total number of channels and the CF range are
reconfigurable. Machine hearing models typically use 60 to 100 channels in total [62]. Here,
we keep the cochlear channels to 70 and investigate different CF frequency ranges. We
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limit the upper CF to 8 kHz since the sampling frequency of the original Austalk database
is 16 kHz. We first set the lowest CF to 45 Hz, which is close to the lower frequency limit of
human hearing. Figure 8A shows generated correlograms at different azimuthal angles.
Similar to Figure 6F at zero-delay, it shows strong diagonal correlation and off-diagonal
correlation and anticorrelation patterns which correspond to formants of the input speech
at 0◦. Note that the environmental noise and echoes have resulted in non-symmetric
off-diagonal patterns in Figure 6A at zero-delay. When the input speech is played from
different azimuthal angles, the generated correlogram shows different patterns that encode
different ITD cues. Additionally, the low-frequency channels (bottom-right region) of all
the correlograms show blurred off-diagonal patterns in Figure 8A. This is because the input
speech does not contain such low-frequency components, so that there is no significant
response in these low-frequency channels, and the correlogram in these regions does not
encode much information. As we then increase the lowest CF to 500 Hz, to “cut-off” the
very low CF channels, the correlograms in these regions show noticeable correlation and
anticorrelation stripes in Figure 8B. Since there are more channels above 500 Hz range in
the 500 Hz–8 kHz setup, the whole correlogram is clearer than the 45 Hz setup.

 

3 

 
 

 

Figure 8. Onset correlogram generated from speech “eight”. (A) CAR-FAC filter CF frequency range is from 45 Hz to 8 kHz;
(B) CAR-FAC filter CF frequency range is from 500 Hz to 8 kHz. Five azimuthal angles (−90◦, −45◦, 0◦, 75◦, and 90◦) are
shown here, and correlogram generated from a binaural white noise with 1.17 ms ITD (Bottom left) and (Bottom right)
used as the input of the CNN. 14 channels on each side of the diagonal of the correlogram are selected, and the top left and
bottom right of the correlogram are discarded to form a rectangular input to the CNN. (C) Diagonal correlogram of speech
“eight” and (D) “zero” at location −90◦, −45◦, 0◦, 45◦, and 90◦.
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The generated 2-D 70 × 70 correlograms (∆t = 90 ms) are transformed to have zero
mean and fed into different regression neural networks for localisation. The dataset is
divided into a training, validation, and testing set. We use the samples from four random
speakers as the training data (9324) and the samples from the fifth speaker as the validation
(840) and testing data (1540).

Firstly, we use the correlogram generated with the 45 Hz–8 kHz CF range as the
input to the neural networks. Inspired by the white noise correlogram in Figure 6D, we
select only the diagonal region to reduce the input dimension to the neural network. The
diagonal region should encode sufficient ITD cues for the localisation. Furthermore, in this
experimental setup, the maximum ITD is 1.17 ms, as explained in the Experiment Setup
section. For a binaural white noise signal with a 1.17 ms ITD, the generated correlogram
shows a clear pattern in around 14 channels on each side of the diagonal. We, therefore,
use 14 channels on each side of the diagonal, which is 42 × 28 diagonal correlogram as the
input to the CNN, as shown in Figure 8C,D.

Figure 9 shows the performance of the tests, and the mean and the standard deviation
of the results at the 13 locations of the quantised and non-quantised correlograms generated
by the CAR and CAR-FAC models. For the ELM, the hidden layer size is set as ten times the
input size or 11,760, which is typical for such networks, and the tanh function is used as the
nonlinear activation function of the hidden neurons. For the CNN, in the first convolutional
layer, the filter number is set to 16, and the convolutional size is set to 19 × 9. In the second
convolutional layer, the filter number is set to 32, and the convolutional size is set to 5 × 5.
The all-to-all connection layer neuron number is set to 5120. The dropout is set as 0.5 to
avoid overfitting. These CNN parameters are set empirically after investigating different
configurations and selecting the parameters that result in the best regression performance.

The linear regression shows a large variation of the test localisations around the true
locations, the ELM shows improved performance over linear regression, and the CNN
shows the closest match to the true locations. Table 2 lists the standard deviation at each
location for each case. We can see an increased variance at locations of large azimuthal
angles for all the results, especially for the CNN, the largest standard deviation occurs
at locations −90◦ and 90◦. As the change of the ITD at large azimuthal angles, e.g., from
−90◦ to −75◦, is much smaller than the changes at small azimuthal angles around 0◦, the
results thus tend to show larger errors in localising the sound source at large azimuthal
angles. From the CNN results, we can see the only significant difference is at −90◦. The
non-quantised correlograms generated by both the CAR and CAR-FAC models show much
smaller standard deviations at −90◦ than the quantised correlograms, as shown in Table 2.
This is likely due to the asymmetric noise and echo interference caused by the asymmetric
office layout. Additionally, both the non-quantised and quantised correlograms generated
by the CAR show slightly smaller averaged unsigned errors than the CAR-FAC, as shown
in Table 2.

Secondly, we test correlograms from different CF ranges using the regression CNN. In
addition to the diagonal correlogram, a 2 × 2 max-pooling is also used to down-sample
the input full correlogram (70 × 70) into size 35 × 35. The RMS errors in the 0–45◦/45–90◦

ranges of the quantised and non-quantised correlograms generated by both the CAR and
CAR-FAC models are listed in Table 3. The diagonal approach tends to provide smaller
0–45◦/45–90◦ RMS errors for the 45 Hz to 8 kHz frequency range when the non-quantised
correlograms generated by both the CAR and CAR-FAC models are used. Both the max-
pooling and diagonal approaches show smaller 45−90◦ RMS errors for the 500 Hz to 8 kHz
frequency range than the 45 Hz to 8 kHz range when the quantised correlograms generated
by either the CAR or CAR-FAC models are used. Although the 500 Hz to 8 kHz CF range
correlograms show clearer patterns in Figure 8A,B than the 40 Hz to 8kHz range, the results
from Table 3 did not show significant differences in the RMS errors between them. The
CNN is able to extract essential features from both of the correlograms for localising a
sound source.
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Figure 9. Comparisons of the linear regression (top), ELM regression (middle), and CNN regression
(bottom) on the experimental data. The true location is shown in blue square, and the testing data
result is shown in red round.
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Table 2. Regression results.

Standard Deviation Avg.
Unsigned
Error (◦)−90◦ −75◦ −60◦ −45◦ −30◦ −15◦ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

CAR-FAC
Non Quantised

Correlation

Linear 33.65 29.16 18.12 18.30 18.88 17.67 15.66 19.57 19.42 21.28 22.86 27.04 24.50 19.05
ELM 22.90 17.12 11.64 13.24 12.11 11.81 11.75 11.87 14.50 12.34 12.87 18.92 15.41 13.34
CNN 6.03 5.35 4.82 4.04 3.19 1.92 0.50 1.26 1.00 0.60 0.45 3.03 4.32 2.87

CAR-FAC
Quantised
Correlation

Linear 29.00 24.90 23.13 24.64 19.63 17.00 15.81 27.56 17.70 19.59 20.24 27.62 27.10 18.76
ELM 17.58 15.67 10.87 10.21 11.07 10.99 8.05 10.52 10.68 11.88 14.51 16.40 13.30 13.06
CNN 11.37 3.03 4.96 3.86 1.04 2.79 2.02 1.92 1.16 1.94 0.61 2.32 5.22 3.11

CAR Non
Quantised
Correlation

Linear 16.98 16.70 19.18 18.44 19.39 19.61 13.66 17.83 27.81 20.99 17.83 26.00 28.10 16.84
ELM 11.53 11.23 9.10 11.10 12.15 8.92 9.51 9.9 11.55 9.87 10.92 18.96 11.40 9.35
CNN 2.76 0.99 4.21 4.80 0.84 2.66 0.38 0.58 0.39 0.16 0.31 1.91 0.33 1.25

CAR
Quantised
Correlation

Linear 24.05 20.30 23.38 16.50 14.01 17.41 14.06 17.79 17.00 20.61 19.41 21.20 20.86 16.52
ELM 12.45 10.36 9.92 8.69 8.21 7.53 5.46 7.84 7.04 11.28 8.81 11.80 10.32 8.34
CNN 6.96 4.04 3.90 2.64 0.17 0.45 0.00 0.26 0.16 0.16 0.22 3.95 1.40 2.74

Table 3. Regression results.

CF Range/Damping
Diagonal Correlogram 2×2

Max-Pooling Correlogram

RMS Error (◦) 0–45◦/45–90◦ RMS Error (◦) 0–45◦/45–90◦

CAR-FAC
Non-quantised Correlation

45 Hz–8 kHz 2.78/5.60 4.88/9.15
500 Hz–8 kHz 4.48/6.86 3.02/6.22

CAR-FAC
Quantised Correlation

45 Hz–8 kHz 2.92/7.12 3.51/7.62
500 Hz–8 kHz 2.21/6.88 2.44/6.62

CAR
Non-quantised Correlation

45 Hz–8 kHz 2.55/3.28 4.39/5.41
500 Hz–8 kHz 1.92/3.79 2.72/4.83

CAR
Quantised Correlation

45 Hz–8 kHz 1.82/5.97 2.82/4.26
500 Hz–8 kHz 3.18/3.70 3.46/4.21

Figure 10 shows the CNN results of the quantised correlograms generated by the
CAR model. With proper settings of cochlear CF ranges and pooling approaches, the
quantised correlograms show reduced standard deviations at large azimuthal angles and
excellent matches to the true sound source locations. For example, the 500 Hz to 8 kHz
frequency range shows smaller standard deviation than the 40 Hz to 8 kHz frequency range
at −90◦ when the diagonal correlogram is used, which indicates our simplest hardware
implementation is sufficient for this task.

Table 4 shows comparisons of the proposed system with other biologically inspired
sound localisation systems [26,63,64]. Human sound localisation performance reported in
Reference [65] is also included in the table.
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Figure 10. CNN results with different CAR configurations and different quantised correlogram inputs. 
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Figure 10. CNN results with different CAR configurations and different quantised correlogram inputs.

Table 4. Comparisons of sound localisation systems.

System Mic Cues Stimulus
Accuracy

Approach
0–45◦/45–90◦

[17] 2 ITD Periodic clicks
(475 Hz) N/A Two silicon cochlear models and the

Jeffress model on chip

[21] 2 ITD Sine tones, white
noises, and vowels N/A Instantaneous cross correlation with two

silicon cochlear models on chip

[23] 2 ITD N/A N/A
Propose FPGA implementation of the

cochlear model, LIF neuron model and
WTA network

[20] 4 IPD, IED, IID,
Spectral cues Impulse 5◦ RMS error

(azimuth and elevation)

Three-chip system; One for onset
detection, one for BPF bank and IED/IID

cue extraction, and one for
cross-correlation, IPD

[22] 2 ITD (50–300 Hz) sounds 3◦/12◦ RMS error Two silicon cochleae, zero-crossing

[63] 4 ITD <300 Hz 3◦/8◦ RMS error Digital delay line on chip

[26] 2 ITD FM Noise,
Alarm Bell

FM Noise * RMS error
9.27◦/12.48◦

Alarm Bell * 42.7◦/54.76◦
Delay line and CONP on FPGA

[64] 2 IID Pure tones 1.09◦/0.70◦

RMS error
Event-based cochleae, IID,

“head” movement

[27] 2 ITD Noise,
Sine tones 2.7◦/5.5◦ RMS error Two silicon cochleae (AER-EAR)

This work 2 ITD(IPD) Spoken digits in
office

2.82◦/4.26◦ RMS error
Or 1.32◦/2.93◦

unsigned average error

CAR pair
CNN

Human [62] 2
ears

Binaural
processing

Broadband sound
sources

4.03◦/7.03◦ azimuth **
unsigned average error

Brief (150 ms) sound presented in front
of 6 subjects in a free field

* The RMS error is converted from the recognition rates in Reference [26]. ** The unsigned average error is converted from TABLE I in
References [65,66] at 5◦ elevation.
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4. Discussion

In this paper, we have presented a biologically inspired binaural sound localisation
system for reverberant environments. It uses a binaural CAR-FAC system to pre-process
the binaural signal, 2-D correlograms to encode the interaural time difference (ITD) cues,
and a regression network to learn the azimuthal angle of the sound source. We found that
in this application, the nonlinearity of the FAC did not improve performance. The linear
CAR model showed smaller averaged unsigned errors.

This work provides a baseline of binaural sound localisation using the CAR and CAR-
FAC in a reverberant environment. As such, most of the parameters of the CAR and CAR-
FAC, the onset detection, and the CNN were empirically chosen for the best performance
under the investigated environments. For example, the CAR-FAC are configurated to a
70-channel ‘delay line’ with a propagation delay of 6.5 ms, and more channels can extend
the delay for a higher ITD detecting range. The delay also changes when you choose
different CF ranges. The onset detection is used to decrease interference from echoes and
detect the start of a new sound source.

The use of quantised instantaneous correlations makes the system easily imple-
mentable on hardware without much performance loss, as shown in Figure 9. A pos-
sible further improvement of correlogram generation for noisier environments is to set a
threshold in the quantisation in (3) to decrease noise sensitivity. The ELM results show the
quantised correlograms from both the CAR and CAR-FAC are able to provide a suitable
basis with which to perform sound localisation tasks. The use of the CNN significantly
improves the system accuracy. The CNN is able to extract essential features from the noisy
correlogram for localising a sound source. The correlogram is able to encode the formants
of speech signals, so that the system can be extended to other auditory tasks such as
speech recognition. From Figure 6G, we have seen that with the CAR-FAC pre-processing,
different frequency components from different sound source locations can form different
patterns in different correlogram regions. Another potential application of this system can
thus be sound source segregation.

5. Conclusions

We present a biologically inspired sound localisation system for reverberant envi-
ronments and investigate its performance using speech data recorded in our office. We
investigated the CAR-FAC configurations, correlogram generation approaches, and re-
gression networks of the system. We found quantised 2-D correlograms generated from
a binaural CAR system and analysed with a CNN have shown small RMS localisation
errors. Therefore, in such high SNR conditions, a linear CAR with a quantised correlogram
generation can provide sufficient accuracy with less hardware resource constraints.
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