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Abstract

The mammalian spatial navigation system is characterized by an initial divergence of internal representations, with disparate
classes of neurons responding to distinct features including location, speed, borders and head direction; an ensuing convergence finally
enables navigation and path integration. Here, we report the algorithmic and hardware implementation of biomimetic neural structures
encompassing a feed-forward trimodular, multi-layer architecture representing grid-cell, place-cell and decoding modules for navigation.
The grid-cell module comprised of neurons that fired in a grid-like pattern, and was built of distinct layers that constituted the dorsoventral
span of the medial entorhinal cortex. Each layer was built as an independent continuous attractor network with distinct grid-field spatial
scales. The place-cell module comprised of neurons that fired at one or few spatial locations, organized into different clusters based
on convergent modular inputs from different grid-cell layers, replicating the gradient in place-field size along the hippocampal dorso-
ventral axis. The decoding module, a two-layer neural network that constitutes the convergence of the divergent representations in
preceding modules, received inputs from the place-cell module and provided specific coordinates of the navigating object. After vital
design optimizations involving all modules, we implemented the tri-modular structure on Zynq Ultrascale+ field-programmable gate array
silicon chip, and demonstrated its capacity in precisely estimating the navigational trajectory with minimal overall resource consumption
involving a mere 2.92% Look Up Table utilization. Our implementation of a biomimetic, digital spatial navigation system is stable, reliable,
reconfigurable, real-time with execution time of about 32 s for 100k input samples (in contrast to 40 minutes on Intel Core i7-7700 CPU
with 8 cores clocking at 3.60 GHz) and thus can be deployed for autonomous-robotic navigation without requiring additional sensors.
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1 Introduction
Efficient spatial navigation is extremely essential for the survival of most animals and insects as these organisms actively
navigate through the environment in search of food, mating partners or favourable surroundings. The spatial navigation
system of the brain comprised of multiple brain regions including the hippocampus, the entorhinal and retrosplenial
cortices [1]–[8]. These brain regions are equipped with numerous spatially selective cell types such as grid cells [5], [6],
place cells [2], [3], head-directions cells [9], [10], boundary-vector or border cells [11], [12] and many more [13], [14].
Specifically, grid cells, which exhibit multiple firing fields in a regular hexagonal or triangular pattern in open spaces, have
been implicated in path integration [6], [15]–[20]. Place cells, on the other hand, exhibit single or few firing fields in the
explored environment and are considered to encode the current location of organisms with respect to the environment [2],
[3], [21]–[26]. Together, interactions among these cells have been postulated to guide the computation of current location
of an organism even in the absence of sensory inputs by using self-motion cues [27]–[29]. Of the many models which can
produce grid cells firing pattern [17], [18], [30]–[36], experimental studies provide strong lines of evidence in support of
a continuous attractor network (CAN) model for explaining the grid cell activity [37]–[39]. Therefore, the CAN model is
a widely accepted model to describe the grid cell activities as well as used to further understand the nuances associated
with grid cell computation and path integration [39]–[45]. But, being a network model with huge synaptic connectivity,
the computation time often becomes unrealistic, especially for large networks. Hence, there is a need to develop real-
time computing hardware implementation of network of grid cells and place cells. From the applications standpoint of
autonomous robotic navigation, which requires constant update about novel environments, a model for spatial navigation
needs to include computations based on both grid cells and place cells. There have been prior attempts for implementing
both, the grid cell activity individually or the complete models of spatial navigation on hardware. But, most of the grid
cell hardware implementations lack the physiological details present in the brain especially in terms of the emergence of
grid cells within a continuous attractor network framework [46]–[57]. Lastly, brain-inspired computation often provides an
optimal solution for computational problems such as autonomous robotic spatial navigation. In this study, we report the
successful development of a model for spatial navigation based on grid cell activity derived from a CAN model and place
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cell activity derived from the modular inputs from these grid cells. We test this model for decoding efficiency of location
tracking in arbitrary arenas and ultimately implement the model employing field programmable gate array (FPGA) based
hardware.

Prior hardware implementations have either taken an analog approach [51], [55] or have not implemented the complete
models for spatial navigation [51], [53]. Aggarwal [55] built the silicon hippocampal formation with three analog chips,
a strip ring chip, a grid cell chip based on the GRIDSmap model and the place chip based on Bayesian integration. Our
design utilizes time-multiplexing of neurons and uses a small number of LUTs. The entire design fits on the same FPGA
fabric, thereby avoiding off-chip communication. Massoud and Horiuchi [51] implemented an analog VLSI circuit that just
generates the hexagonal or triangular grid pattern using continuous attractor dynamics. While analog designs are limited
by accuracy, precision, scalability and are not immune to process variations, our digital implementation of the spatial
navigation system on FPGA overcomes these drawbacks. Furthermore, our design has the complete model of grid cells,
place cells, and a decoding module that is capable of learning new paths and predicting the animal’s position in space.

1.1 Our contribution
The work presented here has two significant contributions: (i) We propose a novel, brain-inspired spatial navigation model
employing grid cells and place cells, (ii) We develop a hardware architecture to implement the proposed spatial navigation
model on FPGA.

To begin with, we present the top-level architecture of the proposed brain-inspired spatial navigation model consisting
of a grid cell, place cell, and a decoding module. The grid cell activity is modelled using Continuous Attractor Network
(CAN) model. We propose certain enhancements to the current CAN model by introducing a novel step-like ring of
inhibitory connectivity to regulate the neuron’s outgoing weights. The CAN model with this type of connectivity has
never been implemented on hardware before. Compared to the conventional "Mexican-Hat" connectivity, the proposed
connectivity has low computational cost and can be easily implemented on hardware. Next, we introduce a place module
that integrates modular inputs from grid cells, and the decoding module implemented using a two layer neural network to
predict the trajectory explored in an arena using place cell inputs. Our architecture offers the complete spatial navigation
model of grid cells, place cells and a decoding module which is not proposed in the prior studies.

We then present the hardware architecture for individual modules of the proposed model. The key features of the
proposed architecture are:
• Low resource utilization: We leverage on the high speed of modern FPGAs to process large number of neurons without

substantially increasing hardware resources, by incorporating time-multiplexing approach. Using this technique, it is not
necessary to implement all neurons physically on silicon, instead we implement few neurons on hardware and re-use the
same to emulate all neurons in time, thus saving the resource utilization on the hardware. Further the multiplication of
the synaptic inputs with synaptic weights are replaced by the shift operation inside the grid cell and place cell modules.
This multiplier-less design strategy helps in reducing FPGA resources substantially.

• Reliability: Our system is a fully digital design and is largely immune to process variations and device mismatch, which
are the key problems faced by large-scale analog and mixed-signal designs.

• Real-time: Contrary to software-based implementations, our FPGA-based model can perform computations in real-time,
enabling the system to be deployed for robotic navigation application.

• Flexibility: Owing to the programmable nature of FPGA the design can be easily reconfigured for different configurations.
We have successfully implemented the proposed spatial navigation model on Zynq Ultrascale+ FPGA. The architectures

presented here have contributed to the development of the first fully digital hardware (FPGA) prototype for the spatial
navigation using grid cells and place cells. The rest of the paper is organised as follows: We provide the top-level
architecture of the proposed model and explain the mathematical formulation of grid cells and place cells in Section 2. The
architectures for implementing the proposed model on hardware is provided in Section 3. Sensitivity analysis, evaluation of
decoding efficiency and the FPGA resource utilization of the proposed model is provided in Section 4. Section 5 concludes
the paper and presents the potential implications of this work and future outlook.

2 Methods and materials
2.1 Virtual trajectories
Simulation and analysis of grid cell activity with a Continuous Attractor Network (CAN) model requires a rat trajectory in
a large open field (3×3 m of square arena and 3 m diameter of the circular arena for our analysis). But trajectories recorded
from real rat run in an open arena are often very slow and require a lot of time to explore the whole arena. Additionally,
running such a long simulation for a huge network with extensive connectivity, such as in the CAN model, becomes very
difficult. Hence to reduce the time of simulation and computation, we employed virtual trajectories developed earlier [58]
using the following algorithm:
1) Rat starts at (x0 = 1, y0 = 1) of square or circular arena.
2) The initial distance (d0) covered by the rat is picked from a uniform distribution (d0 ∈ (0, 0.004)) and the initial angle

(A0) is picked from a uniform distribution (A0 ∈ (0, 2π)).
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3) The coordinates of first step of rat movement x1 and y1 are calculated by:

x1 = x0 + d0sin(A0)

y1 = y0 + d0cos(A0)

4) Afterwards, at each time step, a random variable denoting distance is picked from a uniform distribution (dt ∈
(0, 0.004)) and another random variable denoting the angle of movement is picked from another uniform distribution
of (At ∈ (π/36, π/36)). The new coordinates are updated by:

xt = xt−1 + dtsin(At)

yt = yt−1 + dtcos(At)

5) If xt and yt are more than the bounds of the arena (3× 3 m of square arena and 3 m diameter of the circular arena), the
dt and At are re-picked until the xt and yt are inside the bounds of the arena.

6) If rat is near the boundary of arena, the At random variable was picked from a uniform distribution of (At ∈ (0, 2π))
instead of uniform distribution of (At ∈ (π/36, π/36)). This additional constraint ensured that at the edges of arena
there is enough turn in the trajectory to mimic real rat run in an open arena [58].

In a previous study [58], it has been shown that these virtual trajectories closely mimic the real rat trajectories and provides
better control over simulation parameters. The need, and preference over completely randomized movement, for these
rat-like trajectories arose from the requirement for head direction inputs for grid cell computation [30]. In the absence of
such smooth rat-like trajectories, the head direction cells would provide inputs to the grid cells that are drastically changing
every timestep of the simulation, thus destabilizing grid cell activity. 20 such virtual trajectories, with different seed values,
in open square arena of size 3× 3 m and one 3 m diameter circular arena were employed with above given equation and
used in this study.

2.2 Top level architecture
There are three distinct modules in this spatial navigation model, namely, the grid cell module, the place cell module and a
decoding module as shown in Fig. 1. The input to the model is velocity V = [Vx, Vy], where Vx and Vy are the components
of velocity along x and y axes. The grid cell module includes multiple layers of grid cell networks, broadly mapping on
to the dorso-ventral axis of the medial entorhinal cortex. Specifically, there is experimental evidence that grid cells in the
MEC are arranged in increasing order of grid field size and spacing along the dorso-ventral axis [59]–[62]. To replicate this
biological feature in our model, we designed different layers of grid cell network to be endowed with unique grid field size
and spacing, with systematic increase in these grid cell properties to reflect the dorso-ventral arrangement in rodents. To
accomplish this, we simulated grid cell activity in each of these layers (number of grid cell network layers are five, unless
specified) using independent continuous attractor network models with different parametric regimes. It is known that the
grid cell macroscopic modules along the dorsoventral axis have increase in grid field size and spacing in progressive ratio
of 1.4 to 1.7. We have adjusted the width of inhibitory connection within the grid cell network to maintain this spatial
period ratio [63]–[67].

Turning to the place-cell module which represents hippocampal neurons, it is known that similar dorso-ventral
modularity exists in size of firing field of hippocampal place cells, with ventral neurons exhibiting larger place field
sizes [68]. To mimic this, we imposed modular connectivity from the grid-cell network layers to neurons in the place-cell
modules along the dorso-ventral axis. Although neurons within the continuous attractor models of individual grid-cell
layers were endowed strong connectivity, neurons within the place-cell modules did not possess recurrent connectivity.
Each place cell receives one input from each grid cell layer which ultimately provides input to decoding module. The
decoding module was designed as two-layer neural network with one hidden layer and an output layer. The hidden layer
was composed of 150 neurons and the output layer consists of 2 neurons to estimate the position ẑ = (x̂, ŷ) in a 2D
Cartesian co-ordinate system.

2.3 Grid cell module: CAN model for grid cell activity
Grid cell activity is simulated using a modified version of a 2D continuous attractor model developed by Burak and Fiete
[30]. Here, we have explained the CAN model briefly and with appropriate modifications. The rate-based neurons in the
network are recipient of inputs from two sources, namely, the feed-forward velocity dependent input and intra-network
synaptic inputs. The intra-network synaptic inputs follow centre-shifted “Mexican Hat” or “centre-surround” connectivity
in a toroidal network. If we assume the network to be a 2D sheet (open up the toroid), the network size for each grid-cell
layer, unless stated otherwise, is 30× 30 = 900 neurons (n× n = N). Each neuron in the network layer is endowed with
a preferred direction θi or assumed to receive selective inputs from head direction cell with preferred direction θi. θi can
take values of 0, π/2, π and 3π/2 depicting east, north, west and south respectively. These four types of direction specific
cells (repeating local block of four cells with each direction) further uniformly tiled the entire network. The classical way
to introduce Mexican Hat connectivity is to employ the difference of Gaussians:

Wij = W0(xi − xj − lêθj ) (1)
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Fig. 1: Top level architecture comprising of the grid-cell, the place-cell and the decoding module. (A) A schematic illustration
of rodent brain highlighting the hippocampus (blue) and the medial entorhinal cortex (MEC) (red). (B) Top level architecture
for the proposed brain-inspired trimodular model of spatial navigation. The velocity inputs of a virtual rodent or object
navigating in an open arena are fed into the first module of the model, a multi-layer, continuous attractor network based,
grid-cell module (red, dashed box). The modular outputs from the different layers of grid-cell module are integrated in
individual cells of place-cell module (blue, dashed box). A two-layer neural network received inputs from individual cells
of the place-cell module and provide the predicted coordinate of navigating virtual rodent or object, is used as decoding
module (magenta, dashed box). (C) The example outputs of the three modules are depicted as grid cell spikes (red, left)
from a single neuron in the grid-cell module, place cell spikes (blue, centre) from a single neuron in the the place-cell
module and the predicted trajectory using decoding module (magenta, right). The original trajectory of navigating rodent
or object in an open arena of 3× 3 m is shown with grey colour.

where,
W0(x) = ae−γ|x|

2

− e−β|x|
2

(2)

Wij represents the synaptic weight from neuron j to i. This weight matrix was endowed with center-surround connectivity,
with center shifted by x − lêθj . a = 1 (a = 1 defines an all-inhibitory network, a > 1, suggests excitatory connections in
addition to inhibitory connections), γ = 1.1 × β, β = 3/λ2, where λ is the periodicity of the lattice in the neural sheet
and êθj defines the unit vector pointing along the θj direction. However, as the aim of this study is to implement this type
of grid cell computation on a neuromorphic hardware setup, implementing such a difference of Gaussians weight matrix
on hardware is computationally very expensive. Hence, we developed a novel abstraction to implement centre-surround



5

A BA

Fig. 2: Network connectivity for emergence of grid cell activity: 2D (top) and 1D (bottom) schematic depiction of the
outgoing weights of a neuron in the network. All neurons in the network have same outgoing connectivity pattern except
the individual direction preference dependent asymmetry. (A) Mexican-Hat Connectivity with β = 3/λ2; where λ defines
the periodicity of triangular or hexagonal repetitive activity pattern formed on neural lattice. (B) Step-like ring of inhibitory
connectivity with |∆1 −∆2| defines the periodicity of triangular or hexagonal repetitive activity pattern formed on neural
lattice.

connectivity whereby we replaced the Mexican-Hat weight matrix with a “step-like” ring of inhibitory connectivity:

W0(x) =

{
−ω, if ∆1 ≤|x| ≤ ∆2.

0, otherwise.
(3)

where, ω is the depth of “step-like” ring of inhibitory connectivity and denotes the strength of inhibitory synaptic weight.
∆1 and ∆2 denotes the inner and outer radius of ring of inhibition from the center of a cell respectively as shown in Fig.
2. The width of the ring of inhibition is given by |∆1 −∆2|. In all simulations and hardware implementation we used,
ω = 1/32 ≈ 0.03.

Feed-forward velocity-based inputs are computed as:

Bi = (1 + αêθjV ) (4)

where, α is a velocity scaling factor, V is the velocity of rodent running and êθj defines the unit vector pointing along
the θj direction. If l = 0 or α = 0, a static repetitive triangular pattern will be formed over the neural lattice. Non zero l
and α lead to coupling of velocity with neural dynamics. l defines the shift in the outgoing weights based on Mexican-hat
connectivity and is fixed at 2, while the velocity scaling factor (α) is fixed at 60. Following equation describes the dynamics
of rate-based neurons for computing both inputs:

τ
dsi
dt

+ si = f

∑
j

Wijsj +Bi

 (5)

where, f is a simple rectification non-linearity representing the neural transfer function such that: f(x) = x for x > 0, and
is 0 otherwise. si denotes the current synaptic activation of neuron i at time point t. τ denotes the time constant of neural
response and dt denotes time step for numeric integration. Unless specified the ratio τ/dt was fixed at 16. Activity (S) of
all the neurons were recorded over each time step.

The grid cell model employed in this study is a rate-based mean-field continuous attractor network model, which is
directly adopted from Burak and Fiete [30]. In this model, the synaptic temporal dynamics in not explicitly modelled,
rather at every time step, the synaptic transfer is a scaled version of the neuronal output based on the connectivity weight
matrix. Nevertheless, the neuronal output has its own low-pass filtering or integrator temporal dynamics.

Each layer of grid cell CAN model is initialized with randomized input (S0 ∈ (0, 1)) to all the cells. To ensure the
reproducibility of the results, the initial randomized inputs were saved. Initial constant feed-forward drive (V = 0 for first
100 input samples) ensured that a stable spontaneous activity pattern is formed over the neural lattice. The output of each
neuron in the network will be a grid cell like firing in 2D open arena and will act as input to the place cell module.
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2.4 Place cell module: Single place cell dynamics
The dynamics of a place cell is given by:

pk =
L∑
l=1

W
(l)
k s(l) (6)

W
(l)
k represents the synaptic weight from a neuron of grid cell layer l to neuron k in the place cell network. s(l) denotes

synaptic activation of a neuron in grid cell layer l. The total number grid cell layers utilized for generating place cell
response is given by parameter L which is set to five in this work. pk denotes the activity of place neuron k. 250 neurons
are used in the place cell network and each neuron receives one input from each grid layer and it is linearly added
to generate the place cell activation. Layers in grid cell module have multiple spatial scales with unique grid field size
and spacing. In order to retain multiple spatial scales across place cell network, we divided the place cell neurons into
five clusters with 50 neurons present in each cluster. As grid-cell layers and place-cell clusters were employed to mimic
dorso-ventral structure, the number of place-cell clusters was chosen to be same as the number of grid layers. To impose
modularity of dorso-ventral connectivity, each place-cell cluster was endowed with different grid-to-place synaptic weights
such that one of the inputs to the place cell from a single grid layer was assigned higher weight compared to inputs from
other layers. Specifically, neurons present in place-cell cluster g receives input with the weight W (g)

k = 1 from layer g and
input weights from other layers W (l 6=g)

k = 0.25. Such modular weight organization reflecting dorso-ventral connectivity
aids in endowing our framework to span multiple scales of place field sizes, in a manner that mimics the anatomy and
physiology of the entorhinal-hippocampal network.

The grid cell-to-place cell models often consider (e.g., Solstad et al. [28]) that a single place cell receives input
from multiple grid cells with heterogeneous properties. In addition, our model accounts for the biological dorso-ventral
organization of the grid-cell network, whereby grid cells in the dorsal entorhinal cortex have smaller grid fields compared
to those in the ventral entorhinal cortex. However, in many of these grid cell-to-place cell models (e.g., Solstad et al.
[28]), the grid phase of all these grid cells projecting to a place cell are considered to be similar, which is not based on
physiological or anatomical evidence. To avoid such artificial constraints, we randomized the grid cell selection from each
layer, which constitutes an important novelty of our approach demonstrating that convergence of randomized grid-cell
inputs (of different scales and grid phase) could yield place-cell firing fields. The details of hardware implementation of
place cells is provided in Section 3.2.

2.5 Decoding module: Artificial neural network
Decoding module is implemented using a two layer fully connected neural network with 150 hidden neurons and 2 output
neurons. Place cell activations, which are 250 in this case, are fed as the input to the neural network and the network outputs
the estimated position of the rodent, ẑ = (x̂, ŷ) in 2D Cartesian co-ordinate system. Activation of hidden layer neurons in
a network is given by:

a[H] = f [H]
(
W [H] ∗X + b[H]

)
(7)

where, a[H] is a vector containing activation of all hidden layer neurons i.e, a[H] = [a
[H]
1 , a

[H]
2 , · · · a[H]

150]T . a[H]
i is the

activation of hidden layer neuron i. f [H] is the non-linear activation function employed for hidden layer neurons and we
have used Rectified Linear Unit (ReLU) activation function as it can be easily implemented on hardware. b[h] represents
the biases of hidden neurons. X is the input vector which contains activation of all place cells i.e, X = [p1, p2, · · · p250]T .
W [H] is the weight matrix containing weights from the input layer to the hidden layer and has dimension [150× 250].

Activation of output layer neurons is given by:

a[O] = f [O]
(
W [O] ∗ a[H] + b[O]

)
(8)

where, a[O] is a vector containing activation of output neurons (a[O] = [a
[O]
1 , a

[O]
2 ]T ). W [O] is the weight matrix having

weights from the hidden layer to the output layer and has dimension [2× 150]. b[O] denotes the biases of output neurons.
f [O] is the linear activation function employed for the output layer. The final position estimate of the rodent is given by:

ẑ = [a
[O]
1 , a

[O]
2 ] = [x̂, ŷ] (9)

Training of the neural network was done offline using standard back-propagation algorithm [69] and the desired
weights and biases obtained are stored in the memory on FPGA. Hardware implementation details of the decoding module
is provided in Section 3.3.

2.6 Spatial map analysis of grid cell and place cell activity
Spatial rate maps of grid cell activity were computed by dividing the arena into 100 × 100 bins. For a particular bin, the
activity (si) of a specific grid cell (cell i) is added for entire duration of the simulation. This activity is normalized by the
probability of finding the rodent in the bin under consideration (occupancy). This process is repeated for all the bins to
make the spatial rate maps for an individual grid cell (cell i). Likewise, spatial maps of all the grid cells in each layer were
computed. An identical process was employed for computation of the spatial rate map for all place cells using 40×40 bins.
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3 Hardware implementation
As mentioned earlier the top level architecture for spatial navigation has three distinct modules namely a grid cell module,
a place cell module and a decoding module. A grid cell module is made of multiple layers of grid cell networks responsible
for generating grid cell activity with different spatial scales. The output of the grid cell module is fed as the input to the
place cell network to generate the place cell activity which is ultimately given to the decoding module to estimate the
position of the rodent in a 2D arena. In this section, we provide the hardware architecture and implementation details of
grid cell, place cell and decoding modules. The grid cell and place cell modules are implemented using Verilog Hardware
Description Language (HDL) and the decoding module is realised using Vivado High-Level Synthesis (HLS).

3.1 Grid cell module
A grid cell module estimates the neuronal outputs of each grid cell of five layers with 900 neurons present in each layer.
Thus, the total number of neurons processed inside the grid cell module is 5 × 900 = 4500 neurons. Each layer has a
different spatial scale with distinct size and spacing of the grid fields. The top level architecture of the grid cell module
is shown in Fig. 3. The architecture utilizes four main sub-modules, namely, a connectivity matrix, a temporary buffer, a
neuron array and a memory block. A connectivity matrix module stores the indices of other neurons from which a neuron
receives its inhibitory input for all 4500 neurons. It is developed using five Read Only Memory (ROM) blocks to store the
indices for five layers. A detailed explanation of the connectivity matrix module is provided in Section 3.1.1. A temporary
buffer is used to store the current activation states of neurons and it is developed using the block Random Access Memory
(RAM) units with each of depth 900. A neuron array is the main computation block consisting of 60 neurons working
in parallel to estimate the neuronal activations of the next time step. We exploit the high speed of modern FPGA in our
architecture and thus, we do not have to physically implement all 4500 neurons; rather, we only have 60 physical neurons
implemented on the hardware. We use the time-multiplexing approach and re-use 60 physical neurons implemented on
hardware to estimate activations of 4500 neurons in time. This approach has low resource utilization and consumes less
area on digital hardware. A detailed explanation of a single neuron architecture that implements Eq. 5 is provided in
Section 3.1.2. The memory module shown in Fig. 3 is used to save the updated neuronal activations of the next time step.
It is developed using five block RAM units each of depth 900 to store the activations of five layers.
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Fig. 3: Grid cell module architecture. The design consists of a connectivity matrix module to store the indices of neurons,
a temporary buffer to store current activation states of neurons, a neuron array to perform neural computation given by
Eq. 5 and a memory module to save the updated activations of neurons. Sequence of operations performed within the
architecture is illustrated in Fig. 4.

.

A flowchart in Fig. 4 demonstrates the sequence of operations performed within the grid cell module to estimate the
neuronal activations. In the first iteration, the contents of each RAM in the memory module are initialized with randomized
neurons’ state variables. Then the Sel (Select) control signal of the multiplexer at the output of the memory module is made
1 to load the contents of layer 1 RAM in the memory module to the temporary buffer. After loading, each block RAM unit
in the temporary buffer holds current activation states of 900 neurons present in layer 1. Then the current activation states
are updated inside the neuron array with 60 physical neurons parallelly. Each neuron in a neuron array receives a feed
forward velocity input (B) and the inhibitory inputs from a certain set of surrounding neurons governed by the step-like
ring of inhibitory connectivity. The indices of these specific set of surrounding neurons are provided by the connectivity
matrix module. To extract the corresponding activations of these specific surrounding neurons we feed indices obtained
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from the connectivity matrix module as the read address to RAMs in the temporary buffer. Since we have 60 neurons
working in parallel, we use 60 RAM units in the temporary buffer and perform 60 parallel reads to obtain the current
activations of surrounding neurons concurrently. A neuron array updates the current activations of the first 60 neurons,
and since we can not store all the 60 values concurrently in RAM inside the memory block, we use a parallel to serial block,
which converts parallel inputs to the serial output stream. The parallel to serial block is implemented using a shift register
in which the data is simultaneously loaded onto individual registers and then the block of data is sent out serially. The
output stream from the parallel to serial block is saved in the first 60 locations of layer 1 RAM in the memory module. In
the next stage, we update the activations of the next 60 neurons in the neuron array and save them in the memory module.
This process of reading the current activation states from the buffer, updating the activations in a neuron array and saving
them back to the memory is repeated for 900/60 = 15 iterations to the update activation of all 900 neurons in layer 1. After
layer 1 activations are updated, we repeat the above procedure from the start to update the activations of other layers. The
temporary buffer is loaded only at the start of the computation of a particular layer and it is not necessary to load in every
iteration. After completing the computations for all five layers, we use these updated activations stored in the memory
module to evaluate the place cell activations inside the place module.

Load temporary buffer 

Read data from buffer and compute
activations of 60 neurons inside neuron

array

Serially save neuron
activations in the memory  

Check 
if computation of all 

900 neurons is
done ?

Start

Check 
if computation of all 

5 layers is
done ?

Done

True

False

True

False

Start

Fig. 4: Flowchart illustrating the sequence of operations carried out by the grid cell module.

3.1.1 Connectivity matrix module
A neuron receives inhibitory inputs from a certain set of surrounding neurons which is governed by a step-like ring
of inhibitory connectivity. The indices of these specific set of surrounding neurons are stored in the connectivity matrix
module. Since each neuron has its unique input connectivity pattern with other neurons we have to store m(l)×900 indices
for all 900 neurons in a grid cell layer l with m(l) number of inhibitory inputs or connections per neuron. In addition to
storing the indices of neurons which provides the input, we also store the index of the receiving neuron for which current
activation states are updated. The contents of the single ROM inside the connectivity matrix module is shown in Fig. (5).

The first row of the ROM is used to store the indices of the first 60 neurons and the following m(l) rows are used to
store the indices of other neurons, which provides the input to the first 60 neurons. Following which, we store the indices
of the next 60 neurons and their corresponding indices of the input neurons in the subsequent rows. In this way, we
store the indices of all 900 neurons and their corresponding indices of the input neurons. The total depth of the ROM is
m(l)× 15 + 15. 10 bits are used to store the index of a neuron and since we have 60 indices stored in a row the width of the
ROM is 600 bits. At every clock cycle, a row is read from the ROM which gives the indices for 60 neurons and these indices
are used as the read address of RAMs in the temporary buffer to extract their corresponding current activation states. Since
we have five layers with different spatial scales, the connectivity pattern of the neuron and the number of connection or
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Fig. 5: Contents of a single ROM in the connectivity matrix module.

inputs to a neuron is different for different layers. Thus, we make use of five ROM units in the connectivity matrix module
to store the indices of neurons present in each layer separately.

3.1.2 Neuron
The dynamics of a neuron in the grid cell network is given by Eq. 5. By re-arranging the terms, the activation of the neuron
i at time step t+ 1 is updated as,

sit+1
= sit +

(sinputs − sit)dt
τ

(10)

where, sit is the current activation state of the neuron i and sinputs is given by,

sinputs = f

∑
j

Wijsjt +Bi

 (11)

For the “step-like” ring of inhibitory connectivity we can rewrite the above equation as,

sinputs = f

Bi −∑
j

ωsjt

 (12)

Thus a neuron i in the grid cell network receive two inputs: the inhibitory synaptic input from other neurons in a grid
layer and the feed-forward velocity based input. The architecture of a single neuron i in the neuron array is shown in Fig.
(6).

>> 5 Reg 2 >> 4

Reg 1

1

0

En

Accumulator

Dir

[39:0]

[9:0]
1

4

2

3
[19:10]

[29:20]

[39:30]

Feed Forward
Velocity Input

Input Synaptic
Activation

Output Synaptic
Activation

Fig. 6: Single neuron architecture.

Based on the directional preference of the neuron i, a multiplexer is used to select one of the preferred feed-forward
inputs BE , BW , BN and BS depicting east (θi = 0), west (θi = π), north (θi = π/2) and south (θi = 3π/2) respectively.
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For instance, if a neuron has a preferred direction of North then BN is selected and given as the input Bi by making Dir
(Direction) control signal as 3.

In the first cycle, the current activation of the neuron i whose activation needs to be updated is fetched from the
temporary buffer and is stored in the register (Reg 1) by making Enable (En) signal high. In the subsequent cycles, En
signal is made low and st gives the input activations of other neurons j which is multiplied with the weight ω. ω was set
to 1/32 as the multiplication with 1/32 can be implemented easily using a simple right shift operator. This saves the area
and resource utilized on digital hardware. The right shift operation is denoted by >> 5 in Fig. 6 which indicates that the
input is shifted 5 bits to the right, and is mathematically equivalent of multiplying the input with 1/32. Further, we use an
accumulator to accumulate all the inhibitory input from other neurons and then subtracted with the feed-forward velocity
input Bi. The output is passed through a simple rectification non-linearity f which is implemented by performing a
comparison operation such that, f(x) = x for x > 0, and is 0 otherwise. The ratio dt/τ is set to 1/16 and the multiplication
of ds (cf. Fig. 6) with dt/τ is performed using right shift operation which is indicated by >> 4. Finally, the output sit+1

is
stored in the memory block (cf. Fig. 3) of the grid cell module.

3.2 Place cell module
A place cell module uses activations of neurons in the grid cell network to estimate the place cell activations according to
Eq. 6. We randomly select the activation of a single neuron (s(l)) from each grid cell layer that provides input to a place
cell neuron. Thus, each place cell neuron receives one input from each grid layer and they are linearly added to estimate
the place cell activation. The architecture of the place module is shown in Fig. (7).

Layer 1 
RAM

AddrLFSR 1

LFSR 2 Layer 2 
RAM

Addr

Seed 1

Seed 2
1

5

2

1

5

2
>> 2

>> 2

Sel 1

Sel 2

1

5

2

Sel 5

Place Cell
RAM

Addr

Data

CounterEn

LFSR 2

Seed 5 LFSR 5 Layer 5 
RAM

Addr

Grid Cell
Inputs

Place Cell
Output

Fig. 7: Place cell module architecture. The grid cell activations from five layers are read and multiplied with their
corresponding weights. The output is then linearly added to obtain place cell activations which are stored in the place
cell RAM.

To start with, the grid cell activations from five layers stored in their respective RAMs in the memory block of the grid
cell module are read in every clock cycle. The read address for the RAMs are provided by a linear feedback shift registers
(LFSRs) to randomly pick a neuron from each of the five layers. A detailed explanation of LFSR is provided in Section 3.2.1.
The activations retrieved from RAMs are provided as input to the bank of multiplexers. As mentioned earlier, in order to
have multiple spatial scales across the place cell network, we divide the neurons in the place network into five clusters with
50 neurons present in each cluster. For estimating the activations of the first 50 place cells belonging to cluster 1, the input
weight from layer 1 is set at 1 (W

(1)
k∈(1,50) = 1) and the input weights from other layers are set at 0.25 (W

(l 6=1)
k∈(1,50) = 0.25) as

the multiplication with 0.25 can be implemented easily using right shift operation. For this Sel 1 of the topmost multiplexer
is made 1 to feed the activation of layer 1 directly to the adder and Sel (select) lines of other multiplexers are chosen such
that they output activations of other layers. The outputs of other multiplexers are multiplied with the weight 0.25 which
is implemented using the right shift operation. The output of the topmost multiplexer is fed directly to the adder which is
equivalent of multiplying with weight 1 and the output of other multiplexers are right shifted by two positions denoted
by >> 2 in Fig. 7 and then fed to the adder which is equivalent of multiplying with weight 0.25. Similarly, for estimating
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the activations of place cells present in cluster 2, the input weight from layer 2 is set at 1 (W
(2)
k∈(51,100) = 1) and the input

weights from other layers are set at 0.25 (W
(l 6=2)
k∈(51,100) = 0.25). For this case, the topmost multiplexer is made to select

activation of layer 2 by making Sel 1 = 2 and the output of other multiplexers are configured to select activations of other
layers. In this way, depending on the cluster to which a place neuron belongs, we choose the Sel lines of the multiplexer
such that neurons in cluster i receives input from layer i with weight 1 and the input weight from other layers is 0.25. The
output of the adder is fed to the place cell RAM to store the place cell activations needed for further computation.

3.2.1 Linear feedback shift register (LFSR)
An LFSR is a shift register that has the feedback mechanism given by combining some of the outputs of the shift register
using XOR gates. The feedback points of an LFSR called taps are chosen based on the characteristic polynomial to ensure
maximal length sequence. The maximal length sequence of an LFSR gives 2n − 1 random numbers before it repeats itself,
where n is the length of the shift register. The list of the characteristic polynomial that provides maximal length sequence
is given by Alfke [70]. An LFSR is a pseudo random number generator and the output sequence can be determined if the
initial seed and the characteristic polynomial are known. As we have five layers, we use five different seeds (cf. Fig. 7)
to generate five distinct output sequences. As a single grid layer RAM has the depth 900 to store the activations of 900
neurons in a grid cell layer, we use a 10 bit read address and thus 10−bit LFSR is implemented.

3.3 Decoding module
A decoding module is a simple two layer fully connected neural network with 150 hidden neurons and 2 output neurons.
The training of this network is done offline and the desired weights and biases obtained from this training are stored in
the random access memory (RAM). As shown in Fig. 8, the place cell activations pk obtained from the place cell RAM (cf.
Fig. 7) forms the input to this module. Based on the layer select multiplexer, the Multiply-Accumulate (MAC) operation for
each input generates the output. The first layer input is the place cells and the learned weights which generate the matrix
multiplied output in a pipelined manner. The ReLU operation is applied to this output of the first layer using a comparator
and now this output is stored in RAM which gives hidden layer activations and forms the input to the second layer. We
use the same fully connected layer matrix multiplier hardware for generating the second layer output. Based on the control
Sel (select) line, we get the second layer weights and biases from memory and finally generate the decoded output which
gives the estimated position of the rodent (ẑ). This hardware logic is generated using Vivado High Level Synthesis(HLS)
tool.

Reg

1

0

1

1

0

1

0

1

0

Fully Connected Layer Matrix Multiplier

ReLU Operation

Comparator
Sel

Place Cell
Input

 

Decoded
Output

Layer 
Weights

from RAM

Layer 
Biases

RAM

Fig. 8: Decoding module architecture. A decoding module is a two layer neural network. Place cell activations (pk) forms
the input to this neural network. Based on the Sel control signal, corresponding layer weights and biases are selected and
Multiply-Accumulate (MAC) operations are performed for each layer. The ReLU operation is carried out at the output of
the first layer and the output of the second layer gives the decoded output which denotes the estimated position of the
rodent (ẑ).

4 Results
4.1 Spatial navigation model
Our spatial navigation model takes inspiration from the brain and comprises of three distinct modules namely the grid-
cell, the place-cell and a decoding module. Grid cell activity is simulated using a 2D continuous attractor network model
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with some modifications. Traditionally, "Mexican Hat" type of connectivity is employed to govern the outgoing weights
of a neuron in the network. But implementing Mexican hat type of connectivity is challenging and computationally
very expensive on the hardware, hence we replaced the Mexican hat connectivity with a novel step-like ring of inhibitory
connectivity. The juxtaposition of these two type of connectivity is shown in the Fig. (9) by means of 1D and 2D connectivity.
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Fig. 9: Substituting “Mexican-Hat” connectivity with "step-like" ring of inhibitory connectivity for grid cell activity using
CAN model. Synaptic connectivity and example rate map of grid cell activity using: (A) Mexican-Hat connectivity with
λ = 16; (B) Step-like ring of inhibitory connectivity with fixed ∆1 = 6 and variable ∆2 = 10 (1st row), 12 (2nd row), 15 (3rd

row) and (C) Step-like ring of inhibitory connectivity with fixed difference between ∆1 and ∆2 , ∆1 = 8 and ∆2 = 12 (1st

row), ∆1 = 10 and ∆2 = 14 (2nd row). 1st column: 2-dimensional synaptic weight connectivity matrix for the cell marked
with dot in the centre of weight matrix. 2nd column: 1-dimensional slice from the centre of synaptic weight connectivity
matrix for cell marked in 1st column. 3rd column: Example rate map obtained using continuous attractor network model.

Each neuron in the grid cell network sends a very strong inhibitory input to the certain set of neurons governed either
by Mexican hat or step-like connectivity and the 2D weight representation gives the connectivity matrix for the neuron
marked with the red dot in the centre. The direction preference dependent asymmetry in the synaptic weight connectivity,
which is essential for continuous attractor model, is evident in Fig. 9. The 1D weight connectivity represents the slice from
the centre of the synaptic weight connectivity matrix for the neuron marked with the red dot. Fig. 9 also conveys the effect
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of parameters ∆1 and ∆2 on size and spacing of the grid fields. From Fig. 9(B) it can be seen that by increasing the width
of the ring of inhibition, implemented by keeping ∆1 constant and increasing ∆2, increased the spacing between the grid
fields. On the other hand, keeping the width of inhibition constant, implemented by fixing the difference between ∆1

and ∆2, and varying ∆1 and ∆2 changed the size of the grid field. This effect of the parameters ∆1 and ∆2 on size and
spacing of the grid fields aids in bestowing different spatial scales across multiple layers of grid cell networks in the grid
cell module.

We then study the effect of network size on the grid cell activity using CAN model with step-like ring of inhibitory
connectivity in Fig. 10. The parameters ∆1 and ∆2 of the step-like connectivity were set to 7 and 10.5 respectively for
generating the rate maps shown in Fig. 10. It can be seen that the minimum network size required for the emergence of
grid cell activity is 30 × 30 neurons as smaller networks did not yield grid cell activity. We consider the network size to
be 30 × 30 for hardware implementation, as it is adequate to establish the grid like behavior and further increasing the
network size would increase resource utilization without enhancing performance in terms of grid-cell formation.
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Fig. 10: Minimum network size for emergence of grid cell activity using CAN model with "step-like" ring of inhibition
connectivity. Example rate maps of cell 1− 3 for network size: (A) 10× 10; (B) 20× 20; (C) 30× 30; (D) 40× 40; (E) 50× 50
neurons.

Next, we introduced the place-cell module, a single layer of neurons integrating modular inputs from different layers
of grid cell networks, and the decoding module which is a neural network trained to predict the trajectory explored in the
arena, to complete our model of spatial navigation. As part of sensitivity analysis, we analyzed the impact of number of
layers of grid cell network and the number of place cells on decoding efficiency. The assessment of decoding efficiency was
made by plotting the mean squared error (MSE) between the original virtual trajectory and the predicted trajectory as a
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function of number of layers and number of place cells as shown in Fig. 11. The MSE between the original trajectory and
the predicted trajectory is defined as follows:

MSE =
1

K

K∑
i=1

(zi − ẑi)2

where, zi is the position corresponding to the original trajectory and ẑi is the position corresponding to the predicted
trajectory returned by the decoding module and K is the number of samples used for evaluating MSE.
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Fig. 11: Decoding efficiency for the grid cell-place cell model for spatial navigation. Mean squared error (MSE) between
the original virtual trajectory and predicted trajectory is plotted as function of: (A) Layers of grid cell networks in grid cell
module and (B) Number of place cells in the place cell module. For (A), the number of place cells in place module are fixed
at 250 neurons while for (B), the number of grid cell network in grid cell module are fixed at five layers. The hidden layer
of decoding module had 150 neurons. K = 30k samples are used for calculating MSE. MSE values plotted in both (A) and
(B) are the mean of errors over 50 iterations and the error bar denotes the standard deviation.

For Fig. 11(A), we estimated the MSE by varying the number of layers in the grid cell module and fixing the number of
place cells in place module at 250 neurons. It can be seen that by adding additional layers in the grid cell module the MSE
reduces and to achieve a optimum decoding efficiency we use five layers in our model. For Fig. 11(B), we estimated the
MSE by varying number of place cells and fixing the number of layers in the grid cell module at five. The MSE reduces with
increase in the number of place cells and we used 250 place cells in our model and for hardware implementation to achieve
a optimum decoding efficiency. The MSE values are the average error over 50 iterations and the error was evaluated for
K = 30k samples. The error bar in the plot denotes standard deviation.

4.2 Output of each module of the spatial navigation model
The output of each module in the proposed spatial navigation model is shown in Fig. 12. The rate maps of the grid cell
activity of five layers with different spatial scales is given by Fig. 12(A). Here we show the rate maps of three adjacent
grid cells. Multiple spatial scales are obtained by changing the parameters ∆1 and ∆2 for each layer. For hardware
implementation, the parameters (∆1,∆2) were fixed at (6.5, 9.5), (7, 10.5), (9.5, 12.5), (11, 14), (13.5, 18.5) for five layers
respectively. The output of grid cell module is given as the modular input to the place cell module and the rate maps of the
place cells are shown in Fig. 12(B). Neurons in the place cell network are divided into five clusters with 50 neurons present
in each cluster and we show a rate map of a single neuron present in each cluster. The output of the place cells are given as
the input to the decoding module to predict the position (ẑ). Decoding is implemented using a neural network with 150
hidden neurons and 2 output neurons. Neural network was trained on 10 virtual trajectories in square arena of size 3× 3
m and tested on 10 other virtual trajectories in square arena and 1 trajectory in circular arena with diameter 3m. Out of 11
other trajectories tested we show the decoding result for five trajectories in square arena and 1 trajectory in circular arena
in Fig. 12(C).

4.3 FPGA implementation
The proposed spatial navigation model was implemented on Zynq UltraScale+ (xczu9eg-ffvb1156-2-e) field programmable
gate array. The resource utilization of the implemented design is summarized in Table 1.

All memory blocks used for storing the indices of neurons, activations of grid cells, place cells, weights and biases of the
neural network for decoding are mapped into embedded 18kb block random access memory (BRAM) resources available
on FPGA, using the Block Memory Generator (BMG) IP [71] provided by Xilinx. BRAMs shown in Table 1 indicates the
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Fig. 12: Output of each module of the grid cell-place cell model for spatial navigation: (A) Grid cell module output: Example
grid cell activity rate maps of cell 1 − 3 (rows 1st to 3rd respectively) for each of the five layers. The ring of inhibition
parameters in layer 1: ∆1 = 6.5 and ∆2 = 9.5 (1st column), layer 2: ∆1 = 7 and ∆2 = 10.5 (2nd column), layer 3: ∆1 = 9.5
and ∆2 = 12.5 (3rd column), layer 4: ∆1 = 11 and ∆2 = 14 (4th column) and layer 5: ∆1 = 13.5 and ∆2 = 18.5 (5th

column); (B) Place cell module output: Example outputs of five place cells with different field size. (C) Decoding Module
Output: neuronal network with 250 neurons in input layer and 150 neurons in hidden layer is trained with 10 virtual
trajectories in square arena of size 3 × 3 m and tested for 11 virtual trajectories (10 additional trajectories in square arena
and 1 trajectory in circular arena with diameter of 3 m). Six examples (five trajectories in square arena and one trajectory
in circular arena) are shown for both original (blue) and predicted (red) trajectories for K = 30k samples.

number of 18kb BRAM tiles needed on FPGA. Moreover, it can be seen that utilization of LUTs (LookUp Tables), registers
and DSPs (Digital Signal Processing) units are very low. Time-multiplexing and several design optimizations such as,
replacement of multiplication with shift operation incorporated into the architecture are the primary factors responsible
for reduced resource consumption on FPGA.

For implementing the model on FPGA we have converted all the internal variables from a floating point to a fixed point
representation. The activations of grid cells and place cells use 10 bit fixed point representation. Weights and biases of the
neural network used in the decoding module is 16 bit wide. Finally the output of the decoding module uses 16 bit fixed
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TABLE 1: Device utilization summary

Resource Used Available Utilization(%)

LUTs 7, 994 274, 080 2.92

Registers 5, 007 548, 160 0.91

BRAMs 477 912 52.30

DSPs 3 2, 520 0.12

point representation.
The total computational time (T ) of the model implemented on FPGA is given by:

T = (Lg + Lp + Ld)Tclk (13)

where, Lg , Lp and Ld are the number of clock cycles needed for the computation of grid cell, place cell and decoding
module respectively. Tclk is the clock frequency of the design. In our implementation Lg = 25, 630 cycles, Lp = 255 cycles
and Ld = 37, 800 cycles. Using the clock frequency of 200 MHz the total computational time (T ) is 0.318 ms. The input
is sampled by the design at the rate 1/T = 3.14 kHz. Thus the implementation of the proposed model on FPGA makes
spatial navigation possible in real-time.

Grid cell and place cell modules were implemented using Verilog HDL and the decoding module was realized using
Vivado HLS. The hardware logic generated from both were integrated and then implemented on FPGA. Fig. 13 shows the
output of the final decoded result obtained from FPGA. The output is shown for square arena of size 3 × 3 m. We then
compare the MSE of the hardware based result which uses fixed point representation with that of the software result which
uses 32 bit floating point representation and conclude that there is no significant difference in the MSE values between
software and FPGA based hardware result.
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Fig. 13: Comparison of decoding efficiency of software-based and hardware-based results. Example in square arena of size
3× 3 m for both original (blue) and predicted (red) trajectories using: (A) Software model and (B) FPGA-based hardware.
Note that there is no substantial difference between MSE values for software model result and FPGA- based hardware
result. K = 30k samples are used for calculating the MSE.

5 Discussion
We proposed a spatial navigation model inspired by the brain, comprising of grid cells, place cells and a decoding module.
The grid cell activity was modelled using multiple continuous attractor network (CAN) models, representing the dorso-
ventral span of the medial entorhinal cortex, with some adaptations to make the system feasible and easily realizable
on hardware. We replaced the conventional "Mexican hat" connectivity with a novel "step-like" inhibitory connectivity
to govern CAN models to aid in having simpler hardware design with reduced computational effort. We demonstrated
that the size and position of the inhibitory annulus governed grid cell spacing within the CAN framework, and effectively
employed this in defining different grid-cell layers mimicking the dorso-ventral brain organization. In an effort to minimize
computational requirements, we employed the minimum network size of CAN models for the effective emergence of grid
cell activity. Importantly, we employed clusters of place cells, with defined connectivity from different grid-cell layers, to
impose dorso-ventral place cell organization within our framework.
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We allowed the propagation of activity from velocity to the different grid-cell layers, then to the place-cell clusters in a
modular fashion and finally fed the place-cell output to a decoding module to estimate the position of a virtually navigating
animal. We evaluated the decoding efficiency of the proposed model by varying number of layers of grid cell networks
and the number of place cells in the place cell network to estimate the optimum grid cell layers and place cells required
to achieve a desired decoding efficiency. We implemented our array of the three modules — endowed with optimum
number of grid cells with differential annular inhibitory connectivity across different grid-cell layers, optimal number of
neurons in the place-cell and the decoding modules, — in hardware on Zynq Ultrascale+ FPGA and demonstrated that the
hardware implementation faithfully reproduced the algorithmic results. We established the resource utilization summary
of our hardware implementation, and demonstrate that the implementations of our architecture accurately estimated the
instantaneous position in 2D arena.

In this study, we aimed to develop a path integrator model using grid cells and place cells firing, with place cells in the
hippocampus acting as the spatial output. There are multiple advantages of using place cell output as the decoding layer
input. First, our model closely follows the biologically observed connectivity pattern and field size of the grid cells and
the place cells along the dorsoventral axis of hippocampal anatomy. Second, the individual place cells provide a unique
identity to each location of the explored area and significantly improved the decoding efficiency. Lastly, there is a very
strong drift in the grid cell pattern while using the continuous attractor network as a mechanism for grid cell emergence.
This drift cause progressive decrease in decoding efficiency as time of exploration is increased. Using the place cell output
for decoding bypasses this problem and provides very accurate decoding of spatial exploration even for longer duration,
which is further supported by Fig. 11-13. As observed in Fig. 11(A), the decoding with one layer of grid cells is very
inaccurate, suggested by the larger error between predicted and original trajectory and hence further support the idea of a
grid cell-place cell model for odometric path integration.

From a broader perspective, a common design principle that spans several biological systems is the initial divergence
in the neural code, characterized by the presence of disparate classes of neurons responding to distinct attributes of
sensory stimuli. This initial divergence is then followed by a representational convergence that provides precise outputs
mediating well-defined interactions with the external world. As example would be the visual system, which processes
visual information in a piecemeal fashion, with different circuit components involved in processing features including
orientation, motion, color, depth, spatial frequency, with eventual convergence (“binding”) that results in a coherent percept
of the external visual stimulus.

In the context of our study, the mammalian spatial navigation system is also characterized by such an initial divergence
of internal representations, with distinct classes of neurons responding to features including location, speed, borders, and
head direction; an ensuing convergence finally enables navigation and path integration. As opposed to the mechanisms
underlying the initial divergence of neural representations, the neural mechanisms underlying the eventual convergence
of different features are not well-understood. More specifically, the question of how the eventual convergence results in a
unified motor output (in the case of the spatial navigation system, say) or in a unified percept (with reference to sensory
systems) remains an open and active research problem (the “binding” problem). The decoding module in our model is an
“black-box” approximation to this final convergence, and employs the backpropagation algorithm in a multi-layer neural
network to provide a solution. We employed the backpropogation algorithm for approximating this black box because
of the proven utility of the algorithm in providing such approximation, and given recent arguments on the biological
plausibility of the backpropagation algorithm, derived from our current understanding of active dendritic physiology and
synaptic plasticity [72].

As one of the major aims of this study is to develop a hardware implementation of spatial navigation system of the
brain using grid and place cells models, many simplifications and abstractions are implemented, ranging from single
neuron computation to connectivity between grid cells networks and place cells. Physiologically, at single neuron level,
grid cells are found in medial entorhinal cortex region of the brain [5], [6]. These cells possess many characteristic properties
such as frequency selectivity for the inputs, intrinsic peri-threshold theta frequency oscillations, theta bursting behaviour,
mixed-mode oscillations and many more [73]–[80]. These electrophysiological properties are associated with specific set
of ion channels present in the neurons [73], [80]. Biophysically realistic conductance-based models of such neurons and
small networks can be developed with current computational advances. But continuous attractor network models for grid
cell firing require a very large amount computation across hundreds of neurons. As a result, instead of conductance-based
models, dynamical abstractions are often used for neural computation. In this study, we used one such abstraction called
mean-field modelling approach for CAN model, where, each neuron act as an simple integrator of synaptic inputs [30].
Next, the ring of inhibition or Lincoln-Hat connectivity between the neurons in a grid cell network layer is a simplification
of Mexican-Hat connectivity [39], [81], [82]. Yet the grid cells activity with these different connectivity are not quantitatively
or qualitatively different [81], [82]. Again, this is done to ensure a quick implementation of connectivity weight matrix
onto the hardware. Ring of inhibition resulted in a binary connectivity matrix which drastically reduces the computation
requirement on hardware.

One of the major concerns regarding the use of CAN is that, till now, there is no physiological study confirming the
direct presence of such attractor in the medial entorhinal cortex of the brain. Nevertheless, studies have suggested presence
of low dimensional attractor in the MEC using neuronal population analysis [83]. Furthermore, intracellular recording
from grid cells have shown membrane potential signatures similar to what an attractor model will yield [37]–[39]. The
CAN model is one of the two prominent competing models that are available in the grid cell literature, with the other
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model involving an oscillatory interference paradigm to explain grid-patterned firing [30], [32], [33]. There is an ongoing
debate on the abilities of either class of models in explaining grid-cell network physiology. In addition, there are a class
of hybrid models, that incorporate components of both continuous attractor network and oscillatory interference models,
that have proposed towards better explaining the in vivo intracellular membrane potential behavior during grid cell firing
[37], [38], [43]. Experimental evidence point to the absence of intracellular intrinsic peri-threshold membrane potential
oscillations and the presence of ramp-like depolarisation as the animal enters the grid field [37], [38]. These lines of
evidence provide support for the emergence of grid cell firing through a hybrid CAN-like mechanism, with oscillations
providing a supporting role [37], [38]. In conclusion, the CAN model approach for obtaining grid cell activity is the most
widely accepted approach and the presence of such low dimension continuous attractor has also been physiologically
proven in other model system such as Drosophila’s head direction system [84], hence the presence of such low dimensional
yet complex attractor state in MEC region of brain is not surprising. Lastly, the grid cell network used here is all inhibitory
network, but the grid cell activity of such network is not qualitatively different from an excitatory-inhibitory network
where excitatory neurons are connected predominantly through inhibitory synapses [39], [44], [81].

There are contrasting theories and experiments both supporting and questioning the grid cells to place cells transformation
and vice-versa [28], [29], [85]–[97]. Although there are increasing lines of evidence for such grid cell to place cell transformation
[89], [98]–[102], the major issue with such theories is the absence of direct connections between MEC layer II grid cells to
place cell in CA1. Pure grid cells are found in layer II/III of MEC while conjunctive grid cells (head direction modulated
grid cells) are found in layer III and V of MEC [16]. The CA1 place cells in hippocampus only receive inputs from Layer III
of MEC not from Layer II. While the inputs from layer II of MEC are projected to CA1 neurons via DG and CA3 region of
the hippocampus [103]. The direct connection between the grid and place cells in this study are made keeping in mind to
reduce the increasing complexity of the model and further difficulty in implementing it to the hardware. Lastly, the place
cells receive peri-somatic inhibitory inputs which are missing from the model. The constant inhibitory inputs will further
increase the spatial selectivity of the place cells by reducing the excitatory activity of the neurons in the secondary place
fields [104], [105]. Future studies should therefore endeavor to implement the entire hippocampal formation, with these
connectivity differences accounted for.

In terms of the complete model of spatial navigation, the model used here have only grid cells and place cells while in
the brain other cells such as border cells [11], [12], object cells, extra hippocampal place cells [106], [107], goal cells [108],
[109] and conjunctive cells [16], [110] are also present [13]. Other than these, the head direction cells [9], [10] and speed
cells [111], [112] are not explicitly modelled rather the movement based inputs from these cells to grid cells are modelled
[30]. Future studies can accommodate such spatially selective cells to further increase the spatial navigation capability of
computational models.

There are many previous attempts for developing spatial navigation system on hardware using distinct network
architectures. Simultaneous localization and mapping (SLAM) models use competitive attractor network (a network similar
to the continuous attractor network model of grid cell firing) for path integration and simple spatial tasks [113]. Along with
2D spatial exploration, SLAM models are further developed for 3D exploration and path integration [114]. Furthermore,
using attractor dynamics of head direction system of the rodent brain and vision-driven reset, process of path integration
has been attempted on a chip [53]. In this study, we proposed a novel network architecture for implementation of spatial
navigation system for path integration, involving multiple layers of grid-cell networks, place-cells layer and convergent
decoding layer. Due to linear transformation of multiple grid cell output to place cell, the network behaves very efficiently,
especially compared to a single layer of continuous attractor network for grid cells Fig. 11(A). Future studies can be more
focused on comparing these distinct network architectures of task efficiency, computational load and power consumption.

Very few works in the literature have attempted to implement the brain-inspired spatial navigation models on hardware.
Prior hardware implementations have either adopted an analog approach or have not incorporated complete models for
spacial navigation. Massoud and Horiuchi [51] developed an analog VLSI circuit for modeling a population of grid-cells
using continuous attractor dynamics and fabricated a chip with 16 × 16 array of cells using 0.5 µm CMOS process. In
other work [52], they implemented a head direction cell system relying on spiking neurons with attractor dynamics and
the neuron chip was fabricated using 0.5 µm CMOS process. Kreiser et al. [53] realized a head-direction spiking neural
network on a neuromorphic device. The neural network received the visual input from the event based camera and
used this information to correct the spiking neurons estimate of the robot’s orientation. They used the neuromorphic
processor Reconfigurable OnLine Learning System (ROLLS) comprising of hybrid analog/digital circuits to emulate
the biological processes of spiking neurons and synapses with ultra low-power consumption. Aggarwal [55] designed
the silicon hippocampal formation with three analog chips, a strip ring chip, a grid cell chip based on the GRIDSmap
model and the place chip based on Bayesian integration and fabricated them using 0.5 µm ON semiconductor technology.
These prior analog designs are constrained by accuracy, precision, scalability, whereas our digital implementation of the
spatial navigation system on FPGA overcomes these limitations. Moreover, the development and testing of large analog
implementations is difficult compared to digital systems due to the lack of standard design and test flows. Furthermore,
previous hardware implementations realize only a specific sub-module and do not propose an entire system for spatial
navigation, on the other hand our architecture has a complete model of grid cells, place cells and a decoding module
capable of exploring new path and predicting the location in 2D arena. Although our FPGA based systems gets around
the non-idealities of analog VLSI circuits and largely immune to process variations and device mismatch, it will consume
more power compared to other analog implementations. The total on-chip power consumption of our system on FPGA is
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0.86 W with dynamic power and static power consumption being 0.234 W and 0.625 W respectively.
Previous works in the literature have shown Artificial Neural Network (ANN) based spatial navigation systems [115]–

[118], however very few report FPGA implementation [119], [120]. Azhar and Dimond [119] developed an FPGA based
adaptive neural controller for robot navigation using ANN. Torres et al. [120] proposed a neural network architecture and
its implementation on FPGA for navigation of Unmanned Aerial Vehicles (UAVs). As compared to conventional neural
network models, our model is based on neurophysiological properties of the hippocampal cells, thus the parameters of the
feature extraction stage (formation of grid and place cells) are fixed, and no training is required in the feature extraction
stage. This has an immense advantage over conventional machine learning based models, which require computationally
demanding training procedures and suffer in the case of data unavailability. Furthermore, the additional complications due
to overfitting, lack of generalization, sensitivity to spurious inputs (as in adversarial attacks) of traditional models defined
by tens of thousands or more parameters are well documented [121], [122]. Training these complex deep neural networks
is also very costly, in terms of time, energy and other resources.

One important limitation of our hardware implementation is the memory consumption. The connectivity matrix that
stores the connections of 4500 grid cells takes up 46.83% of the available BRAMs. This could be a potential problem for
scalability. One solution could be taking advantage of the low LUT consumption and including a module to calculate the
indices of the connected neurons on the fly without storing them in memory. Another option is to store the connectivity
matrix in the DRAM and cache the connections of the set of active neurons in BRAM. In order to save memory and enhance
the scalability of the model, a small collection of repeated connectome pattern mimicking the Lincoln-Hat connectivity can
be used, and one such example is the canonical axonal fan-in circuit.

The proposed spatial navigation model was developed foreseeing to serve two primary objectives. First, the engineering
objective, our brain-inspired spatial navigation model provides the framework for the development of robotic platforms
that could perform path integration tasks without the need for an external sensor such as GPS. We suggest that our model
could be deployed on robotic platforms for real-time computation, since the computational time of our implementation
is extremely low. Second, the scientific objective, to serve as a digital neuromorphic simulator. Recently, there has been a
rising demand in developing a large scale neuromorphic simulators [123], [124] and our FPGA based system can serve
that purpose for biological understanding of the model’s components. Intel Core i7-7700 CPU with 8 cores clocking at
3.60 GHz take about 40 minutes to simulate just five layers of grid cells with 100k input samples, whereas our dedicated
hardware takes less than 32 seconds to compute the output of five grid cells layers, place cells layer and the decoding
module together. This is really helpful when we need to tune and test these models for better biological understanding.
In addition to studying the grid cells and place cells, our design with certain modifications, can also be used to study and
understand other parts of the hippocampus that are modelled using the attractor network models like the dentate gyrus
and Cornu Ammonis (CA3).
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