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The human auditory system has the ability to segregate complex auditory scenes into

a foreground component and a background, allowing us to listen to specific speech

sounds from a mixture of sounds. Selective attention plays a crucial role in this process,

colloquially known as the “cocktail party effect.” It has not been possible to build a

machine that can emulate this human ability in real-time. Here, we have developed a

framework for the implementation of a neuromorphic sound segregation algorithm in

a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of

temporal coherence and uses an attention signal to separate a target sound stream

from background noise. Temporal coherence implies that auditory features belonging to

the same sound source are coherently modulated and evoke highly correlated neural

response patterns. The basis for this form of sound segregation is that responses from

pairs of channels that are strongly positively correlated belong to the same stream,

while channels that are uncorrelated or anti-correlated belong to different streams. In

our framework, we have used a neuromorphic cochlea as a frontend sound analyser

to extract spatial information of the sound input, which then passes through band pass

filters that extract the sound envelope at various modulation rates. Further stages include

feature extraction and mask generation, which is finally used to reconstruct the targeted

sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is

able to segregate sound sources in real-time. The accuracy of segregation is indicated

by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55dB for

simple tone, complex tone, and speech, respectively) as compared to the SNR of the

mixture waveform (0 dB). This system may be easily extended for the segregation of

complex speech signals, and may thus find various applications in electronic devices

such as for sound segregation and speech recognition.
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Introduction

Humans can segregate sound sources and focus their attention on
specific sounds, while filtering out a range of other background
sounds with ease (Bregman, 1990). This attentional ability is
known as the “cocktail party effect” (Cherry, 1953), for it enables
one to focus on a single conversation in a noisy room. Intentions
and attention play a key role in segregating complex auditory
scenes into foregrounds and backgrounds, by directing sensory
and cognitive processes to pertinent auditory features (Woldorff
et al., 1993; Shinn-Cunningham, 2008; Elhilali et al., 2009b).
Various acoustic characteristics of sound such as pitch, frequency,
timbre, and spatial location may be the focal point of auditory
attention in selective hearing (Lee et al., 2012).

The human auditory system is a highly efficient and sensitive
sensory system. Sound waves collected in the outer ear travel
through the middle ear to reach the cochlea, which serves as the
front-end of the auditory system (Guinan et al., 2012). Different
locations on the basilar membrane (BM) of the cochlea vibrate
in response to specific sound frequencies, thus enabling the
cochlea to function as a frequency spectrum analyser (Gold and
Pumphrey, 1948; Plomp, 1964). The mechanical vibrations are
transduced by the inner hair cells into neural impulses along
the auditory nerve (LeMasurier and Gillespie, 2005). Subsequent
processing in the brain includes pitch perception for complex
tones (Hall and Plack, 2009), sound localisation (Grothe et al.,
2010), sound segregation (Carlyon, 2004) and identification
(Alain et al., 2001).

Machine-based speech recognition systems have so far not
been able to match the functional efficiency of biological auditory
systems (Lyon, 2010). It is especially desirable to develop a
machine-based auditory system with the ability to segregate
sound sources. Such systems would have a large number of
applications such as speech recognition in a noisy background,
source localisation, sound-based human computer interaction,
the design of autonomous robots with the ability to hear and
respond to sounds, mobile devices that can seamlessly use voice
commands and the design of intelligent hearing aids, as sound
segregation rapidly deteriorates in hearing impaired individuals.
Several computational models have been proposed to solve
the cocktail party problem of speech recognition in a noisy
environment (Cooke and Ellis, 2001; Cooke et al., 2010; Shao
et al., 2010; Shamma et al., 2011). However, all of these are
software models and highly computationally intensive, which
cannot process sound in real-time.

Here, we utilize a temporal coherence model of sound stream
segregation (Krishnan et al., 2014) and adapt it for hardware
implementation in a Field Programmable Gate Array (FPGA).
Themodel works on the principle of temporal coherence (Elhilali
et al., 2009a), meaning that the different types of features (e.g.,
pitch, location, loudness, etc.) belonging to a sound source
fluctuate in strength at exactly the same times, while those
belonging to different sound sources are rarely synchronized.
The model also incorporates the feature that neural response
patterns generated by the auditory features of a sound source
are highly correlated (Shamma et al., 2011). Together, these
principles allow separation of target speech from background

noise using attentional mechanisms. A unique feature of the
temporal coherence model is that it does not require any training
or prior knowledge of target signal and background noise.
Further, it is worth mentioning that since this model is highly
computationally intensive, an FPGA implementation that runs
in real-time is useful.

The temporal coherence model consists of two stages—
feature extraction and clustering (Krishnan et al., 2014). The
feature extraction stage employs an electronic cochlea along
with rate filters. For the hardware implementation, we employ a
neuromorphic model of the cochlea called CAR-FAC (Cascade of
Asymmetric Resonators with Fast-Acting Compression) (Lyon,
2011). We have previously implemented the BM module of
the CAR-FAC model in an FPGA (Thakur et al., 2014a).
Here, we have further improved the FPGA implementation by
incorporating a simplified inner hair cell module in addition
to the BM module. This electronic cochlea, with the BM, and
inner hair cell modules, extracts the auditory features of input
sound stimuli. The rate filters then carry out a multi-resolution
analysis of the cochlear output. The output of each rate filter
is referred to as a channel. In the clustering stage, correlation
among the channels is computed to identify coherent features,
and the attention signal is utilized to select target features that
serve as a mask for segregating and reconstructing source of
interest.

We have tested our sound segregation model by using an
alternating-tone sequence and an alternating-harmonic sequence
in the hardware model, and a mixture of alternating speech in the
softwaremodel. The FPGA systemwas able to segregate the target
sound stream from the mixture of sounds in real-time. Our work
demonstrates that the temporal coherence model of auditory
filtering can be implemented on an FPGA for segregation of
sound sources in real-time. The FPGA implementation of the
temporal coherence model described here may find applications
in various machine-hearing applications. This paper is organized
as follows: the computational model and the system architecture
are described in the Materials and Methods Section. Sound
segregation from pure tone mixtures, complex tone mixtures and
speech mixtures are presented in the Results Section, which is
followed by the Discussion Section.

Materials and Methods

Temporal Coherence Model of Auditory
Streaming
We have used a biological plausible temporal coherence model
for our hardware implementation (Krishnan et al., 2014). This
model exploits two characteristics of a sound source for auditory
filtering—first, the acoustic features of a sound source are
coherently modulated in a temporal manner, and second, the
neural patterns generated in response to a sound source are
highly correlated. The guiding principle, based on one of the
Gestalt Principles, is that auditory channels highly correlated
over a short time period represent a common fate (Bregman,
1990; Blake and Lee, 2005). This algorithm does not require any
training or prior knowledge of the sound sources. Thismodel also
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employs attention to specific attributes of a source to segregate it
from the background. The model comprises of two stages:

Feature Extraction Stage
First, a cochlear model is used to compute an auditory
spectrogram of the input sound. Next, features extracted from
the cochlear stage are gone through a temporal analysis with
multi- rate filters. The filters are selective to different temporal
modulation rates ranging from slow to fast (2, 4, 8, 16Hz),
covering the cortical time-scale. In the current FPGA solution, we
have implemented only one rate filter of 4Hz, since it is sufficient
for the tested soundmixtures. We can easily extend our system to
multi-rate filters, and as the rate filters work in parallel, increasing
their number will not affect the performance of the system.

Clustering Stage
In the actual model, a correlation matrix is calculated by
computing the outer product of the multidimensional channels
(output of the rate filters), and is updated for each time-step.
The pair-wise correlation between channels is indicative of their
degree of synchrony. The next process is to employ an attention
signal to select correlation coefficients for the target stream,
which then act as a mask to segregate and reconstruct the target
stream from uncorrelated streams. In our system, we use an
attention signal as an input, which avoids the calculation of
the correlation matrix and reduces the computational burden
(Section Attention Signal and Mask for Reconstruction). The
attention signal is an exclusive feature present only in the
target stream and it is used computationally to facilitate the
identification of the target stream. The attention signal acts as an
anchor to segregate the target stream and this anchor could be a
pitch signal, an envelope of the target speech, or an envelope of
lip movement etc.

Design Methodology
Figure 1 depicts the block diagram for the FPGA implementation
of the temporal coherence model. The cochlea receives the
auditory input, and transforms the sound signal into a frequency
spectrum. The cochlear output is passed on to the rate filters that

perform a temporal multi-rate analysis, integrating the history of
cochlear channel responses. An attention signal, which is a part
of the target stream influences stream formation by initiating
binding. A correlation matrix that measures the similarity of
auditory responses across channels needs to be computed, but
this is computationally very costly for FPGA implementation.
To ease the computational burden of this calculation, we use the
attention signal to choose particular channels of interest. Pair-
wise correlation of all channels is computed with the attention
signal, which acts as a mask in stream reconstruction and is
referred to as correlation column. Negative values of correlation
coefficient indicate that other tones are highly uncorrelated with
the attention signal. This allows us to compute only a single
column of the correlation matrix, which represents correlation of
the attention channel with all other channels. This single column
is referred to as a mask. Finally, the mask is used to separate the
target stream from the background interference and the filtering
representations are converted back to the acoustic domain.
Each of the modules of the architecture is described in detail
below.

Cochlea
The cochlea functions as a front-end analyser for sound by
transforming the sound input into a frequency spectrum. We
utilize the CAR-FAC model of the cochlea (Lyon, 2011) in
our system, as its speed and efficiency is superior to the more
conventional parallel filter bank approach (Lyon, 1998). The
asymmetric resonators in the cascade of asymmetric resonators
(CAR) are quasi-linear transfer functions that model the motion
of the BM. The outer hair cell module provides dynamic non-
linearity or fast-acting compression (FAC). The inner hair cells
are encoded using sigmoidal or half-wave rectification function,
and introduce non-linearity in the outputs of the CAR. They
function to connect the mechanical waves on the BM to neural
signals on the auditory nerve.

Biquadratic filters represent asymmetric resonators in the
CAR model of the BM. The number of filter sections and their
coefficients are optimized to match a linearised model of the

FIGURE 1 | Schematic of the FPGA implementation of the temporal coherence model of sound segregation. The cochlea receives the auditory input, and

transforms the sound signal into a frequency spectrum. The cochlear output of each frequency channel is passed on to a rate filter that performs a temporal analysis

of the rate of variation of the amplitude of the cochlear output at that frequency channel. An externally determined attention signal, which is temporally correlated with

the target stream, is correlated with the output of the rate filters to create a mask for stream segregation. This mask is used with the output of the cochlear frequency

channels to separate the target stream from the background interference.
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cochlea. The filter poles are equally spaced along the length of
the cochlea. For a normalized position x along the cochlea, the
pole frequency, f, is obtained using the Greenwood function
(Greenwood, 1990):

f = 165.4(102.1x − 1)

where, x varies from 0 at the apex of the BM, to 1 at its base.
Figure 2 shows a biquadratic filter section. Parameters a0 and
c0 are functions of position x, and represent the analog pole
position in the zero-damping case. An explicit parameter, r, can
be modulated to vary the pole and zero radius in the z plane, thus
modulating the damping factor. The relationship between these
parameters is given using the following equations:

a0 = cos (θR) = a/r

c0 = sin (θR) = c/r

where, θR is the normalized pole ringing frequency or pole angle
in the z plane. The transfer function is given as:

Y

X
= g

z2 +
(

−2a0 + hc0
)

rz + r2

z2−2a0rz + r2

The h coefficient controls the difference between zeros and the
pole frequency, and the g coefficient is used to adjust the overall
gain. The zeros will be at the same radius r as the poles, if h is
small enough that the zeros remain complex. For high-frequency
channels, cos θR < 0. In that case:

h0 <
2 + 2a0

c0

To get unity gain at DC, we can solve for g:

g =
1− 2a0r + r2

1−
(

2a0−hc0
)

r + r2

The combination of cascaded stages creates a family of filters
at the output taps between the stages. The resulting filters
may have high peak gains, depending on the stage damping
parameters.

We have previously implemented the CAR module of the
CAR-FAC model in FPGA, which represents the cochlear basilar
membrane (BM) (Thakur et al., 2014a). Here we have added
a simplified inner hair cell (IHC) model using a half-wave
rectifier at the output of the CAR filters followed by two
first order low-pass filters with a 8 kHz cut-off frequency, to
generate an approximate neural activity pattern. Although this
is a very simplified model of the IHC function, it suffices for our
application.

Rate Filter
While the cochlea is selective only for the frequency content of
sound, cortical auditory neurons are additionally selective for
temporal modulations found in natural sounds (Kowalski et al.,
1996; Theunissen et al., 2000; Lu et al., 2001; Escabí et al., 2003;
Woolley et al., 2005). Hence, a temporal analysis of the auditory

FIGURE 2 | Two-pole–two-zero filter in the CAR model. a0 and c0 are

functions of position x along the cochlea. h controls the difference between

zeros and the pole frequency, g is used to adjust the overall gain. X represents

the input signal, Y represents the output signal, and W1 and W2 are internal

state variables. Figure adapted from Thakur et al. (2014a).

spectrogram generated by the cochlea is carried out with multi-
range dynamics covering a frequency range of 2–16Hz. For this,
the output of each cochlear channel is connected to a rate filter.
In our FPGA design, we have implemented only a 4Hz rate filter
using two sets of low pass filters (LPF) and high pass filters (HPF),
each with the same cut-off frequency of 4Hz and connected in
series to obtain steeper slopes. The LPF and HPF are represented
using the following equations:

bplt = ((1−cl) ∗ bplt−1 + cl ∗ ϑt

bpht = ((1−ch) ∗ bpht−1 + ch ∗
(

bplt − bpht−1

)

where, ϑt is input to the rate filters coming from the cochlea
at time t. bpl and bph represent the LPF and HPF function,
respectively. cl and ch denote the coefficients for LPF and HPF
corresponding to a cut-off frequency of 4Hz, respectively, and
are given by:

cl = ch = 2π(
4

fs
)

where, fs is the sampling frequency.

Attention Signal and Mask for Reconstruction
Attention is a cognitive process that allows one to focus on a
group of features of an auditory stimulus. This enhances their
relative amplitudes as compared to unattended stimuli, thus
playing an important role in auditory stream perception and
segregation (Snyder et al., 2006; Bidet-Caulet et al., 2007). It
has been shown that there are attention-dependent changes in
the spectro-temporal receptive fields of the auditory cortex, such
as frequency selective enhancement (Fritz et al., 2003, 2007).
Additionally, attention can influence streaming by modulating
the temporal coherence of neural populations (Niebur et al.,
2002). Attention is an exclusive feature present only in the target
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stream and it is used computationally to facilitate identification
of the target stream.

The correlation vectors are computed as the product of the
rate filter channels with the attention channels, and these vectors
act as a mask. Only the instantaneous correlation across all
pairs of channels is considered. Currently, we have implemented
only the 4Hz rate filter. In the case of multi-rate filters, we
sum all the correlation coefficients of each cochlear channel
and zero the negative coefficients of the resultant vector, which
represents the mask. Usage of an attention signal eases the
computational burden of this calculation, otherwise we would
have to calculate the complete correlation matrix followed by
decomposition into principle components using a non-linear
auto-encoder (Krishnan et al., 2014). The computed mask is used
for the reconstruction or segregation of the speech of interest.
Since the time-scale of the rate filters is very slow (<20Hz), and
FPGA processing is very fast (∼hundreds of MHz), we are able
to use a single rate filter of 4Hz across all the channels using a
time-multiplexing technique.

Stream Reconstruction
In stream reconstruction, the target stream present in the
input auditory stimulus is resynthesised computationally using
the output of early auditory and cortical stages. A detailed
mathematical explanation of stream reconstruction is published
by Chi et al. (2005). It should be noted that reconstruction of
sound is not a biological process, but for sound segregation
applications we need to reconstruct the target sound. In this
final stage, point to point multiplication of the formed mask
with the output of the BM channels of the cochlea is carried
out to segregate the target stream from the background, and
to reconstruct the stream. This process would require many
multipliers, but our FPGA implementation requires only one
multiplier, as we are using a time-multiplexing technique.
Rate filtering introduces some latency and each BM filter also
introduces a different phase delay. Currently, we are using a
100 MHz system clock. The BM block introduces a delay of 49
clock cycles (490 ns) and the total delay introduced by the IHC
and the rate filter is 45 clock cycles (450 ns). These could be
compensated for by delaying each BM output channel by an
appropriate amount before reconstruction, but in the current
implementation, we have not done this as the quality of the
reconstructed signal without delay compensation is good enough
for our purpose.

FPGA Implementation
First, we simulated a software floating-point implementation
of the model in Python. Next, we adapted the Python code
for fixed-point implementation, and determined the word
length of the input, output, and internal variables required for
FPGA implementation without loss of accuracy. The system
architecture for the hardware implementation is shown in
Figure 3. Here, we have used time-multiplexing to share the
hardware resources on the FPGA. We have implemented a single
hardware block as shown in Figure 3, and reused it for all
the 70 filter sections, given an audio sampling clock of 8 KHz
and a system clock of 100MHz (Thakur et al., 2014b). The

cochlear filter section that is processed at a particular time is
determined by a global state machine. The latter also controls
the coefficients and data for the filter section. For each filter
section, the coefficients a, c, g, and h are calculated externally, and
uploaded into FPGAmemory from a file at the start of execution.
Each input sound sample passes via the global state machine to
the BM for processing. Two parallel state machines are contained
in the BM block. These control and calculate internal variables
W1 and W2, which are further used to calculate the transfer
function, Y/X. A delay element (z−1 block in Figure 2) requires
the variables, W1 and W2, to be stored for each filter section.
The output of the BM is passed on to the inner hair cell and rate
filter block for each filter section, as explained in Section Rate
Filter. The output of each cycle of operation of one filter section
is passed to the global state machine. This serves as the input for
the next filter section stage, resulting in a cascading of the filter
sections. The completion of processing of an input sample by one
filter, inner hair cell and rate filter section is denoted as “Done,”
while “Done_Sample” by the global state machine denotes the
completion of processing by all the filter sections including inner
hair cell and rate filter. We have successfully implemented the
proposed system on an Altera Cyclone V FPGA (on a Terasic
Cyclone GX starter kit) with the utilization area as shown in
Table 1.

Results

Here, we present test results for the performance of the system.
We first tested the model on typical auditory stimuli (single and
complex tones) widely used to study the perceptual formation
of auditory streams. Further, we tested the model on complex
speech sound for speaker separation. The results presented in
Sections Segregation of Streams from Alternating-tone Sequence
and Segregation of Streams from Alternating Complex Tones
were obtained from hardware implementation, and those in
Section Segregation of Speech fromMixtures were obtained from
simulation of the model in software, which is a replica of our
hardware model. The performance of the model is quantified by
comparing the original separate streams to the segregated stream.
The signal-to-noise ratio (SNR) is computed as:

SNR_segregated_stream = 10log

(

|S1∗O1|2

|S1∗O2|2

)

(1)

SNR_mixture = 10log

(

|M∗O1|2

|M∗O2|2

)

(2)

where, S1 is the segregated (output) stream; O1 and O2 are the
original separate streams; and M is the mixture stream provided
as the input. The “∗” operator represents the dot product of the
two sound vectors.

Segregation of Streams from Alternating-tone
Sequence
An alternating-tone sequence is composed of two continuously
repeated pure tones of different frequencies, A and B. Such
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FIGURE 3 | System Architecture for FPGA implementation. The system includes a basilar membrane block, and an inner hair cell and rate filter block. Each

block is only instantiated once, but is time multiplexed to create 70 instances in our system. The cochlea is shown using a red background.

TABLE 1 | Device utilization Altera Cyclone-V 5CGXFC7C7F23C8.

Adaptive Logic Modules (ALMs) Total registers DSPs

1793/56480 (3%) 3899 10/156 (6%)

a sequence is commonly used in studies of auditory stream
segregation. The frequency separation between the two tones,
1f, and the inter-tone interval, 1T, determine the percept
evoked by such sequences. If 1f is small and 1T is long, the
sequence is perceived as a single stream of tones alternating
in frequency (ABAB). This phenomenon is known as temporal
coherence (Van Noorden and Schouten, 1975). On the contrary,
if 1f is large and 1T is short, the sequence is perceived
as two separate streams of tones of constant frequencies (A’s
and B’s). This phenomenon is known as stream segregation.
We have used a sequence composed of frequencies 440 and
1000Hz, with a presentation rate (1T) of 4Hz. Figure 4 shows
the result for this alternating-tone sequence. The input mixture
is transformed into an auditory spectrogram using cochlea as
described in Section Cochlea, and a particular channel that is a
feature of the targeted stream is used as attention signal. Pair-
wise correlation of all channels is computed with the attention
signal which we refer as correlation column. The negative value
of correlation coefficient indicates that the tone of frequency
1000Hz is highly uncorrelated with the attention signal. The
targeted stream of 440Hz tone is segregated, and reconstructed
using mask which is created based on the attention signal. The
effectiveness of segregation is measured using Equations (1) and
(2). The SNR for the segregated stream is calculated as 91 dB
compared to the input mixture of two simple tones, mixed
at 0 dB.

Segregation of Streams from Alternating
Complex Tones
Here, we have used a sequence of two complex tones alternating
with a presentation rate of 4Hz. This presentation rate lies within
the range (2–20Hz) of the presentation rate of auditory signals
over which auditory stream formation takes place in the brain
(Fishman et al., 2004; Chakalov et al., 2013). The first complex
tone is a mixture of pure tones of frequencies 300 and 900Hz,
and the second complex tone consists of tones of frequencies 600
and 1500Hz. The results are shown in Figure 5. The tone with
frequency of 600Hz is used as the attention signal. As this tone
is temporally coherent with the tone of frequency 1500Hz, all
two tones become segregated as one stream. It can be seen in
Figure 5 that all frequencies comprising the first mixture—600
and 1500Hz, show positive correlation coefficient because they
are temporally coherent with the attention signal. In contrast, the
other complex tone of frequencies 300 and 900Hz show negative
correlation coefficients, suggesting that they belong to a different
acoustic source and are incoherent with the attention signal.
The targeted stream is segregated and reconstructed using the
mask generated based on the attention signal. The effectiveness
of segregation is measured using Equations (1) and (2). The SNR
for the segregated stream is calculated as 77 dB compared to the
input mixture of two complex tones, mixed at 0 dB.

Segregation of Speech from Mixtures
Here, we have used amixture of two female utterances, one saying
“good morning” and the other saying “game over.” The target
speech is the female speech corresponding to “good morning.”
Our system needs an attention signal, which should be present
exclusively in the target speech. Normally, this might be channels
tuned roughly near the pitch range, or location responses
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FIGURE 4 | Segregation of alternating-tone sequence. (A) Auditory spectrogram of the input mixture of two alternating pure tones (440 and 1000Hz). A low

cochlear filter number represents high frequency, and vice versa. One particular channel, of frequency 440Hz, is used as the attention signal (Attn Ch). (B) Pair-wise

correlation of all channels are computed using the attention signal. The negative value of correlation coefficient (blue) indicates that the second tone is highly

uncorrelated with the attention signal. (C,D) The targeted stream is segregated, and reconstructed using mask which is created based on the attention signal, shown

as a spectrogram in (C) and plot in (D).

FIGURE 5 | Segregation of alternating complex tones. (A) Auditory spectrogram for an input mixture of complex tones [(300, 900Hz) and (600, 1500Hz)]. Low

cochlear filter number represents high frequency, and vice versa. The channel corresponding to frequency of 600Hz is used as attention signal (Attn Ch) and is

marked with an arrow. (B) Pair-wise correlation of all channels is computed using the attention signal. Negative values of correlation coefficient (blue) indicate that

other tones are highly uncorrelated with the attention signal. (C,D) The targeted stream (600, 1500Hz) is segregated and reconstructed using mask generated based

on the attention signal, shown as a spectrogram in (C) and plot in (D).
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FIGURE 6 | Software simulation for segregation of speech from mixture. (A) Auditory spectrogram for an input mixture of two female utterances (“good

morning” and “game over”) is transformed into an auditory spectrogram. The envelope of the target speech (“good morning”) acts as the attention signal. (B) Pair-wise

correlation of all channels are computed with the attention signal (channel number 23). (C) The segregated target streams are shown in the spectrogram. (D) Input

mixture (cyan graph) and segregated speech (red graph) are shown.

sensitive to the approximate direction of the target speaker.
By using these channels, we can simply use their coherently-
modulated power as the cue to the presence of the target speaker.
Here, to simulate these extra computations, we have used the
envelope (power) of the target speech to act as the attentional
signal. The results are shown in Figure 6. Pair-wise correlation
of all channels is computed with this simulated attention signal,
resulting in the necessary mask in stream reconstruction. As
shown in Figure 6, we are able to segregate the target speech
signal from the speech mixture efficiently. The effectiveness of
segregation is measured using Equations (1) and (2). The SNR
for the segregated stream is calculated as 55 dB compared to the
input mixture of the two female utterances, mixed at 0 dB.

Discussion

In this work, we have adapted a temporal coherence-
based computational model of auditory scene analysis for
neuromorphic hardware implementation in FPGA. We have
validated our system by testing various sound stimuli such as
alternating-tone sequence, alternating-harmonic complexes
and mixtures of speech. We show that our FPGA architecture
can successfully segregate sound streams in all these cases
(see Supplementary Material). Our system implements a

neuromorphic model of the segregation of sound sources in
real-time. The system is easily scalable to incorporate higher
number of cochlear channels and rate filters, and thus may serve
as a feasible solution to the cocktail party problem.

The temporal coherence algorithm differs from other
computational systems of auditory stream segregation in its
close correspondence to the neurobiological cortical mechanisms
of hearing (Shamma et al., 2011). The algorithm also requires
no prior information or training on the sources, and can
gracefully incorporate and benefit from attention as a criterion
for stream segregation. Research has shown that attention plays
an important role in segregation by enhancing the perception of
a particular stream over others in the auditory scene (Hillyard
et al., 1973; Tiitinen et al., 1993; Bidet-Caulet et al., 2007; Elhilali
et al., 2009b). Here, we utilize an attention signal as a means to
separate target sound from background noise.

In our previous work, we have implemented a cochlear
model and demonstrated its ability to process sound in real-time
(Thakur et al., 2014b). We have now integrated this cochlear
implementation with the temporal coherence model, and this
system is a novel prototype formulti-talker speech separation and
recognition. Future work will aim to extend the existing model
for the segregation of complex speech signals to incorporate
various cues such as pitch, frequency, timbre, and spatial location
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etc. Additionally, the limitations of the current system will be
addressed in the future. For example, attention signal is only one
of the means to identify a feature of interest in the target stream
for segregation. We will incorporate additional features that will
make the systemmore robust to segregate sound. The correlation
vector in our system is implemented using a multiplier. This
is a simplified model for the auditory cortex, which will be
improved by using spike-based computation to group coherent
features. Finally, we could also expand the model to explore
the effects of switching attention channel between two streams
and look at how this switching affects the representation of
streams.

Overall, our FPGA implementation of the temporal coherence
algorithm establishes that it is feasible to develop a hardware
system that can segregate sound sources in real-time. Our FPGA
implementation is area efficient, since it reuses a single hardware
block for all the filter sections. Our system will have several

applications, such as robust front-end processors for automatic
speech recognition.
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